Introduction to Forensic DNA Ty** and Current Trends

  • Living reference work entry
  • First Online:
Handbook of DNA Profiling

Abstract

DNA profiling in forensic context has seen tremendous growth over the last almost four decades. Forensic DNA fingerprinting started with Alec Jefferey’s single and multilocus probes via autoradiography followed by fluorescence-based PCR-STRs. Lately, there has been a significant change in technology for human identification. Chip-based massively parallel sequencing is the most recent advancement. Drawing investigative leads, disaster victim identification, and unsolved cold cases created a requirement for more efficient ways of extraction, rapid DNA testing, and genetic genealogy. Pooling forensic genetic genealogy, mitochondrial DNA for challenging sample analysis and STR-SNP sequencing has opened more avenues to generate the data leading to identification. This chapter highlights some of the advanced methods adopted in forensic DNA profiling and a few appropriate cases incorporating such methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso A, Barrio PA, Müller P, Köcher S, Berger B, Martin P, Bodner M, Willuweit S, Parson W, Roewer L, Budowle B (2018) Current state-of-art of STR sequencing in forensic genetics. Electrophoresis 39;(21):2655–2668

    Google Scholar 

  • Berglund EC, Kiialainen A, Syvänen AC (2011) Next-generation sequencing technologies and applications for human genetic history and forensics. Investig Genet 2(1):23

    Google Scholar 

  • Børsting C, Morling N (2015) Next generation sequencing and its applications in forensic genetics. Forensic Sci Int Genet 18:78–89

    Google Scholar 

  • Buscaino J, Barican A, Farrales L, Goldman B, Klevenberg J, Kuhn M, Lin F, Nguyen P, Salceda S, Schueren R, Smith C, Troup C, Tsou D, Vangbo M, King D (2018) Evaluation of a rapid DNA process with the RapidHIT® ID system using a specialized cartridge for extracted and quantified human DNA. Forensic Sci Int Genet 34:116–127

    Google Scholar 

  • Butler JM (2015) The future of forensic DNA analysis. Philos Trans R Soc B Biol Sci 370(1674):20140252

    Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Int Soc Microb Ecol 6(8):1621–1624

    Google Scholar 

  • Chakravarty M, Pandya P, Raina A, Priyanka (2019) Resourcefulness of Str markers in forensic casework analysis. Int J Med Toxicol Legal Med 22(3–4):110–113

    Google Scholar 

  • Churchill JD, Schmedes SE, King JL, Budowle B (2016) Evaluation of the Illumina® Beta version ForenSeq™ DNA signature prep kit for use in genetic profiling. Forensic Sci Int Genet 20:20–29

    Google Scholar 

  • Coble MD, Bright JA (2019) Probabilistic genoty** software: an overview. Forensic Sci Int Genet 38:219–224

    Google Scholar 

  • Court S. Denise (2018) Forensic genealogy: some serious concerns. Forensic Sci Int Genet 36:203–204

    Google Scholar 

  • Dalsgaard S, Rockenbauer E, Gelardi C, Børsting C, Fordyce SL, Morling N (2013) Characterization of mutations and sequence variations in complex STR loci by second generation sequencing. Genet Suppl Serie Forensic Sci Int 4(1):e218–e219

    Google Scholar 

  • Dash HR, Pankaj S, Surajit D (2020) RAPID DNA technology: a boon to forensic DNA. Ty** 313–316

    Google Scholar 

  • Dixit S, Pankaj S, Kumawat RK, Kaitholia K, Dash HR, Sharma H, Choubey G (2019) Forensic genetic analysis of population of Madhya Pradesh with PowerPlex fusion 6C ™ multiplex system. Int J Legal Med133(3):803–805

    Google Scholar 

  • Fang C, Xu L, **g Z, Bingbing X, Jialin Q, Wenli l, Baoming L, **aoli Z, Huijuan W, Jiangwei Y (2020) Age estimation using bloodstain MiRNAs based on massive parallel sequencing and machine learning: a pilot study. Forensic Sci Int Genet 47:102300

    Google Scholar 

  • Fordyce SL, Ávila-Arcos MC, Rockenbauer E, Børsting C, Frank-Hansen R, Petersen FT, Willerslev E, Hansen AJ, Morling N, Gilbert TP (2011) High-throughput sequencing of Core STR loci for forensic genetic investigations using the Roche genome sequencer FLX platform. BioTechnique 51(2):127–133

    Google Scholar 

  • Frégeau CJ, Marc Lett C, Fourney RM (2010) Validation of a DNA IQ™-based extraction method for TECAN robotic liquid handling workstations for processing casework. Forensic Sci Int Genet 4(5):292–304

    Google Scholar 

  • Fullwood MJ, Wei CL, Liu ET, Ruan Y (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19(4):521–532

    Google Scholar 

  • Gaag VD, Kristiaan J, De Leeuw RH, Hoogenboom J, Patel J, Storts DR, Laros JFJ, De Knijff P (2016) Massively parallel sequencing of short tandem repeats -- population data and mixture analysis results for the PowerSeq™ system. Forensic Sci Int Genet 24:86–96

    Google Scholar 

  • Gettings KB, Aponte RA, Kiesler KM, Vallone PM (2015a) The next dimension in STR sequencing: polymorphisms in flanking regions and their allelic associations. Genet Suppl Serie Forensic Sci Int 5:e121–e123

    Google Scholar 

  • Gettings KB, Kiesler KM, Vallone PM (2015b) Performance of a next generation sequencing SNP assay on degraded DNA. Forensic Sci Int Genet 19:1–9

    Google Scholar 

  • Greytak EM, Moore CC, Armentrout SL (2019) Genetic genealogy for cold case and active investigations. Forensic Sci Int 299:103–113

    Google Scholar 

  • Guo F, Yu J, Lu Z, Li J (2017) Massively parallel sequencing of forensic STRs and SNPs using the Illumina® ForenSeq™ DNA signature prep kit on the MiSeq FGx™ forensic genomics system. Forensic Sci Int Genet 31:135–141

    Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107(1):1–8

    Google Scholar 

  • Higuchi R, Von Beroldingen CH, Sensabaugh GF, Erlich HA (1988) DNA ty** from single hairs. Nature 332(6164):543–546

    Google Scholar 

  • Holland MM, Parsons TJ (1999) Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci Rev 11(1):21–50

    Google Scholar 

  • Holland MM, Bonds RM, Holland CA, McElhoe JA (2019) Recovery of MtDNA from unfired metallic ammunition components with an assessment of sequence profile quality and DNA damage through MPS analysis. Forensic Sci Int Genet 39:86–96

    Google Scholar 

  • Holland MM, Parson W (2011) GeneMarker® HID: a reliable software tool for the analysis of forensic STR data. J Forensic Sci 56(1):29–35

    Google Scholar 

  • Hopwood AJ, Hurth C, Yang J, Cai Z, Moran N, Lee-Edghill JG, Nordquist A, Lenigk R, Estes MD, Haley JP, McAlister CR, Chen X, Brooks C, Smith S, Elliott K, Koumi P, Zenhausern F, Tully G (2010) Integrated microfluidic system for rapid forensic DNA analysis: sample collection to DNA profile. Anal Chem 82(16):6991–6999

    Google Scholar 

  • Hyman ED (1988) A new method of sequencing DNA. Anal Biochem 174(2):423–436

    Google Scholar 

  • Ingold S, Dørum G, Hanson E, Berti A, Branicki W, Brito P, Elsmore P, Gettings KB, Giangasparo F, Gross TE, Hansen S, Hanssen EN, Kampmann ML, Kayser M, Laurent FX, Morling N, Mosquera-Miguel A, Parson W, Phillips C, Porto MJ, Pośpiech E, Roeder AD, Schneider PM, Schulze Johann K, Steffen CR, Syndercombe-Court D, Trautmann M, van den Berge M, van der Gaag KJ, Vannier J, Verdoliva V, Vidaki A, Xavier C, Ballantyne J, Haas C (2018) Body fluid identification using a targeted MRNA massively parallel sequencing approach – results of a EUROFORGEN/EDNAP collaborative exercise. Forensic Sci Int Genet 34:105–115

    Google Scholar 

  • Jiang L, Wei YL, Zhao L, Li N, Liu T, Liu HB, Ren LJ, Li JL, Hao HF, Li Q, Li CX (2018) Global analysis of population stratification using a smart panel of 27 continental ancestry-informative SNPs. Forensic Sci Int Genet 35:e10–e12

    Google Scholar 

  • Kayser M (2015) Forensic DNA phenoty**: predicting human appearance from crime scene material for investigative purposes. Forensic Sci Int Genet 18:33–48

    Google Scholar 

  • Kayser M, De Knijff P (2011) Improving human forensics through advances in genetics, genomics and molecular biology. Nature Rev Genet 12(3):179–192

    Google Scholar 

  • Kidd KK, Kidd JR, Speed WC, Fang R, Furtado MR, Hyland FCL, Pakstis AJ (2012) Expanding data and resources for forensic use of SNPs in individual identification. Forensic Sci Int Genet 6(5):646–652

    Google Scholar 

  • Kircher M, Sawyer S, Meyer M (2012) Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res 40(1):e3–e3

    Google Scholar 

  • Kirsch S, Klein CA (2012) Sequence error storms and the landscape of mutations in Cancer. Proc Nat Acad Sci U S A 109(36):14289–14290

    Google Scholar 

  • Kling D, Tillmar A (2019) Forensic genealogy—a comparison of methods to infer distant relationships based on dense SNP data. Forensic Sci Int Genet 42:113–124

    Google Scholar 

  • Li M, Schönberg A, Schaefer M, Schroeder R, Nasidze I, Stoneking M (2010) Detecting Heteroplasmy from high-throughput sequencing of complete human mitochondrial DNA genomes. Am J Hum Genet 87(2):237–249

    Google Scholar 

  • Liu J, Weian D, Wang M, Liu C, Wang S, He G, Zheng W (2020) Forensic features, genetic diversity and structure analysis of three Chinese populations using 47 autosomal InDels. Forensic Sci Int Genet 45:102227

    Google Scholar 

  • Ma Y, Kuang JZ, Nie TG, Zhu W, Yang Z (2016) Next generation sequencing: improved resolution for paternal/maternal duos analysis. Forensic Sci Int Genet 24:83–85

    Google Scholar 

  • Mardis ER (2017) DNA sequencing technologies: 2006–2016. Nat Protoc 12(2):213–218

    Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Lei D, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer MLI, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density Picolitre reactors. Nature 437(7057):376–380

    Google Scholar 

  • Martín P, García O, Albarrán C, García P, Alonso A (2006) Application of mini-STR loci to severely degraded casework samples. Int Cong Series 1288:522–525

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Nat Acad Sci 74(2):560–564

    Google Scholar 

  • McCarthy JJ, McLeod HL, Ginsburg GS (2013) Genomic medicine: a decade of successes, challenges, and opportunities. Sci Trans Med 5(189):189sr4–189sr4

    Google Scholar 

  • Montano EA, Bush JM, Garver AM, Larijani MM, Wiechman SM, Baker CH, Wilson MR, Guerrieri RA, Benzinger EA, Gehres DN, Dickens ML (2018) Optimization of the Promega PowerSeq™ auto/Y system for efficient integration within a forensic DNA laboratory. Forensic Sci Int Genet 32:26–32

    Google Scholar 

  • Müller P, Alonso A, Barrio PA, Berger B, Bodner M, Martin P, Parson W (2018) Systematic evaluation of the early access applied Biosystems precision ID Globalfiler mixture ID and Globalfiler NGS STR panels for the ion S5 system. Forensic Sci Int Genet 36:95–103

    Google Scholar 

  • Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011) Landscape of next-generation sequencing technologies. Anal Chem 83(12):4327–4341

    Google Scholar 

  • Parson W, Huber G, Moreno L, Madel MB, Brandhagen MD, Nagl S, Xavier C, Eduardoff M, Callaghan TC, Irwin JA (2015) Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples. Forensic Sci Int Genet 15:8–15

    Google Scholar 

  • Parson W, Strobl C, Huber G, Zimmermann B, Gomes SM, Souto L, Fendt L, Delport R, Langit R, Wootton S, Lagacé R, Irwin J (2013) Evaluation of next generation MtGenome sequencing using the ion torrent personal genome machine (PGM). Forensic Sci Int Genet 7(5):543–549

    Google Scholar 

  • Payne BAI, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, Horvath R, Taylor RW, Samuels DC, Santibanez-Koref M, Chinnery PF (2013) Universal Heteroplasmy of human mitochondrial DNA. Hum Mol Genet 22(2):384–390

    Google Scholar 

  • Petrovick MS, Boettcher T, Fremont-Smith P, Peragallo C, Ricke DO, Watkins J, Schwoebel E (2020) Analysis of complex DNA mixtures using massively parallel sequencing of SNPs with low minor allele frequencies. Forensic Sci Int Genet 46:102234

    Google Scholar 

  • Phillips C, McNevin D, Kidd KK, Lagacé R, Wootton S, de la Puente M, Freire-Aradas A, Mosquera-Miguel A, Eduardoff M, Gross T, Dagostino L, Power D, Olson S, Hashiyada M, Oz C, Parson W, Schneider PM, Lareu MV, Daniel R (2019) MAPlex – A massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations. Forensic Sci Int Genet 42:213–226

    Google Scholar 

  • Phillips C, Salas A, Sánchez JJ, Fondevila M, Gómez-Tato A, Álvarez-Dios J, Calaza M, Casares de Cal M, Ballard D, Lareu MV, Carracedo Á (2007) Inferring ancestral origin using a single multiplex assay of ancestry-informative marker SNPs. Forensic Sci Int Genet 1(3–4):273–280

    Google Scholar 

  • Phillips C (2015) Forensic genetic analysis of bio-geographical ancestry. Forensic Sci Int Genet 18:49–65

    Google Scholar 

  • Phillips C (2018) The Golden state killer investigation and the nascent field of forensic genealogy. Forensic Sci Int Genet 36:186–188

