Molecules in Signal Pathways

  • Chapter
  • First Online:
Clinical Molecular Diagnostics
  • 3052 Accesses

Abstract

Cell signal transduction is essential for human life. Signal transduction pathways participate in all cell life activities, such as cell metabolism, cell division, cell differentiation, cell functional activities, and cell death. During cell metabolism, cells ingest and metabolize nutrients that provide energy. During cell division, DNA is replicated, and signaling pathways regulate the cell cycle, allowing for cell division and proliferation. During cell differentiation, gene products in cells are selectively expressed, thereby allowing cells to differentiate into mature cells with specific functions. During cell functional activities, cells release neurotransmitters or biochemicals, leading to contraction or relaxation of muscle cells, cytoskeletal formation, or remodeling. Cell death is the final event of the cell life cycle, which can occur in a local and a certain number of groups in order to maintain the overall benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lockshin RA, Williams CM. Programmed cell death—I. Cytology of degeneration in the intersegmental muscles of the Pernyi silkmoth. J Insect Physiol. 1965;11:123–33.

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26:239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer. BioMed Res Int. 2014;2014:150845.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zaman S, Wang R, Gandhi V. Targeting the apoptosis pathway in hematologic malignancies. Leuk Lymphoma. 2014;55:1980–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsujimoto Y, Finger LR, Yunis J, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–9.

    Article  CAS  PubMed  Google Scholar 

  7. Bakhshi A, Jensen JP, Goldman P, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985;41:899–906.

    Article  CAS  PubMed  Google Scholar 

  8. Cleary ML, Sklar J. Nucleotide sequence of at (14; 18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci. 1985;82:7439–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vaux DL, Cory S, Adams JM. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–2.

    Article  CAS  PubMed  Google Scholar 

  10. Czabotar PE, Lessene G, Strasser A, et al. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol. 2014;15:49–63.

    Article  CAS  PubMed  Google Scholar 

  11. Birnbaum M, Clem R, Miller L. An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs. J Virol. 1994;68:2521–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bratton S, Lewis J, Butterworth M, et al. XIAP inhibition of caspase-3 preserves its association with the Apaf-1 apoptosome and prevents CD95-and Bax-induced apoptosis. Cell Death Differ. 2002;9:881.

    Article  CAS  PubMed  Google Scholar 

  13. Bratton SB, Walker G, Srinivasula SM, et al. Recruitment, activation and retention of caspases-9 and-3 by Apaf-1 apoptosome and associated XIAP complexes. EMBO J. 2001;20:998–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Srinivasula SM, Hegde R, Saleh A, et al. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature. 2001;410:112.

    Article  CAS  PubMed  Google Scholar 

  15. Fulda S, Vucic D. Targeting IAP proteins for therapeutic intervention in cancer. Nat Rev Drug Discov. 2012;11:109.

    Article  CAS  PubMed  Google Scholar 

  16. Flygare JA, Fairbrother WJ. Small-molecule pan-IAP antagonists: a patent review. Expert Opin Ther Pat. 2010;20:251–67.

    Article  CAS  PubMed  Google Scholar 

  17. Lu J, Bai L, Sun H, et al. SM-164: a novel, bivalent Smac mimetic that induces apoptosis and tumor regression by concurrent removal of the blockade of cIAP-1/2 and XIAP. Cancer Res. 2008;68:9384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Silke J, Vucic D. IAP family of cell death and signaling regulators. In: Methods in enzymology, vol. 545. San Diego, CA: Elsevier; 2014. p. 35–65.

    Google Scholar 

  19. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11:329.

    Article  CAS  PubMed  Google Scholar 

  20. Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer. 2015;15:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jason S, Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016;143:3050–60.

    Article  CAS  Google Scholar 

  22. Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.

    Article  CAS  PubMed  Google Scholar 

  23. Welfare A. Cancer in Australia: an overview. In: Canberra; 2012.

    Google Scholar 

  24. Dang CV. Links between metabolism and cancer. Genes Dev. 2012;26:877–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heesom KJ, Denton RM. Dissociation of the eukaryotic initiation factor-4E/4E-BP1 complex involves phosphorylation of 4E-BP1 by an mTOR-associated kinase. FEBS Lett. 1999;457:489–93.

