Self-Consistent Treatment of Solvation Structure with Electronic Structure Based on 3D-RISM Theory

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method
  • 564 Accesses

Abstract

The solvent effects on the electronic structure of biomolecules are essential for considering their functions and structures. The three-dimensional reference interaction site model (3D-RISM) theory is a statistical mechanics integral equation theory of molecular liquids. It is suitable for describing the solvation structure of large molecules, i.e., the main target of the fragment molecular orbital (FMO) approach. The hybrid method of FMO and 3D-RISM, referred to as FMO/3D-RISM, enables us to investigate the electronic structure of large molecules in solution as well as solvation thermodynamics at the molecular level. This chapter describes the theoretical background of the 3D-RISM theory, the formalism of the hybrid method of 3D-RISM and quantum chemical theory including the FMO, and the applications of these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts B (2014) Molecular biology of the cell, 6th edn. Garland Science, New York

    Google Scholar 

  2. Feig M (2010) Modeling solvent environments. Willey-VCH, Weinheim

    Book  Google Scholar 

  3. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700

    Article  CAS  Google Scholar 

  4. Aqvist J, Warshel A (1993) Chem Rev 93:2523

    Article  Google Scholar 

  5. Gogonea V, Suarez D, van der Vaart A, Merz KW (2001) Curr Opin Struct Biol 11:217

    Article  CAS  PubMed  Google Scholar 

  6. Gao JL (1996) Acc Chem Res 29:298

    Article  CAS  Google Scholar 

  7. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999

    Article  CAS  PubMed  Google Scholar 

  8. Tomasi J, Persico M (1994) Chem Rev 94:2027

    Article  CAS  Google Scholar 

  9. Cramer C, Truhlar DG (1999) Chem Rev 99:2161

    Article  CAS  PubMed  Google Scholar 

  10. Fedorov DG, Kitaura K, Li H, Jensen JH, Gordon MS (2006) J Comput Chem 27:976

    Article  CAS  PubMed  Google Scholar 

  11. Fedorov DG (2018) Chem Phys Lett 702:111

    Article  CAS  Google Scholar 

  12. Watanabe H, Okiyama Y, Nakano T, Tanaka S (2010) Chem Phys Lett 500:116

    Article  CAS  Google Scholar 

  13. Chandler D, Andersen HC (1972) J Chem Phys 57:1930

    Article  CAS  Google Scholar 

  14. Andersen H, Chandler D, Weeks J (1972) J Chem Phys 57:2626

    Article  CAS  Google Scholar 

  15. Andersen H, Chandler D (1972) J Chem Phys 57:1918

    Article  CAS  Google Scholar 

  16. Blum L (1973) J Chem Phys 58:3295

    Article  CAS  Google Scholar 

  17. Blum L, Torruella J (1972) J Chem Phys 56:303

    Article  CAS  Google Scholar 

  18. Blum L (1972) J Chem Phys 57:1862

    Article  CAS  Google Scholar 

  19. Beglov D, Roux B (1997) J Phys Chem B 101:7821

    Article  CAS  Google Scholar 

  20. Beglov D, Roux B (1996) J Chem Phys 104:8678

    Article  CAS  Google Scholar 

  21. Fries PH, Patey GN (1985) J Chem Phys 82:429

    Article  CAS  Google Scholar 

  22. Kovalenko A, Hirata F (1999) J Chem Phys 110:10095

    Article  CAS  Google Scholar 

  23. Kovalenko A, Hirata F (1998) Chem Phys Lett 290:237

    Article  CAS  Google Scholar 

  24. Hirata F (2003) Molecular theory of solvation. Kluwer, Dordrecht

    Google Scholar 

  25. Hansen JP, McDonald IR (2006) Theory of simple liquids3rd edn. Academic Press, Amsterdam

    Google Scholar 

  26. Zhao S, Ramirez R, Vuilleumier R, Borgis D (2011) J Chem Phys 134:194102

    Article  PubMed  CAS  Google Scholar 

  27. Gendre L, Ramirez R, Borgis D (2009) Chem Phys Lett 474:366

    Article  CAS  Google Scholar 

  28. Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) J Phys Chem B 113:873

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida N (2017) J Chem Info Model 57:2646

    Article  CAS  Google Scholar 

  30. Kovalenko A, Blinov N (2011) J Mol Liq 164:101

    Article  CAS  Google Scholar 

  31. Ten-No S, Hirata F, Kato S (1994) J Chem Phys 100:7443

    Article  CAS  Google Scholar 

  32. Ten-No S, Hirata F, Kato S (1993) Chem Phys Lett 214:391

    Article  CAS  Google Scholar 

  33. Sato H, Hirata F, Kato S (1996) J Chem Phys 105:1546

    Article  CAS  Google Scholar 

  34. Yoshida N (2011) Proc Comput Sci 4:1214

    Article  Google Scholar 

  35. Yoshida N (2007) Condens Matter Phys 10:363

    Article  Google Scholar 

  36. Yoshida N, Kato S (2000) J Chem Phys 113:4974

    Article  CAS  Google Scholar 

  37. Sato H, Kovalenko A, Hirata F (2000) J Chem Phys 112:9463

    Article  CAS  Google Scholar 

  38. Gusarov S, Ziegler T, Kovalenko A (2006) J Phys Chem A 110:6083

    Article  CAS  PubMed  Google Scholar 

  39. Yoshida N, Hirata F (2006) J Comput Chem 27:453

    Article  CAS  PubMed  Google Scholar 

  40. Kasai Y, Yoshida N, Nakano H (2015) J Chem Phys 142

    Google Scholar 

  41. Kasai Y, Yoshida N, Nakano H (2014) J Mol Liq 200:32

    Article  CAS  Google Scholar 

  42. Tanaka Y, Kawashima Y, Yoshida N, Nakano H (2017) J Comput Chem 38:2411

    Article  CAS  PubMed  Google Scholar 

  43. Yoshida N, Tanaka H, Hirata F (2013) J Phys Chem B 117:14115

    Article  CAS  PubMed  Google Scholar 

  44. Hayaki S, Kimura Y, Sato H (2013) J Phys Chem B 117:6759

    Article  CAS  PubMed  Google Scholar 

  45. Hayaki S, Kido K, Sato H, Sakaki S (2010) Phys Chem Chem Phys 12:1822

    Article  CAS  PubMed  Google Scholar 

  46. Hayaki S, Kido K, Yokogawa D, Sato H, Sakaki S (2009) J Phys Chem B 113:8227

    Article  CAS  PubMed  Google Scholar 

  47. Takami T et al (2007) AIP Conf Proc 963:122

    Article  Google Scholar 

  48. Yoshida N (2014) J Chem Phys 140:214118

    Article  PubMed  CAS  Google Scholar 

  49. Yoshida N, Hirata F (2018) The role of water in atp hydrolysis energy transduction by protein machinery, Suzuki M (ed). Springer Nature Singapore Pte Ltd., Singapore

    Google Scholar 

  50. Kovalenko A, Ten-No S, Hirata F (1999) J Comput Chem 20:928

    Article  CAS  Google Scholar 

  51. Gray CG, Gubbins KE (1984) Theory of molecular fluids volume 1: fundamentals. Clarendon Press, Oxford

    Google Scholar 

  52. Berendsen HJC, Grigera JR, Straatsma TP (1987) J Phys Chem 91:6269

    Article  CAS  Google Scholar 

  53. Wang JM, Cieplak P, Kollman PA (2000) J Comput Chem 21:1049

    Article  CAS  Google Scholar 

  54. Palmer DS, Sørensen J, Schiøtt B, Fedorov MV (2013) J Chem Theory Comput 9:5706

    Article  CAS  PubMed  Google Scholar 

  55. Truchon J-F, Pettitt BM, Labute P (2014) J Chem Theory Comput 10:934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Palmer DS, Frolov AI, Ratkova EL, Fedorov MV (2010) J Phys-Condens Mat 22:492101

    Article  CAS  Google Scholar 

  57. Sergiievskyi V, Jeanmairet G, Levesque M, Borgis D (2015) J Chem Phys 143:184116

    Article  PubMed  CAS  Google Scholar 

  58. Hong J, Yoshida N, Chong S-H, Lee C, Ham S, Hirata F (2012) J Chem Theory Comput 8:2239

    Article  CAS  PubMed  Google Scholar 

  59. Fujiki R, Kasai Y, Seno Y, Matsui T, Shigeta Y, Yoshida N, Nakano H (2018) Phys Chem Chem Phys 20:27272

    Article  CAS  PubMed  Google Scholar 

  60. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) J Comput Chem 25:1605

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author is grateful to Prof. Fumio Hirata (Toyota Physical and Chemical Research Institute), Prof. Yoshihiro Watanabe (Kyushu University), and Prof. Haruyuki Nakano (Kyushu University) for helpful discussions. Molecular graphics and analyses were performed with the UCSF Chimera package [60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yoshida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoshida, N. (2021). Self-Consistent Treatment of Solvation Structure with Electronic Structure Based on 3D-RISM Theory. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_24

Download citation

Publish with us

Policies and ethics

Navigation