    Google Scholar 

  • Poinar HN, Schwarz C, Qi J, Shapiro B, MacPhee RDE, Buigues B, Tikhonov A, Huson DM, Tomsho LP, Auch A, Rampp M, Miller M, Schuster SC (2006) Metagenomics to Paleogenomics: large-scale sequencing of mammoth DNA. Science 311(5759):392–394

    Google Scholar 

  • Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, De Filippo C, Li H, Mallick S, Dannemann M, Qiaomei F, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PLF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505(7481):43–49

    Google Scholar 

  • Riman S, Iyer H, Borsuk LA, Vallone PM (2020) Understanding the characteristics of sequence-based single-source DNA profiles. Forensic Sci Int Genet 44:102192

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with Chain-terminating inhibitors. Proc Nat Acad Sci U S A 74(12):5463–5467

    Google Scholar 

  • Shackleton D, Pagram J, Andrews N, Malsom S, Ives L, Vanhinsbergh D (2019) Development of enhanced sensitivity protocols on the RapidHIT™ 200 with a view to processing casework material. Sci Justice 59(4):411–417

    Google Scholar 

  • Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26(10):1135–1145

    Google Scholar 

  • Shrivastava P, Trivedi VB, Singh AK, Mishra N (2012) Application of DNA fingerprinting technology in Forensic Investigation. Int J Scient Res Publ 2(1):2250–3153

    Google Scholar 

  • Srivastava V, Prabhakar Rao K, Surekha Rani H, Kumawat RK, Mishra A, Shrivastava P (2020) Genomic diversity in the Goud population of Telangana, India inferred using twenty-three autosomal marker PowerPlex® fusion 6C system. Meta Gene 25:100718

    Google Scholar 

  • Tang S, Wang J, Zhang VW, Li FY, Landsverk M, Cui H, Truong CK, Wang G, Chen LC, Graham B, Scaglia F, Schmitt ES, Craigen WJ, Wong LJC (2013) Transition to next generation analysis of the whole mitochondrial genome: a summary of molecular defects. Hum Mutat 34(6):882–893

    Google Scholar 

  • Tillmar A, Sjölund P, Lundqvist B, Klippmark T, Älgenäs C, Green H (2020) Whole-genome sequencing of human remains to enable genealogy DNA database searches – a case report. Forensic Sci Int Genet 46:102233

    Google Scholar 

  • Tozzo P, D’angiolella G, Brun P, Castagliuolo I, Gino S, Caenazzo L (2020) Skin microbiome analysis for forensic human identification: what do we know so far? Microorganisms 8(6):873

    Google Scholar 

  • Weber-Lehmann J, Schilling E, Gradl G, Richter DC, Wiehler J, Rolf B (2014) Finding the needle in the haystack: differentiating ‘identical’ twins in paternity testing and forensics by ultra-deep next generation sequencing. Forensic Sci Int Genet 9:42–46

    Google Scholar 

  • Wickenheiser RA (2019) Forensic genealogy, bioethics and the Golden state killer case. Forensic Sci Int Synergy 1:114–125

    Google Scholar 

  • Woerner AE, King JL, Budowle B (2017) Fast STR allele identification with STRait razor 3.0. Forensic Sci Int Genet 30:18–23

    Google Scholar 

  • Xavier C, de la Puente M, Phillips C, Eduardoff M, Heidegger A, Mosquera-Miguel A, Freire-Aradas A, Lagace R, Wootton S, Power D, Parson W, Lareu MV, Daniel R (2020b) Forensic evaluation of the Asia Pacific ancestry-informative MAPlex assay. Forensic Sci Int Genet 48:102344

    Google Scholar 

  • Xavier C, de la Puente M, Mosquera-Miguel A, Freire-Aradas A, Kalamara V, Vidaki A, Gross TE, Revoir A, Pośpiech E, Kartasińska E, Spólnicka M, Branicki W, Ames CE, Schneider PM, Hohoff C, Kayser M, Phillips C, Parson W (2020a) Development and validation of the VISAGE AmpliSeq basic tool to predict appearance and ancestry from DNA. Forensic Sci Int Genet 48:102336

    Google Scholar 

  • Yang Y, **e B, Yan J (2014) Application of next-generation sequencing Technology in Forensic Science. Genom Proteom Bioinform 12(5):190–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek Pandya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chakravarty, M., Pandya, P. (2021). Introduction to Forensic DNA Ty** and Current Trends. In: Dash, H.R., Shrivastava, P., Lorente, J.A. (eds) Handbook of DNA Profiling. Springer, Singapore. https://doi.org/10.1007/978-981-15-9364-2_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9364-2_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9364-2

  • Online ISBN: 978-981-15-9364-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation