Artificial Intelligence in Skin Cancer: Diagnosis and Therapy

  • Chapter
  • First Online:
Skin Cancer: Pathogenesis and Diagnosis
  • 790 Accesses

Abstract

Skin cancer is one of the major public health problems worldwide. Its early diagnosis and timely therapy are immensely important in improving patient health. Thus, the improved and accessible diagnostic systems for skin cancer are the most potent determinant of getting the right treatment at the right time. The last two decades have seen unprecedented growth in the application of artificial intelligence (AI) for skin cancer research. Recent advancement in the computational power, digitization of medical imaging, rise of -omics data have accumulated a new opportunity. The ability of AI methods to detect hidden or unknown patterns from such complex datasets reveals their importance. The AI approach in skin cancer has helped to improve the diagnostic and therapeutic strategies, from risk assessment using genomic sequences, accessible smartphone-based “apps” for diagnosis to predict the likelihood of therapy response amidst others. This technology holds a promising potential to automate and assist primary clinicians in improving patient health outcomes through effective diagnostic and therapy strategies using the complex healthcare data paving in the way for precision medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

2-D:

Two-dimensional

3-D:

Three-dimensional

AI:

Artificial intelligence

AK:

Actinic keratosis

ANN:

Artificial neural network

apps:

Applications

ATAC-seq:

Assay for transposase-accessible chromatin using sequencing

AUC:

Area under the curve

BCC:

Basal cell carcinoma

CADe:

Computer-aided detection

CADx:

Computer-aided diagnosis

cDNA:

Complementary DNA

ChIPseq:

Chromatin immunoprecipitation

CNN:

Convolutional neural network

CT:

Computed tomography

CTCs:

Circulating tumor cells

CUPs:

Cancer of unknown primary

DL :

Deep learning

DNA:

Deoxyribonucleic acid

DNN:

Deep neural network

DTRs:

Dynamic treatment regimes

EHRs:

Electronic health records

EMRs:

Electronic medical records

FDA:

Food and drug administration

GANs:

Generative adversarial networks

GATK:

Genome analysis toolkit

GDL:

Genome deep learning

GWAS:

Genome-wide association studies

H&E:

Hematoxylin and Eosin

HAM10000:

Human Against Machine with 10,000 training images

HLA:

Human leukocyte antigen

IHC:

Immunohistochemistry

ISIC:

International Skin Imaging Collaboration

ISRO:

Indian Space Research Organization

KSC:

Keratinocyte skin cancer

MCC:

Merkel cell carcinoma

MHC:

Major histocompatibility complex

ML:

Machine learning

MRI:

Magnetic resonance imaging

mRNA:

Messenger RNA

MSC:

Melanoma skin cancer

NGS:

Next-generation sequencing

NLP:

Natural language processing

NMSC:

Non-melanoma skin cancer

NNs:

Neural networks

OTR:

Organ transplant recipients

PCA/DA:

Principal component analysis discriminant analysis

PET:

Positron emission tomography

PLS/DA:

Partial least squares discriminant analysis

PPIs:

Protein–protein interactions

PRS:

Polygenic risk score

RNA:

Ribonucleic acid

ROIs:

Region of interests

SCC:

Squamous cell carcinoma

scRNAseq:

Single-cell RNA sequencing

SKCM:

Skin cutaneous melanoma

SNPs:

Single nucleotide polymorphisms

SVMs:

Support vector machines

TA:

Texture analysis

TCGA:

The cancer genome atlas

TD:

Teledermatology

TDD:

Teledermoscopy

TF:

Transcription factor

TMB:

Tumor mutational burden

T-VEC:

Talimogene laherparepvec

UM:

University of Michigan

US:

Ultrasound

UV:

Ultraviolet

WES:

Whole exome sequencing

WHO:

World Health Organization

References

  1. Leiter U, Keim U, Garbe C (2020) Epidemiology of skin Cancer: update 2019. Adv Exp Med Biol 1268:123–139. https://doi.org/10.1007/978-3-030-46227-7_6

    Article  CAS  PubMed  Google Scholar 

  2. Sacchetto L, Zanetti R, Comber H, Bouchardy C, Brewster DH, Broganelli P et al (2018) Trends in incidence of thick, thin and in situ melanoma in Europe. Eur J Cancer 92:108–118. https://doi.org/10.1016/j.ejca.2017.12.024

    Article  CAS  PubMed  Google Scholar 

  3. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118. https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  Google Scholar 

  4. Narla A, Kuprel B, Sarin K, Novoa R, Ko J (2018) Automated classification of skin lesions: from pixels to practice. J Invest Dermatol 138(10):2108–2110. https://doi.org/10.1016/j.jid.2018.06.175

    Article  CAS  PubMed  Google Scholar 

  5. Brinker TJ, Schlager G, French LE, Jutzi T, Kittler H (2020) Computer-assisted skin cancer diagnosis: is it time for artificial intelligence in clinical practice? Hautarzt 71(9):669–676. https://doi.org/10.1007/s00105-020-04662-8

    Article  CAS  PubMed  Google Scholar 

  6. Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S et al (2020) Artificial intelligence in dermatology-where we are and the way to the future: a review. Am J Clin Dermatol 21(1):41–47. https://doi.org/10.1007/s40257-019-00462-6

    Article  PubMed  Google Scholar 

  7. Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D et al (2020) Artificial intelligence in skin cancer diagnostics: the patients’ perspective. Front Med 7:233. https://doi.org/10.3389/fmed.2020.00233

    Article  Google Scholar 

  8. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts H (2018) Artificial intelligence in radiology. Nat Rev Cancer 18(8):500–510. https://doi.org/10.1038/s41568-018-0016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Currie G, Hawk KE, Rohren E, Vial A, Klein R (2019) Machine learning and deep learning in medical imaging: intelligent imaging. J Med Imaging Radiat Sci 50(4):477–487. https://doi.org/10.1016/j.jmir.2019.09.005

    Article  PubMed  Google Scholar 

  10. Pouly M, Koller T, Gottfrois P, Lionetti S (2020) Artificial intelligence in image analysis-fundamentals and new developments. Hautarzt 71(9):660–668. https://doi.org/10.1007/s00105-020-04663-7

    Article  PubMed  Google Scholar 

  11. Wang S, Summers RM (2012) Machine learning and radiology. Med Image Anal 16(5):933–951. https://doi.org/10.1016/j.media.2012.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tran WT, Jerzak K, Lu FI, Klein J, Tabbarah S, Lagree A et al (2019) Personalized breast Cancer treatments using artificial intelligence in Radiomics and Pathomics. J Med Imaging Radiat Sci 50(4 Suppl 2):S32–S41. https://doi.org/10.1016/j.jmir.2019.07.010

    Article  PubMed  Google Scholar 

  13. Rajkomar A, Dean J, Kohane I (2019) Machine learning in medicine. N Engl J Med 380(14):1347–1358. https://doi.org/10.1056/NEJMra1814259

    Article  PubMed  Google Scholar 

  14. Lim BCW, Flaherty G (2019) Artificial intelligence in dermatology: are we there yet? Br J Dermatol 181(1):190–191. https://doi.org/10.1111/bjd.17899

    Article  CAS  PubMed  Google Scholar 

  15. Beleza S, Santos AM, McEvoy B, Alves I, Martinho C, Cameron E et al (2013) The timing of pigmentation lightening in Europeans. Mol Biol Evol 30(1):24–35. https://doi.org/10.1093/molbev/mss207

    Article  CAS  PubMed  Google Scholar 

  16. Leiter U, Eigentler T, Garbe C (2014) Epidemiology of skin cancer. Adv Exp Med Biol 810:120–140. https://doi.org/10.1007/978-1-4939-0437-2_7

    Article  PubMed  Google Scholar 

  17. Perez MI (2019) Skin cancer in hispanics in the United States. J Drugs Dermatol 18(3):s117–s120

    PubMed  Google Scholar 

  18. Armstrong BK, Cust AE (2017) Sun exposure and skin cancer, and the puzzle of cutaneous melanoma: a perspective on fears et al. mathematical models of age and ultraviolet effects on the incidence of skin cancer among whites in the United States. American journal of epidemiology 1977; 105: 420-427. Cancer Epidemiol 48:147–156. https://doi.org/10.1016/j.canep.2017.04.004

    Article  PubMed  Google Scholar 

  19. Willemze R, Cerroni L, Kempf W, Berti E, Facchetti F, Swerdlow SH et al (2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood 133(16):1703–1714. https://doi.org/10.1182/blood-2018-11-881268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford PT (2009) Skin cancer in skin of color. Dermatol Nurs 21(4):170–177

    PubMed  PubMed Central  Google Scholar 

  21. Suppa M, Gandini S, Njimi H, Bulliard JL, Correia O, Duarte AF et al (2019) Association of sunbed use with skin cancer risk factors in Europe: an investigation within the Euromelanoma skin cancer prevention campaign. J Eur Acad Dermatol Venereol 33(Suppl 2):76–88. https://doi.org/10.1111/jdv.15307

    Article  PubMed  Google Scholar 

  22. Jones OT, Ranmuthu CKI, Hall PN, Funston G, Walter FM (2020) Recognising skin Cancer in primary care. Adv Ther 37(1):603–616. https://doi.org/10.1007/s12325-019-01130-1

    Article  PubMed  Google Scholar 

  23. Kansara S, Bell D, Weber R (2020) Surgical management of non-melanoma skin cancer of the head and neck. Oral Oncol 100:104485. https://doi.org/10.1016/j.oraloncology.2019.104485

    Article  CAS  PubMed  Google Scholar 

  24. Samarasinghe V, Madan V (2012) Nonmelanoma skin cancer. J Cutan Aesthet Surg 5(1):3–10. https://doi.org/10.4103/0974-2077.94323

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brantsch KD, Meisner C, Schonfisch B, Trilling B, Wehner-Caroli J, Rocken M et al (2008) Analysis of risk factors determining prognosis of cutaneous squamous-cell carcinoma: a prospective study. Lancet Oncol 9(8):713–720. https://doi.org/10.1016/S1470-2045(08)70178-5

    Article  PubMed  Google Scholar 

  26. Malone JP, Fedok FG, Belchis DA, Maloney ME (2000) Basal cell carcinoma metastatic to the parotid: report of a new case and review of the literature. Ear Nose Throat J 79(7):511–515

    Article  CAS  Google Scholar 

  27. Linares MA, Zakaria A, Nizran P (2015) Skin cancer. Prim Care 42(4):645–659. https://doi.org/10.1016/j.pop.2015.07.006

    Article  PubMed  Google Scholar 

  28. Karagas MR, Stukel TA, Greenberg ER, Baron JA, Mott LA, Stern RS (1992) Risk of subsequent basal cell carcinoma and squamous cell carcinoma of the skin among patients with prior skin Cancer. JAMA 267(24):3305–3310. https://doi.org/10.1001/jama.1992.03480240067036

    Article  CAS  PubMed  Google Scholar 

  29. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. CA Cancer J Clin 64(1):9–29. https://doi.org/10.3322/caac.21208

    Article  PubMed  Google Scholar 

  30. Yanofsky VR, Mercer SE, Phelps RG (2011) Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer 2011:210813. https://doi.org/10.1155/2011/210813

    Article  PubMed  Google Scholar 

  31. Ramahi E, Choi J, Fuller CD, Eng TY (2013) Merkel cell carcinoma. Am J Clin Oncol 36(3):299–309. https://doi.org/10.1097/COC.0b013e318210f83c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harms KL, Healy MA, Nghiem P, Sober AJ, Johnson TM, Bichakjian CK et al (2016) Analysis of prognostic factors from 9387 Merkel cell carcinoma cases forms the basis for the new 8th edition AJCC staging system. Ann Surg Oncol 23(11):3564–3571. https://doi.org/10.1245/s10434-016-5266-4

    Article  PubMed  Google Scholar 

  33. Leonardi GC, Falzone L, Salemi R, Zanghi A, Spandidos DA, McCubrey JA et al (2018) Cutaneous melanoma: from pathogenesis to therapy (review). Int J Oncol 52(4):1071–1080. https://doi.org/10.3892/ijo.2018.4287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yeh I, Jorgenson E, Shen L, Xu M, North JP, Shain AH et al (2019) Targeted genomic profiling of Acral melanoma. J Natl Cancer Inst 111(10):1068–1077. https://doi.org/10.1093/jnci/djz005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gupta R, Janostiak R, Wajapeyee N (2020) Transcriptional regulators and alterations that drive melanoma initiation and progression. Oncogene 39:7093–7105. https://doi.org/10.1038/s41388-020-01490-x

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bellew S, Del Rosso JQ, Kim GK (2009) Skin cancer in asians: part 2: melanoma. J Clin Aesthet Dermatol 2(10):34–36

    PubMed  PubMed Central  Google Scholar 

  37. Gupta AK, Bharadwaj M, Mehrotra R (2016) Skin cancer concerns in people of color: risk factors and prevention. Asian Pac J Cancer Prev 17(12):5257–5264. https://doi.org/10.22034/APJCP.2016.17.12.5257

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kong HJ (2019) Managing unstructured big data in healthcare system. Healthc Inform Res 25(1):1–2. https://doi.org/10.4258/hir.2019.25.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  39. Househ MS, Aldosari B, Alanazi A, Kushniruk AW, Borycki EM (2017) Big data, big problems: a healthcare perspective. Stud Health Technol Inform 238:36–39

    PubMed  Google Scholar 

  40. Belle A, Thiagarajan R, Soroushmehr SM, Navidi F, Beard DA, Najarian K (2015) Big data analytics in healthcare. Biomed Res Int 2015:370194. https://doi.org/10.1155/2015/370194

    Article  PubMed  PubMed Central  Google Scholar 

  41. Londhe VY, Bhasin B (2019) Artificial intelligence and its potential in oncology. Drug Discov Today 24(1):228–232. https://doi.org/10.1016/j.drudis.2018.10.005

    Article  PubMed  Google Scholar 

  42. Nguyen G, Dlugolinsky S, Bobák M, Tran V, López García Á, Heredia I et al (2019) Machine learning and deep learning frameworks and libraries for large-scale data mining: a survey. Artif Intell Rev 52(1):77–124. https://doi.org/10.1007/s10462-018-09679-z

    Article  Google Scholar 

  43. McDermott JE, Wang J, Mitchell H, Webb-Robertson BJ, Hafen R, Ramey J et al (2013) Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin Med Diagn 7(1):37–51. https://doi.org/10.1517/17530059.2012.718329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S et al (2017) Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol 2(4):230–243. https://doi.org/10.1136/svn-2017-000101

    Article  PubMed  PubMed Central  Google Scholar 

  45. Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  46. Greinert R (2009) Skin cancer: new markers for better prevention. Pathobiology 76(2):64–81. https://doi.org/10.1159/000201675

    Article  PubMed  Google Scholar 

  47. Torres R, Lang UE, Hejna M, Shelton SJ, Joseph NM, Shain AH et al (2020) MicroRNA ratios distinguish melanomas from nevi. J Invest Dermatol 140(1):164–173. https://doi.org/10.1016/j.jid.2019.06.126

    Article  CAS  PubMed  Google Scholar 

  48. Leon R, Martinez-Vega B, Fabelo H, Ortega S, Melian V, Castano I et al (2020) Non-invasive skin cancer diagnosis using hyperspectral imaging for in-situ clinical support. J Clin Med 9(6):1662. https://doi.org/10.3390/jcm9061662

    Article  PubMed Central  Google Scholar 

  49. Rey-Barroso L, Burgos-Fernandez FJ, Delpueyo X, Ares M, Royo S, Malvehy J et al (2018) Visible and extended near-infrared multispectral imaging for skin cancer diagnosis. Sensors 18(5):1441. https://doi.org/10.3390/s18051441

    Article  CAS  PubMed Central  Google Scholar 

  50. Esteva A, Robicquet A, Ramsundar B, Kuleshov V, DePristo M, Chou K et al (2019) A guide to deep learning in healthcare. Nat Med 25(1):24–29. https://doi.org/10.1038/s41591-018-0316-z

    Article  CAS  PubMed  Google Scholar 

  51. Hoshyar AN, Al-Jumaily A, Hoshyar AN (2014) The beneficial techniques in preprocessing step of skin cancer detection system comparing. Procedia Comput Sci 42:25–31. https://doi.org/10.1016/j.procs.2014.11.029

    Article  Google Scholar 

  52. Guerra-Rosas E, Alvarez-Borrego J (2015) Methodology for diagnosing of skin cancer on images of dermatologic spots by spectral analysis. Biomed Opt Express 6(10):3876–3891. https://doi.org/10.1364/BOE.6.003876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Uchida S (2013) Image processing and recognition for biological images. Develop Growth Differ 55(4):523–549. https://doi.org/10.1111/dgd.12054

    Article  CAS  Google Scholar 

  54. Celebi ME, Kingravi HA, Uddin B, Iyatomi H, Aslandogan YA, Stoecker WV et al (2007) A methodological approach to the classification of dermoscopy images. Comput Med Imaging Graph 31(6):362–373. https://doi.org/10.1016/j.compmedimag.2007.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abbas Q, Fondon I, Rashid M (2011) Unsupervised skin lesions border detection via two-dimensional image analysis. Comput Methods Prog Biomed 104(3):e1–e15. https://doi.org/10.1016/j.cmpb.2010.06.016

    Article  Google Scholar 

  56. Ozturk S, Ozkaya U (2020) Skin lesion segmentation with improved convolutional neural network. J Digit Imaging 33(4):958–970. https://doi.org/10.1007/s10278-020-00343-z

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hosking AM, Coakley BJ, Chang D, Talebi-Liasi F, Lish S, Lee SW et al (2019) Hyperspectral imaging in automated digital dermoscopy screening for melanoma. Lasers Surg Med 51(3):214–222. https://doi.org/10.1002/lsm.23055

    Article  PubMed  PubMed Central  Google Scholar 

  58. Masood A, Al-Jumaily AA (2013) Computer aided diagnostic support system for skin cancer: a review of techniques and algorithms. Int J Biomed Imaging 2013:323268. https://doi.org/10.1155/2013/323268

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fargnoli MC, Kostaki D, Piccioni A, Micantonio T, Peris K (2012) Dermoscopy in the diagnosis and management of non-melanoma skin cancers. Eur J Dermatol 22(4):456–463. https://doi.org/10.1684/ejd.2012.1727

    Article  PubMed  Google Scholar 

  60. Umbaugh SE, Moss RH, Stoecker WV, Hance GA (1993) Automatic color segmentation algorithms-with application to skin tumor feature identification. IEEE Eng Med Biol Mag 12(3):75–82. https://doi.org/10.1109/51.232346

    Article  Google Scholar 

  61. Green A, Martin N, Pfitzner J, O'Rourke M, Knight N (1994) Computer image analysis in the diagnosis of melanoma. J Am Acad Dermatol 31(6):958–964. https://doi.org/10.1016/s0190-9622(94)70264-0

    Article  CAS  PubMed  Google Scholar 

  62. Oliveira RB, Papa JP, Pereira AS, Tavares JMRS (2018) Computational methods for pigmented skin lesion classification in images: review and future trends. Neural Comput Applic 29(3):613–636. https://doi.org/10.1007/s00521-016-2482-6

    Article  Google Scholar 

  63. Barata C, Celebi ME, Marques JS (2015) Improving Dermoscopy image classification using color Constancy. IEEE J Biomed Health Inform 19(3):1146–1152. https://doi.org/10.1109/jbhi.2014.2336473

    Article  PubMed  Google Scholar 

  64. Yu L, Chen H, Dou Q, Qin J, Heng P (2017) Automated melanoma recognition in Dermoscopy images via very deep residual networks. IEEE Trans Med Imaging 36(4):994–1004. https://doi.org/10.1109/tmi.2016.2642839

    Article  PubMed  Google Scholar 

  65. Brinker TJ, Hekler A, Utikal JS, Grabe N, Schadendorf D, Klode J et al (2018) Skin Cancer classification using convolutional neural networks: systematic review. J Med Internet Res 20(10):e11936. https://doi.org/10.2196/11936

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hosny KM, Kassem MA, Fouad MM (2020) Classification of skin lesions into seven classes using transfer learning with AlexNet. J Digit Imaging 33(5):1325–1334. https://doi.org/10.1007/s10278-020-00371-9

    Article  PubMed  Google Scholar 

  67. Liu S, Deng W (2015) Very deep convolutional neural network based image classification using small training sample size. 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR). pp. 730–734

    Google Scholar 

  68. Hirano G, Nemoto M, Kimura Y, Kiyohara Y, Koga H, Yamazaki N et al (2020) Automatic diagnosis of melanoma using hyperspectral data and GoogLeNet. Skin Res Technol 26:891–897. https://doi.org/10.1111/srt.12891

    Article  PubMed  Google Scholar 

  69. Al-Masni MA, Kim DH, Kim TS (2020) Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification. Comput Methods Prog Biomed 190:105351. https://doi.org/10.1016/j.cmpb.2020.105351

    Article  Google Scholar 

  70. Dascalu A, David EO (2019) Skin cancer detection by deep learning and sound analysis algorithms: a prospective clinical study of an elementary dermoscope. EBioMedicine 43:107–113. https://doi.org/10.1016/j.ebiom.2019.04.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Toraman S, Alakus TB, Turkoglu I (2020) Convolutional capsnet: a novel artificial neural network approach to detect COVID-19 disease from X-ray images using capsule networks. Chaos Solitons Fractals 140:110122. https://doi.org/10.1016/j.chaos.2020.110122

    Article  PubMed  PubMed Central  Google Scholar 

  72. Surówka G, Ogorzalek M (2020) Wavelet-based logistic discriminator of dermoscopy images. Expert Syst Appl 2020:113760. https://doi.org/10.1016/j.eswa.2020.113760

    Article  Google Scholar 

  73. Marchetti MA, Codella NCF, Dusza SW, Gutman DA, Helba B, Kalloo A et al (2018) Results of the 2016 international skin imaging collaboration international symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images. J Am Acad Dermatol 78(2):270–277. https://doi.org/10.1016/j.jaad.2017.08.016

    Article  PubMed  Google Scholar 

  74. Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A et al (2018) Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol 29(8):1836–1842. https://doi.org/10.1093/annonc/mdy166

    Article  CAS  PubMed  Google Scholar 

  75. Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y et al (2019) Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol 180(2):373–381. https://doi.org/10.1111/bjd.16924

    Article  CAS  PubMed  Google Scholar 

  76. Maron RC, Weichenthal M, Utikal JS, Hekler A, Berking C, Hauschild A et al (2019) Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks. Eur J Cancer 119:57–65. https://doi.org/10.1016/j.ejca.2019.06.013

    Article  PubMed  Google Scholar 

  77. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C et al (2019) Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer 113:47–54. https://doi.org/10.1016/j.ejca.2019.04.001

    Article  PubMed  Google Scholar 

  78. Satheesha TY, Satyanarayana D, Prasad MNG, Dhruve KD (2017) Melanoma is skin deep: a 3D reconstruction technique for computerized Dermoscopic skin lesion classification. IEEE J Transl Eng Health Med 5:4300117. https://doi.org/10.1109/JTEHM.2017.2648797

    Article  CAS  PubMed  Google Scholar 

  79. Muller I, Kulms D (2018) A 3D Organotypic melanoma spheroid skin model. J Vis Exp 135:57500. https://doi.org/10.3791/57500

    Article  CAS  Google Scholar 

  80. Kaur A, Ecker BL, Douglass SM, Kugel CH 3rd, Webster MR, Almeida FV et al (2019) Remodeling of the collagen matrix in aging skin promotes melanoma metastasis and affects immune cell motility. Cancer Discov 9(1):64–81. https://doi.org/10.1158/2159-8290.CD-18-0193

    Article  CAS  PubMed  Google Scholar 

  81. Pacheco AGC, Krohling RA (2020) The impact of patient clinical information on automated skin cancer detection. Comput Biol Med 116:103545. https://doi.org/10.1016/j.compbiomed.2019.103545

    Article  PubMed  Google Scholar 

  82. Pacheco AGC, Lima GR, Salomao AS, Krohling B, Biral IP, de Angelo GG et al (2020) PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data Brief 32:106221. https://doi.org/10.1016/j.dib.2020.106221

    Article  PubMed  PubMed Central  Google Scholar 

  83. Qin Z, Liu Z, Zhu P, Xue Y (2020) A GAN-based image synthesis method for skin lesion classification. Comput Methods Prog Biomed 195:105568. https://doi.org/10.1016/j.cmpb.2020.105568

    Article  Google Scholar 

  84. Buechi R, Faes L, Bachmann LM, Thiel MA, Bodmer NS, Schmid MK et al (2017) Evidence assessing the diagnostic performance of medical smartphone apps: a systematic review and exploratory meta-analysis. BMJ Open 7(12):e018280. https://doi.org/10.1136/bmjopen-2017-018280

    Article  PubMed  PubMed Central  Google Scholar 

  85. Flaten HK, St Claire C, Schlager E, Dunnick CA, Dellavalle RP (2018) Growth of mobile applications in dermatology - 2017 update. Dermatol Online J 24(2):13030

    Article  Google Scholar 

  86. Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN et al (2020) Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ 368:m127. https://doi.org/10.1136/bmj.m127

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pasquali P, Sonthalia S, Moreno-Ramirez D, Sharma P, Agrawal M, Gupta S et al (2020) Teledermatology and its current perspective. Indian Dermatol Online J 11(1):12–20. https://doi.org/10.4103/idoj.IDOJ_241_19

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chuchu N, Dinnes J, Takwoingi Y, Matin RN, Bayliss SE, Davenport C et al (2018) Teledermatology for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:CD013193. https://doi.org/10.1002/14651858.CD013193

    Article  PubMed  Google Scholar 

  89. Bleicher B, Levine A, Markowitz O (2018) Going digital with dermoscopy. Cutis 102(2):102–105

    PubMed  Google Scholar 

  90. Keller JJ, Johnson JP, Latour E (2020) Inpatient teledermatology: diagnostic and therapeutic concordance among a hospitalist, dermatologist, and teledermatologist using store-and-forward teledermatology. J Am Acad Dermatol 82(5):1262–1267. https://doi.org/10.1016/j.jaad.2020.01.030

    Article  PubMed  Google Scholar 

  91. Barcaui CB, Lima PMO (2018) Application of Teledermoscopy in the diagnosis of pigmented lesions. Int J Telemed Appl 2018:1624073. https://doi.org/10.1155/2018/1624073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hekler A, Utikal JS, Enk AH, Berking C, Klode J, Schadendorf D et al (2019) Pathologist-level classification of histopathological melanoma images with deep neural networks. Eur J Cancer 115:79–83. https://doi.org/10.1016/j.ejca.2019.04.021

    Article  PubMed  Google Scholar 

  93. Lu C, Mandal M (2015) Automated analysis and diagnosis of skin melanoma on whole slide histopathological images. Pattern Recogn 48(8):2738–2750. https://doi.org/10.1016/j.patcog.2015.02.023

    Article  Google Scholar 

  94. Madabhushi A, Lee G (2016) Image analysis and machine learning in digital pathology: challenges and opportunities. Med Image Anal 33:170–175. https://doi.org/10.1016/j.media.2016.06.037

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lodha S, Saggar S, Celebi JT, Silvers DN (2008) Discordance in the histopathologic diagnosis of difficult melanocytic neoplasms in the clinical setting. J Cutan Pathol 35(4):349–352. https://doi.org/10.1111/j.1600-0560.2007.00970.x

    Article  PubMed  Google Scholar 

  96. Corona R, Mele A, Amini M, De Rosa G, Coppola G, Piccardi P et al (1996) Interobserver variability on the histopathologic diagnosis of cutaneous melanoma and other pigmented skin lesions. J Clin Oncol 14(4):1218–1223. https://doi.org/10.1200/JCO.1996.14.4.1218

    Article  CAS  PubMed  Google Scholar 

  97. Sharma H, Mao C, Zhang Y, Vatani H, Yao L, Zhong Y et al (2019) Develo** a portable natural language processing based phenoty** system. BMC Med Inform Decis Mak 19(Suppl 3):78. https://doi.org/10.1186/s12911-019-0786-z

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hubbard RA, Huang J, Harton J, Oganisian A, Choi G, Utidjian L et al (2019) A Bayesian latent class approach for EHR-based phenoty**. Stat Med 38(1):74–87. https://doi.org/10.1002/sim.7953

    Article  PubMed  Google Scholar 

  99. Afzal N, Sohn S, Abram S, Scott CG, Chaudhry R, Liu H et al (2017) Mining peripheral arterial disease cases from narrative clinical notes using natural language processing. J Vasc Surg 65(6):1753–1761. https://doi.org/10.1016/j.jvs.2016.11.031

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kharazmi P, Kalia S, Lui H, Wang ZJ, Lee TK (2018) A feature fusion system for basal cell carcinoma detection through data-driven feature learning and patient profile. Skin Res Technol 24(2):256–264. https://doi.org/10.1111/srt.12422

    Article  CAS  PubMed  Google Scholar 

  101. Albrecht M, Lucarelli P, Kulms D, Sauter T (2020) Computational models of melanoma. Theor Biol Med Model 17(1):8. https://doi.org/10.1186/s12976-020-00126-7

    Article  PubMed  PubMed Central  Google Scholar 

  102. Pennisi M, Russo G, Di Salvatore V, Candido S, Libra M, Pappalardo F (2016) Computational modeling in melanoma for novel drug discovery. Expert Opin Drug Discov 11(6):609–621. https://doi.org/10.1080/17460441.2016.1174688

    Article  CAS  PubMed  Google Scholar 

  103. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  104. Hendriksen JMT, Geersing GJ, Moons KGM, de Groot JAH (2013) Diagnostic and prognostic prediction models. J Thromb Haemost 11(s1):129–141. https://doi.org/10.1111/jth.12262

    Article  PubMed  Google Scholar 

  105. Wang HH, Wang YH, Liang CW, Li YC (2019) Assessment of deep learning using nonimaging information and sequential medical records to develop a prediction model for nonmelanoma skin Cancer. JAMA Dermatol 155(11):1277–1283. https://doi.org/10.1001/jamadermatol.2019.2335

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bhalla S, Kaur H, Dhall A, Raghava GPS (2019) Prediction and analysis of skin Cancer progression using genomics profiles of patients. Sci Rep 9(1):15790. https://doi.org/10.1038/s41598-019-52134-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ferrone CR, Panageas KS, Busam K, Brady MS, Coit DG (2002) Multivariate prognostic model for patients with thick cutaneous melanoma: importance of sentinel lymph node status. Ann Surg Oncol 9(7):637–645. https://doi.org/10.1007/BF02574479

    Article  PubMed  Google Scholar 

  108. Silveira FL, Pacheco MT, Bodanese B, Pasqualucci CA, Zangaro RA, Silveira L Jr (2015) Discrimination of non-melanoma skin lesions from non-tumor human skin tissues in vivo using Raman spectroscopy and multivariate statistics. Lasers Surg Med 47(1):6–16. https://doi.org/10.1002/lsm.22318

    Article  PubMed  Google Scholar 

  109. Jiao W, Atwal G, Polak P, Karlic R, Cuppen E, Danyi A et al (2020) A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns. Nat Commun 11(1):728. https://doi.org/10.1038/s41467-019-13825-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339. https://doi.org/10.1038/nature12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499(7457):214–218. https://doi.org/10.1038/nature12213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wood DE, White JR, Georgiadis A, Van Emburgh B, Parpart-Li S, Mitchell J et al (2018) A machine learning approach for somatic mutation discovery. Sci Transl Med 10(457):eaar7939. https://doi.org/10.1126/scitranslmed.aar7939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun Y, Zhu S, Ma K, Liu W, Yue Y, Hu G et al (2019) Identification of 12 cancer types through genome deep learning. Sci Rep 9(1):17256. https://doi.org/10.1038/s41598-019-53989-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Roberts MR, Asgari MM, Toland AE (2019) Genome-wide association studies and polygenic risk scores for skin cancer: clinically useful yet? Br J Dermatol 181(6):1146–1155. https://doi.org/10.1111/bjd.17917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bochtler T, Kramer A (2019) Does Cancer of unknown primary (CUP) truly exist as a distinct Cancer entity? Front Oncol 9:402. https://doi.org/10.3389/fonc.2019.00402

    Article  PubMed  PubMed Central  Google Scholar 

  116. Chen Y, Sun J, Huang LC, Xu H, Zhao Z (2015) Classification of Cancer primary sites using machine learning and somatic mutations. Biomed Res Int 2015:491502. https://doi.org/10.1155/2015/491502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Singh K, Baird M, Fischer R, Chaitankar V, Seifuddin F, Chen YC et al (2020) Misregulation of ELK1, AP1, and E12 transcription factor networks is associated with melanoma progression. Cancers 12(2):458. https://doi.org/10.3390/cancers12020458

    Article  CAS  PubMed Central  Google Scholar 

  118. Ernst J, Kellis M (2017) Chromatin-state discovery and genome annotation with ChromHMM. Nat Protoc 12(12):2478–2492. https://doi.org/10.1038/nprot.2017.124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lindberg M, Bostrom M, Elliott K, Larsson E (2019) Intragenomic variability and extended sequence patterns in the mutational signature of ultraviolet light. Proc Natl Acad Sci U S A 116(41):20411–20417. https://doi.org/10.1073/pnas.1909021116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shah M, Wedam S, Cheng J, Fiero MH, **a H, Li F et al (2020) FDA approval summary: tucatinib for the treatment of patients with advanced or metastatic HER2-positive breast cancer. Clin Cancer Res 27(5):1220–1226. https://doi.org/10.1158/1078-0432.ccr-20-2701

    Article  CAS  PubMed  Google Scholar 

  121. Guerrisi A, Loi E, Ungania S, Russillo M, Bruzzaniti V, Elia F et al (2020) Novel cancer therapies for advanced cutaneous melanoma: the added value of radiomics in the decision making process-a systematic review. Cancer Med 9(5):1603–1612. https://doi.org/10.1002/cam4.2709

    Article  PubMed  PubMed Central  Google Scholar 

  122. Boyer M, Cayrefourcq L, Dereure O, Meunier L, Becquart O, Alix-Panabieres C (2020) Clinical relevance of liquid biopsy in melanoma and merkel cell carcinoma. Cancers 12(4):960. https://doi.org/10.3390/cancers12040960

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgement

TD is thankful to UGC (University Grants Commission) for providing fellowship. Authors gratefully acknowledge the computational facility funded by Science and Engineering Research Board (SERB), Government of India (Ref. No.: YSS/2015/000228/LS).

Conflict of Interest

The author declares no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amresh Prakash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, T., Kumar, V., Prakash, A., Lynn, A.M. (2021). Artificial Intelligence in Skin Cancer: Diagnosis and Therapy. In: Dwivedi, A., Tripathi, A., Ray, R.S., Singh, A.K. (eds) Skin Cancer: Pathogenesis and Diagnosis. Springer, Singapore. https://doi.org/10.1007/978-981-16-0364-8_9

Download citation

Publish with us

Policies and ethics

Navigation