    Article  CAS  PubMed  Google Scholar 

  26. Yang H, Rudge DG, Koos JD, et al. mTOR kinase structure, mechanism and regulation. Nature. 2013;497:217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu P, Gan W, Chin YR, et al. PtdIns (3, 4, 5) P3-dependent activation of the mTORC2 kinase complex. Cancer discovery: CD-15-0460; 2015.

    Google Scholar 

  28. Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.

    Article  CAS  PubMed  Google Scholar 

  29. De A. Wnt/Ca2+ signaling pathway: a brief overview. Acta Biochim Biophys Sin. 2011;43:745–56.

    Article  CAS  PubMed  Google Scholar 

  30. Joiner DM, Ke J, Zhong Z, et al. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab. 2013;24:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149:1192–205.

    Article  CAS  PubMed  Google Scholar 

  32. Taciak B, Pruszynska I, Kiraga L, et al. Wnt signaling pathway in development and cancer. J Physiol Pharmacol. 2018;69.

    Google Scholar 

  33. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

    Article  CAS  PubMed  Google Scholar 

  34. Kinzler KW, Nilbert MC, Su L-K, et al. Identification of FAP locus genes from chromosome 5q21. Science. 1991;253:661–5.

    Article  CAS  PubMed  Google Scholar 

  35. Nishisho I, Nakamura Y, Miyoshi Y, et al. Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients. Science. 1991;253:665–9.

    Article  CAS  PubMed  Google Scholar 

  36. He T-C, Sparks AB, Rago C, et al. Identification of c-MYC as a target of the APC pathway. Science. 1998;281:1509–12.

    Article  CAS  PubMed  Google Scholar 

  37. Van De Wetering M, Sancho E, Verweij C, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–50.

    Article  PubMed  Google Scholar 

  38. Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18:1385–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Henson ES, Gibson SB. Surviving cell death through epidermal growth factor (EGF) signal transduction pathways: implications for cancer therapy. Cell Signal. 2006;18:2089–97.

    Article  CAS  PubMed  Google Scholar 

  40. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40:2707–19.

    Article  CAS  PubMed  Google Scholar 

  41. Chambard J-C, Lefloch R, Pouysségur J, et al. ERK implication in cell cycle regulation. Biochim Biophys Acta (BBA) Mol Cell Res. 2007;1773:1299–310.

    Article  CAS  Google Scholar 

  42. Sturm OE, Orton R, Grindlay J, et al. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal. 2010;3:ra90.

    Article  CAS  PubMed  Google Scholar 

  43. Dérijard B, Hibi M, Wu I-H, et al. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994;76:1025–37.

    Article  PubMed  Google Scholar 

  44. Hibi M, Lin A, Smeal T, et al. Identification of an oncoprotein-and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev. 1993;7:2135–48.

    Article  CAS  PubMed  Google Scholar 

  45. Chu AJ. Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm Allergy Drug Targets (Former Curr Drug Targets Inflamm Allergy). 2014;13:34–64.

    CAS  Google Scholar 

  46. Uno M, Honjoh S, Matsuda M, et al. A fasting-responsive signaling pathway that extends life span in C. elegans. Cell Rep. 2013;3:79–91.

    Article  CAS  PubMed  Google Scholar 

  47. Schneider-Jakob S, Corazza N, Badmann A, et al. Synergistic induction of cell death in liver tumor cells by TRAIL and chemotherapeutic drugs via the BH3-only proteins Bim and Bid. Cell Death Dis. 2010;1:e86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou Y-Y, Li Y, Jiang W-Q, et al. MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep. 2015;35:e00199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J Biol Chem. 1996;271:17920–6.

    Article  CAS  PubMed  Google Scholar 

  50. Lechner C, Zahalka MA, Giot J-F, et al. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc Natl Acad Sci. 1996;93:4355–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mertens S, Craxton M, Goedert M. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 1996;383:273–6.

    Article  CAS  PubMed  Google Scholar 

  52. Goedert M, Cuenda A, Craxton M, et al. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 1997;16:3563–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jiang Y, Gram H, Zhao M, et al. Characterization of the structure and function of the fourth member of p38 group mitogen-activated protein kinases, p38δ. J Biol Chem. 1997;272:30122–8.

    Article  CAS  PubMed  Google Scholar 

  54. Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem. 1998;273:1741–8.

    Article  CAS  PubMed  Google Scholar 

  55. Harrison DA. The jak/stat pathway. Cold Spring Harb Perspect Biol. 2012;4:a011205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci. 2004;117:1281–3.

    Article  CAS  PubMed  Google Scholar 

  57. Bousoik E, Aliabadi HM. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front Oncol. 2018;8:287.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pesu M, Laurence A, Kishore N, et al. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223:132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamaoka K, Saharinen P, Pesu M, et al. The janus kinases (jaks). Genome Biol. 2004;5:253.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stark GR, Darnell JE Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene. 2000;19:5662.

    Article  CAS  PubMed  Google Scholar 

  62. Firmbach-Kraft I, Byers M, Shows T, et al. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene. 1990;5:1329–36.

    CAS  PubMed  Google Scholar 

  63. Sandberg EM, Wallace TA, Godeny MD, et al. Jak2 tyrosine kinase. Cell Biochem Biophys. 2004;41:207–31.

    Article  PubMed  Google Scholar 

  64. Aittomäki S, Pesu M. Therapeutic targeting of the Jak/STAT pathway. Basic Clin Pharmacol Toxicol. 2014;114:18–23.

    Article  PubMed  CAS  Google Scholar 

  65. Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000;19:2628.

    Article  CAS  PubMed  Google Scholar 

  66. Levy David E, Darnell J Jr. Jr Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.

    Article  CAS  PubMed  Google Scholar 

  67. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  CAS  PubMed  Google Scholar 

  68. Folkman J, Watson K, Ingber D, et al. Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature. 1989;339:58.

    Article  CAS  PubMed  Google Scholar 

  69. Ferrara N, Gerber H-P, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9:669.

    Article  CAS  PubMed  Google Scholar 

  70. Lee SH, Jeong D, Han Y-S, et al. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann Surg Treatment Res. 2015;89:1–8.

    Article  Google Scholar 

  71. Folkman J, Kalluri R. Cancer without disease. Nature. 2004;427:787.

    Article  CAS  PubMed  Google Scholar 

  72. Kerbel R, Folkman J. Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2002;2:727.

    Article  CAS  PubMed  Google Scholar 

  73. Carmeliet P, Mackman N, Moons L, et al. Role of tissue factor in embryonic blood vessel development. Nature. 1996;383:73.

    Article  CAS  PubMed  Google Scholar 

  74. Grothey A, Galanis E. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat Rev Clin Oncol. 2009;6:507.

    Article  CAS  PubMed  Google Scholar 

  75. Chance O. Value of statistics in the study of cancer of the uterine cervix. Comptes rendus de la Societe francaise de gynecologie. 1951;21:305.

    CAS  PubMed  Google Scholar 

  76. Dotta J, Delporte T. Statistics on the treatment of prostatic cancer. Revista argentina de urologia. 1951;20:255.

    CAS  PubMed  Google Scholar 

  77. Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol. 2000;228:151–65.

    Article  CAS  PubMed  Google Scholar 

  78. Lai EC. Notch signaling: control of cell communication and cell fate. Development. 2004;131:965–73.

    Article  CAS  PubMed  Google Scholar 

  79. Cesarani F, Garbagnoli E. Local recurrence and lymphatic and osseous metastases following surgery of breast cancer; radiotherapy department statistics for 1944–50. Athena; rassegna mensile di biologia, clinica e terapia. 1951;17:189.

    CAS  PubMed  Google Scholar 

  80. Kopan R, Ilagan MXG. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137:216–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kofler NM, Shawber CJ, Kangsamaksin T, et al. Notch signaling in developmental and tumor angiogenesis. Genes Cancer. 2011;2:1106–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Thurston G, Kitajewski J. VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer. 2008;99:1204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hellström M, Phng L-K, Hofmann JJ, et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature. 2007;445:776.

    Article  PubMed  CAS  Google Scholar 

  84. Suchting S, Freitas C, le Noble F, et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci. 2007;104:3225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sainson RC, Aoto J, Nakatsu MN, et al. Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J. 2005;19:1027–9.

    Article  CAS  PubMed  Google Scholar 

  86. Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 1992;11:3887–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dong H, Zhu G, Tamada K, et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang X, Schwartz J-CD, Guo X, et al. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004;20:337–47.

    Article  CAS  PubMed  Google Scholar 

  89. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25:9543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467.

    Article  CAS  PubMed  Google Scholar 

  91. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Azuma T, Yao S, Zhu G, et al. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood. 2008;111:3635–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72:917–27.

    Article  CAS  PubMed  Google Scholar 

  94. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. García-Teijido P, Cabal ML, Fernández IP, et al. Tumor-infiltrating lymphocytes in triple negative breast cancer: the future of immune targeting. Clin Med Insights Oncol. 2016;10:CMO. S34540.

    Google Scholar 

  96. George S, Motzer RJ, Hammers HJ, et al. Safety and efficacy of nivolumab in patients with metastatic renal cell carcinoma treated beyond progression: a subgroup analysis of a randomized clinical trial. JAMA Oncol. 2016;2:1179–86.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gibson J. Anti-PD-L1 for metastatic triple-negative breast cancer. Lancet Oncol. 2015;16:e264.

    Article  CAS  PubMed  Google Scholar 

  98. Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti–programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol. 2016;34:3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mizugaki H, Yamamoto N, Murakami H, et al. Phase I dose-finding study of monotherapy with atezolizumab, an engineered immunoglobulin monoclonal antibody targeting PD-L1, in Japanese patients with advanced solid tumors. Investig New Drugs. 2016;34:596–603.

    Article  CAS  Google Scholar 

  100. Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma. N Engl J Med. 2016;374:2542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18:10.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Semenza GL. Hypoxia-inducible factor 1: regulator of mitochondrial metabolism and mediator of ischemic preconditioning. Biochim Biophy Acta (BBA) Mol Cell Res. 2011;1813:1263–8.

    Article  CAS  Google Scholar 

  104. Semenza GL, Nejfelt MK, Chi SM, et al. Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci. 1991;88:5680–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Maxwell PH, Pugh CW, Ratcliffe PJ. Activation of the HIF pathway in cancer. Curr Opin Genet Dev. 2001;11:293–9.

    Article  CAS  PubMed  Google Scholar 

  106. Levine AJ. The road to the discovery of the p53 protein: the steiner cancer prize award lecture. Int J Cancer. 1994;56:775–6.

    Article  CAS  PubMed  Google Scholar 

  107. Abraham AG, O’Neill E. PI3K/Akt-mediated regulation of p53 in cancer. Portland Press Limited; 2014.

    Google Scholar 

  108. Sznarkowska A, Olszewski R, Zawacka-Pankau J. Pharmacological activation of tumor suppressor, wild-type p53 as a promising strategy to fight cancer. Postepy higieny i medycyny doswiadczalnej (Online). 2010;64:396–407.

    Google Scholar 

  109. Takimoto R, El-Deiry W. Wild-type p53 transactivates the KILLER/DR5 gene through an intronic sequence-specific DNA-binding site. Oncogene. 2000;19:1735.

    Article  CAS  PubMed  Google Scholar 

  110. Pan S, Wang F, Huang P, et al. The study on newly developed McAb NJ001 specific to non-small cell lung cancer and its biological characteristics. PLoS One. 2012;7:e33009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Liu J, Zhang W, Gu M, et al. Serum SP70 is a sensitive predictor of chemotherapy response in patients with advanced nonsmall cell lung cancer. Cancer Med. 2018;7:2925–33.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyang Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 People's Medical Publishing House Co. Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, S., Zhang, W. (2021). Molecules in Signal Pathways. In: Pan, S., Tang, J. (eds) Clinical Molecular Diagnostics. Springer, Singapore. https://doi.org/10.1007/978-981-16-1037-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1037-0_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1036-3

  • Online ISBN: 978-981-16-1037-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation