Vapor–Liquid–Solid Growth of Semiconductor Nanowires

  • Chapter
  • First Online:
Fundamental Properties of Semiconductor Nanowires

Abstract

We discuss the growth of semiconductor nanowires, with an emphasis on the vapor–liquid–solid growth of III–V nanowires. Special attention is paid to modeling of growth and the resulting morphology, crystal phase, composition, nanowire heterostructures, and statistical properties within the nanowire ensembles. We give a general overview of the vapor–liquid–solid growth of nanowires by different epitaxy techniques and the bases for nanowire growth modeling. We discuss the role of surface energetics in the formation of GaAs nanowires, which has an important impact on the nanowire morphology and crystal phase. A detailed description of the nanowire growth kinetics is presented, including the transport-limited growth, chemical potentials, nucleation and growth of two-dimensional islands, and self-consistent growth models combining the material transport equations with the nucleation rate. The nanowire length and diameter distributions are considered along with the methods for narrowing them to sub-Poissonian values. Ternary III–V nanowires and heterostructures based on such nanowires are discussed, including the relaxation of elastic stress at the free sidewalls and the sharpening of the heterointerfaces. We consider polytypism of III–V nanowires and possibilities to control their crystal phase by tuning the growth parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89–90 (1964)

    Article  CAS  Google Scholar 

  2. E.I. Givargizov, Highly Anisotropic Crystals (Springer, 1987)

    Google Scholar 

  3. A. Zhang, G. Zheng, C.M. Lieber, Nanowires: Building Blocks for Nanoscience and Nanotechnology (Springer, 2016)

    Google Scholar 

  4. P. Yang, P.R. Yan, M. Fardy, Semiconductor nanowires: what’s next? Nano Lett. 10, 1529–1536 (2010)

    Article  CAS  Google Scholar 

  5. W. Seifert, M. Borgström, K. Deppert, K.A. Dick, J. Johansson, M.W. Larsson, T. Mårtensson, N. Sköld, C.P.T. Svensson, B.A. Wacaser, L.R. Wallenberg, L. Samuelson, Growth of one-dimensional nanostructures in MOVPE. J. Cryst. Growth 272, 211–220 (2004)

    Article  CAS  Google Scholar 

  6. V.G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Springer, 2014)

    Google Scholar 

  7. V.G. Dubrovskii, Theory of VLS growth of compound semiconductors, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 1–78

    Google Scholar 

  8. F. Glas, Critical dimensions for the plastic relaxation of strained axial heterostructures in free-standing nanowires. Phys. Rev. B 74, 121302R (2006)

    Article  CAS  Google Scholar 

  9. X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren, Analytical study of elastic relaxation and plastic deformation in nanostructures on lattice mismatched substrates. Cryst. Growth Des. 11, 5441–5448 (2011)

    Article  CAS  Google Scholar 

  10. F. Glas, Strain in nanowires and nanowire heterostructures, in Semiconductors and Semimetals, vol. 93, ed. by A. Fontcuberta i Morral, S.A. Dayeh, C. Jagadish (Burlington, Academic Press, 2015), pp. 79–123

    Google Scholar 

  11. V.G. Dubrovskii, G.E. Cirlin, I.P. Soshnikov, A.A. Tonkikh, N.V. Sibirev, Yu.B. Samsonenko, V.M. Ustinov, Diffusion-induced growth of GaAs nanowhiskers: theory and experiment. Phys. Rev. B 71, 205325 (2005)

    Article  CAS  Google Scholar 

  12. J.C. Harmand, G. Patriarche, N. Péré-Laperne, M.-N. Mérat-Combes, L. Travers, F. Glas, Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth. Appl. Phys. Lett. 87, 203101 (2005)

    Article  CAS  Google Scholar 

  13. Smith, W. F.; Hashemi, J.: Foundations of materials science and engineering (4th ed.). McGraw-Hill, 2006, pp. 318–320.

    Google Scholar 

  14. F. Glas, Chemical potentials for Au-assisted vapor-liquid-solid growth of III-V nanowires. J. Appl. Phys. 108, 073506 (2010)

    Article  CAS  Google Scholar 

  15. H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Y. Kim, M.A. Fickenscher, S. Perera, T.B. Hoang, L.M. Smith, H.E. Jackson, J.M. Yarrison-Rice, X. Zhang, J. Zou, Unexpected benefits of rapid growth rate for III–V nanowires. Nano Lett. 9, 695–701 (2009)

    Article  CAS  Google Scholar 

  16. L.C. Chuang, M. Moewe, C. Chase, N.P. Kobayashi, C. Chang-Hasnain, Critical diameter for III-V nanowires grown on lattice-mismatched substrates. Appl. Phys. Lett. 90, 043115 (2007)

    Article  CAS  Google Scholar 

  17. N.N. Halder, A. Kelrich, Y. Kauffmann, S. Cohen, D. Ritter, Growth of wurtzite InP/GaP core-shell nanowires by metal-organic molecular beam epitaxy. J. Cryst. Growth 463, 10–13 (2017)

    Article  CAS  Google Scholar 

  18. E. Husanu, D. Ercolani, M. Gemmi, L. Sorba, Growth of defect-free GaP nanowires. Nanotechnology 25, 205601 (2014)

    Article  CAS  Google Scholar 

  19. M.C. Plante, R.R. LaPierre, Growth mechanisms of GaAs nanowires by gas source molecular beam epitaxy. J. Cryst. Growth 286, 394–399 (2006)

    Article  CAS  Google Scholar 

  20. E. Gil, V.G. Dubrovskii, G. Avit, Y. André, C. Leroux, K. Lekhal, J. Grecenkov, A. Trassoudaine, D. Castelluci, G. Monier, M.R. Ramdani, C. Robert-Goumet, L. Bideux, J.C. Harmand, F. Glas, Record pure zincblende phase in GaAs nanowires down to 5 nm in radius. Nano Lett. 14, 3938 (2014)

    Article  CAS  Google Scholar 

  21. T. Mårtensson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nanowire arrays defined by nanoimprint lithography. Nano Lett. 4, 699–702 (2004)

    Article  CAS  Google Scholar 

  22. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, A. Fontcuberta i Morral, Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 77, 155326 (2008)

    Google Scholar 

  23. F. Jabeen, V. Grillo, S. Rubini, F. Martelli, Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Nanotechnology 19, 275711 (2008)

    Article  CAS  Google Scholar 

  24. S.J. Gibson, J.P. Boulanger, R.R. LaPierre, Opportunities and pitfalls in patterned self-catalyzed GaAs nanowire growth on silicon. Semicond. Sci. Technol. 28, 105025 (2013)

    Article  CAS  Google Scholar 

  25. G. Priante, S. Ambrosini, V.G. Dubrovskii, A. Franciosi, S. Rubini, Stop** and resuming at will the growth of GaAs nanowires. Cryst. Growth Des. 13, 3976–3984 (2013)

    Article  CAS  Google Scholar 

  26. M.R. Ramdani, J.C. Harmand, F. Glas, G. Patriarche, L. Travers, Arsenic pathways in self-catalyzed growth of GaAs nanowires. Cryst. Growth Des. 13, 91–96 (2013)

    Article  CAS  Google Scholar 

  27. V.G. Dubrovskii, G.E. Cirlin, N.V. Sibirev, F. Jabeen, J.C. Harmand, P. Werner, New mode of vapor-liquid-solid nanowire growth. Nano Lett. 11, 1247–1253 (2011)

    Article  CAS  Google Scholar 

  28. V.G. Dubrovskii, T. Xu, A. Díaz Álvarez, G. Larrieu, S.R. Plissard, P. Caroff, F. Glas, B. Grandidier, Self-equilibration of the diameter of Ga-catalyzed GaAs nanowires. Nano Lett. 15, 5580–5584 (2015)

    CAS  Google Scholar 

  29. F. Bastiman, H. Küpers, C. Somaschini, L. Geelhaar, Growth map for Ga-assisted growth of GaAs nanowires on Si(111) substrates by molecular beam epitaxy. Nanotechnology 27, 095601 (2016)

    Article  CAS  Google Scholar 

  30. E.S. Koivusalo, T.V. Hakkarainen, M. Guina, V.G. Dubrovskii, Sub-Poissonian narrowing of length distributions realized in Ga-catalyzed GaAs nanowires. Nano Lett. 17, 5350–5355 (2017)

    Article  CAS  Google Scholar 

  31. T. Tauchnitz, Y. Berdnikov, V.G. Dubrovskii, H. Schneider, M. Helm, E. Dimakis, A simple route to synchronized nucleation of self-catalyzed GaAs nanowires on silicon for sub-Poissonian length distributions. Nanotechnology 29, 504004 (2018)

    Article  CAS  Google Scholar 

  32. Z. Dong, Y. André, V.G. Dubrovskii, C. Bougerol, C. Leroux, M.R. Ramdani, G. Monier, A. Trassoudaine, D. Castelluci, E. Gil, Self-catalyzed GaAs nanowires on silicon by hydride vapor phase epitaxy. Nanotechnology 27, 455601 (2017)

    Google Scholar 

  33. J. Vukajlovic-Plestina, W. Kim, V.G. Dubrovskii, G. Tütüncüoğlu, M. Lagier, H. Potts, M. Friedl, A. Fontcuberta i Morral, Engineering the size distributions of ordered GaAs nanowires on silicon. Nano Lett. 17, 4101–4108 (2017)

    Google Scholar 

  34. J. Tersoff, Stable self-catalyzed growth of III–V nanowires. Nano Lett. 15, 6609–6613 (2015)

    Article  CAS  Google Scholar 

  35. W. Kim, V.G. Dubrovskii, J. Vukajlovic-Plestina, G. Tütüncüoglu, L. Francaviglia, L. Güniat, H. Potts, M. Friedl, J.-B. Leran, A. Fontcuberta i Morral, Bistability of contact angle and its role in achieving quantum-thin self-assisted GaAs nanowires. Nano Lett. 18, 49–57 (2018)

    Google Scholar 

  36. E.S. Koivusalo, T.V. Hakkarainen, H.V.A. Galeti, Y.G. Gobato, V.G. Dubrovskii, M.D. Guina, Deterministic switching of the growth direction of self-catalyzed GaAs nanowires. Nano Lett. 19, 82–89 (2019)

    Article  CAS  Google Scholar 

  37. V.G. Dubrovskii, Influence of the group V element on the chemical potential and crystal structure of Au-catalyzed III-V nanowires. Appl. Phys. Lett. 104, 053110 (2014)

    Article  CAS  Google Scholar 

  38. F. Glas, Vapor fluxes on the apical droplet during nanowire growth by molecular beam epitaxy. Phys. Status Solidi B 247, 254–258 (2010)

    Article  CAS  Google Scholar 

  39. L. Schubert, P. Werner, N.D. Zakharov, G. Gerth, F.M. Kolb, L. Long, U. Gösele, T.Y. Tan, Silicon nanowhiskers grown on <111> Si substrates by molecular beam epitaxy. Appl. Phys. Lett. 84, 4968–4970 (2004)

    Article  CAS  Google Scholar 

  40. F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth. Phys. Rev. B 88, 195304 (2013)

    Article  CAS  Google Scholar 

  41. V.G. Dubrovskii, Group V sensitive vapor-liquid-solid growth of Au-catalyzed and self-catalyzed III-V nanowires. J. Cryst. Growth 440, 62–68 (2016)

    Article  CAS  Google Scholar 

  42. F. Glas, J.C. Harmand, G. Patriarche, Why does wurtzite form in nanowires of III-V zinc-blende semiconductors? Phys. Rev. Lett. 99, 146101 (2007)

    Article  CAS  Google Scholar 

  43. V.G. Dubrovskii, N.V. Sibirev, Growth rate of a crystal facet of arbitrary size and the growth kinetics of vertical nanowires. Phys. Rev. E 70, 031604 (2004)

    Article  CAS  Google Scholar 

  44. V.G. Dubrovskii, N.V. Sibirev, J.C. Harmand, F. Glas, Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B 78, 235301 (2008)

    Article  CAS  Google Scholar 

  45. D. Kashchiev, Dependence of the growth rate of nanowires on the nanowire diameter. Cryst. Growth Des. 6, 1154–1156 (2006)

    Article  CAS  Google Scholar 

  46. E.K. Mårtensson, S. Lehmann, K.A. Dick, J. Johansson, Simulation of GaAs nanowire growth and crystal structure. Nano Lett. 19, 1197–1203 (2019)

    Article  CAS  Google Scholar 

  47. C.-Y. Wen, J. Tersoff, K. Hillerich, M.C. Reuter, J.H. Park, S. Kodambaka, E.A. Stach, F.M. Ross, Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. Phys. Rev. Lett. 107, 025503 (2011)

    Article  CAS  Google Scholar 

  48. D. Jacobsson, F. Panciera, J. Tersoff, M.C. Reuter, S. Lehmann, S. Hofmann, K.A. Dick, F.M. Ross, Interface dynamics and crystal phase switching in GaAs nanowires. Nature 531, 317–322 (2016)

    Article  CAS  Google Scholar 

  49. J.C. Harmand, G. Patriarche, F. Glas, F. Panciera, I. Florea, J.-L. Maurice, L. Travers, Y. Ollivier, Atomic step flow on a nanofacet. Phys. Rev. Lett. 121, 166101 (2018)

    Article  CAS  Google Scholar 

  50. V.G. Dubrovskii, J. Grecenkov, Zeldovich nucleation rate, self-consistency renormalization, and crystal phase of Au-catalyzed GaAs nanowires. Cryst. Growth Des. 15, 340–347 (2015)

    Article  CAS  Google Scholar 

  51. A.S. Ameruddin, P. Caroff, H.H. Tan, C. Jagadish, V.G. Dubrovskii, Understanding the growth and composition evolution of gold-seeded ternary InGaAs nanowires. Nanoscale 7, 16266 (2015)

    Article  CAS  Google Scholar 

  52. V.G. Dubrovskii, Fully analytical description for the composition of ternary vapor-liquid-solid nanowires. Cryst. Growth Des. 15, 5738–5743 (2015)

    Article  CAS  Google Scholar 

  53. V.G. Dubrovskii, N.V. Sibirev, Factors influencing the interfacial abruptness in axial III-V nanowire heterostructures. Cryst. Growth Des. 16, 2019–2023 (2016)

    Article  CAS  Google Scholar 

  54. V.G. Dubrovskii, Compositional control of gold-catalyzed ternary nanowires and axial nanowire heterostructures based on IIIP1xAsx. J. Cryst. Growth 498, 179–185 (2018)

    Article  CAS  Google Scholar 

  55. V.G. Dubrovskii, Zh.V. Sokolova, M.V. Rylkova, A.A. Zhiglinsky, Composition and contact angle of Au-III-V droplets on top of Au-catalyzed III-V nanowires. Materials Physics and Mechanics 36, 1–7 (2018)

    CAS  Google Scholar 

  56. V.A. Nebol’sin, A.A. Shchetinin, Role of surface energy in the vapor–liquid–solid growth of silicon. Inorg. Mater. 39, 899–903 (2003)

    Google Scholar 

  57. F.M. Ross, J. Tersoff, M.C. Reuter, Sawtooth faceting in silicon nanowires. Phys. Rev. Lett. 95, 146104 (2005)

    Article  CAS  Google Scholar 

  58. V.G. Dubrovskii, Development of growth theory for vapor-liquid-solid nanowires: contact angle, truncated facets and crystal phase. Cryst. Growth Des. 17, 2544–2548 (2017)

    Article  CAS  Google Scholar 

  59. V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs−InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)

    Article  CAS  Google Scholar 

  60. J. Johansson, L.S. Karlsson, K.A. Dick, J. Bolinsson, B.A. Wacaser, K. Deppert, L. Samuelson, Effects of supersaturation on the crystal structure of gold seeded III–V nanowires. Cryst. Growth Des. 9, 766–773 (2009)

    Article  CAS  Google Scholar 

  61. F. Panciera, Z. Baraissov, G. Patriarche, V.G. Dubrovskii, F. Glas, L. Travers, U. Mirsaidov, J.-C. Harmand, Phase selection in self-catalyzed GaAs nanowires. Nano Lett. 20, 1669–1675 (2020)

    Article  CAS  Google Scholar 

  62. V. Pankoke, P. Kratzer, S. Sakong, Calculation of the diameter-dependent polytypism in GaAs nanowires from an atomic motif expansion of the formation energy. Phys. Rev. B 84, 075455 (2011)

    Article  CAS  Google Scholar 

  63. M. Rosini, R. Magri, Surface effects on the atomic and electronic structure of unpassivated GaAs nanowires. ACS Nano 4, 6021–6031 (2010)

    Article  CAS  Google Scholar 

  64. N. Moll, A. Kley, E. Pehlke, M. Scheffler, GaAs equilibrium crystal shape from first principles. Phys. Rev. B 54, 8844–8855 (1996)

    Article  CAS  Google Scholar 

  65. V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, I.P. Soshnikov, W.H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L.C. Chuang, C. Chang-Hasnain, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP and GaAs nanowires. Phys. Rev. B 79, 205316 (2009)

    Article  CAS  Google Scholar 

  66. P. Mohan, J. Motohisa, T. Fukui, Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays. Nanotechnology 16, 2903 (2005)

    Article  CAS  Google Scholar 

  67. K. Tomioka, P. Mohan, J. Noborisaka, S. Hara, J. Motohisa, T. Fukui, Growth of highly uniform InAs nanowire arrays by selective-area MOVPE. J. Cryst. Growth 298, 644–647 (2007)

    Article  CAS  Google Scholar 

  68. D. Dalacu, A. Kam, D.G. Austing, X. Wu, J. Lapointe, G.C. Aers, P.J. Poole, Selective-area vapour–liquid–solid growth of InP nanowires. Nanotechnology 20, 395602 (2009)

    Article  CAS  Google Scholar 

  69. S. Hertenberger, D. Rudolph, M. Bichler, J.J. Finley, G. Abstreiter, G. Koblmüller, Growth kinetics in position-controlled and catalyst-free InAs nanowire arrays on Si(111) grown by selective area molecular beam epitaxy. J. Appl. Phys. 108, 114316 (2010)

    Google Scholar 

  70. K.P. Bassett, P.K. Mohseni, X. Li, Evolution of GaAs nanowire geometry in selective area epitaxy. Appl. Phys. Lett. 106, 133102 (2015)

    Article  CAS  Google Scholar 

  71. M. Robson, K.M. Azizur-Rahman, D. Parent, P. Wojdylo, D.A. Thompson, R.R. LaPierre, Multispectral absorptance from large-diameter InAsSb nanowire arrays in a single epitaxial growth on silicon. Nano Futures 1, 035001 (2017)

    Article  CAS  Google Scholar 

  72. M.T. Robson, V.G. Dubrovskii, R.R. LaPierre, Conditions for high yield of selective-area epitaxy InAs nanowires on SiOx/Si(111) substrates. Nanotechnology 26, 465301 (2015)

    Article  CAS  Google Scholar 

  73. Q. Gao, V.G. Dubrovskii, P. Caroff, J. Wong-Leung, L. Li, Y. Guo, L. Fu, H.H. Tan, C. Jagadish, Simultaneous selective-area and vapor-liquid-solid growth of InP nanowire arrays. Nano Lett. 16, 4361–4367 (2016)

    Article  CAS  Google Scholar 

  74. V.G. Dubrovskii, Evolution of the length and radius of III-V nanowires grown by selective area epitaxy. ACS Omega 4, 8400–8405 (2019)

    Article  CAS  Google Scholar 

  75. N.V. Sibirev, M. Tchernycheva, M.A. Timofeeva, J.C. Harmand, G.E. Cirlin, V.G. Dubrovskii, Influence of shadow effect on the growth and shape of InAs nanowires. J. Appl. Phys. 111, 104317 (2012)

    Article  CAS  Google Scholar 

  76. V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, A.D. Bouravleuv, Y.B. Samsonenko, D.L. Dheeraj, H.L. Zhou, C. Sartel, J.C. Harmand, G. Patriarche, F. Glas, Role of non-linear effects in nanowire growth and crystal phase. Phys. Rev. B 80, 205305 (2009)

    Article  CAS  Google Scholar 

  77. J.C. Harmand, F. Glas, G. Patriarche, Growth kinetics of a single InP1-xAsx nanowire. Phys. Rev. B 81, 235436 (2010)

    Article  CAS  Google Scholar 

  78. V.G. Dubrovskii, Y. Hervieu, Diffusion-induced growth of nanowires: generalized boundary conditions and self-consistent kinetic equation. J. Cryst. Growth 401, 431–440 (2014)

    Google Scholar 

  79. J. Johansson, C.P.T. Svensson, T. Mårtensson, L. Samuelson, W. Seifert, Mass transport model for semiconductor nanowire growth. J. Phys. Chem. B 109, 13567–13571 (2005)

    Article  CAS  Google Scholar 

  80. L.E. Fröberg, W. Seifert, J. Johansson, Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76, 153401 (2007)

    Article  CAS  Google Scholar 

  81. V. Consonni, V.G. Dubrovskii, A. Trampert, L. Geelhaar, H. Riechert, Quantitative description for the growth rate of self-induced GaN nanowires. Phys. Rev. B 85, 155313 (2012)

    Google Scholar 

  82. S.A. Dayeh, S.T. Picraux, Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10, 4032–4039 (2010)

    Article  CAS  Google Scholar 

  83. V.G. Dubrovskii, N.V. Sibirev, R.A. Suris, G.E. Cirlin, J.C. Harmand, V.M. Ustinov, Diffusion controlled growth of semiconductor nanowires: vapor pressure versus high vacuum deposition. Surf. Sci. 601, 4395–4401 (2007)

    Article  CAS  Google Scholar 

  84. E.D. Leshchenko, M. Ghasemi, V.G. Dubrovskii, J. Johansson, Nucleation-limited composition of ternary III-V nanowires forming from quaternary gold based liquid alloys. CrystEngComm 20, 1649–1655 (2018)

    Article  CAS  Google Scholar 

  85. G.B. Stringfellow, Calculation of ternary phase diagrams of III–V systems. J. Phys. Chem. Solids 33, 665–677 (1972)

    Article  CAS  Google Scholar 

  86. F. Glas, V.G. Dubrovskii, Energetics and kinetics of monolayer formation in vapor-liquid-solid nanowire growth. Phys. Rev. Mater. 4, 083401 (2020)

    Google Scholar 

  87. V.G. Dubrovskii, Refinement of nucleation theory for vapor-liquid-solid nanowires. Cryst. Growth Des. 17, 2589–2593 (2017)

    Article  CAS  Google Scholar 

  88. F. Glas, J.C. Harmand, G. Patriarche, Nucleation antibunching in catalyst-assisted nanowire growth. Phys. Rev. Lett. 104, 135501 (2010)

    Article  CAS  Google Scholar 

  89. M. Moewe, L.C. Chuang, V.G. Dubrovskii, C. Chang-Hasnain, Growth mechanisms and crystallographic structure of InP nanowires on lattice-mismatched substrates. J. Appl. Phys. 104, 044313 (2008)

    Article  CAS  Google Scholar 

  90. E.D. Leshchenko, P. Kuyanov, R.R. LaPierre, V.G. Dubrovskii, Tuning the morphology of self-assisted GaP nanowires. Nanotechnology 29, 225603 (2018)

    Article  CAS  Google Scholar 

  91. V.G. Dubrovskii, Self-regulated pulsed nucleation in catalyzed nanowire growth. Phys. Rev. 87, 195426 (2013)

    Article  CAS  Google Scholar 

  92. V.G. Dubrovskii, N.V. Sibirev, Y. Berdnikov, U.P. Gomes, D. Ercolani, V. Zannier, L. Sorba, Length distributions of Au-catalyzed and In-catalyzed InAs nanowires. Nanotechnology 27, 375602 (2016)

    Article  CAS  Google Scholar 

  93. V.G. Dubrovskii, Y. Berdnikov, J. Schmidtbauer, M. Borg, K. Storm, K. Deppert, J. Johansson, Length distributions of nanowires growing by surface diffusion. Cryst. Growth Des. 16, 2167–2172 (2016)

    Article  CAS  Google Scholar 

  94. V.G. Dubrovskii, Length distributions of nanowires: effects of surface diffusion versus nucleation delay. J. Cryst. Growth 463, 139–144 (2017)

    Article  CAS  Google Scholar 

  95. F. Glas, V.G. Dubrovskii, Self-narrowing of size distributions of nanostructures by nucleation antibunching. Phys. Rev. Mater. 1, 036003 (2017)

    Article  Google Scholar 

  96. V.G. Dubrovskii, Analytic form of the size distribution in irreversible growth of nanoparticles. Phys. Rev. E 99, 012105 (2019)

    Article  CAS  Google Scholar 

  97. F. Matteini, V.G. Dubrovskii, D. Rüffer, G. Tütüncüoğlu, Y. Fontana, A. Fontcuberta i Morral, Tailoring the diameter and density of self-catalyzed GaAs nanowires on silicon. Nanotechnology 26, 105603 (2015)

    Google Scholar 

  98. V.G. Dubrovskii, N.V. Sibirev, Analytic scaling function for island-size distributions. Phys. Rev. E 91, 042408 (2015)

    Article  CAS  Google Scholar 

  99. F. Glas, Statistics of sub-Poissonian nucleation in a nanophase. Phys. Rev. B 90, 125406 (2014)

    Article  CAS  Google Scholar 

  100. V.G. Dubrovskii, Fluctuation-induced spreading of size distribution in condensation kinetics. J. Chem. Phys. 131, 164514 (2009)

    Article  CAS  Google Scholar 

  101. T.V. Hakkarainen, A. Schramm, J. Mäkelä, P. Laukkanen, M. Guina, Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Nanotechnology 26, 275301 (2015)

    Article  CAS  Google Scholar 

  102. S.G. Choi, P. Manandhar, S.T. Picraux, Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires: Composition dependence on precursor reactivity and morphology control for vertical forests. J. Appl. Phys. 118, 014303 (2015)

    Article  CAS  Google Scholar 

  103. S. Biswas, J. Doherty, D. Saladukha, Q. Ramasse, D. Majumdar, M. Upmanyu, A. Singha, T. Ochalski, M.A. Morris, J.D. Holmes, Non-equilibrium induction of tin in germanium: towards direct bandgap Ge1-xSnx nanowires. Nature Comm. 7, 11405 (2016)

    Article  CAS  Google Scholar 

  104. A. Pan, P.L. Nichols, C.Z. Ning, Semiconductor alloy nanowires and nanobelts with tunable optical properties. IEEE J. Select. Topics Quant. Electron. 17, 808–818 (2011)

    Article  CAS  Google Scholar 

  105. V.G. Dubrovskii, Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures. J. Phys. D: Appl. Phys. 50, 453001 (2017)

    Article  CAS  Google Scholar 

  106. V.G. Dubrovskii, A.A. Koryakin, N.V. Sibirev, Understanding the composition of ternary III-V nanowires and axial nanowire heterostructures in nucleation-limited regime. Mater. Des. 132, 400–408 (2017)

    Article  CAS  Google Scholar 

  107. P. Periwal, N.V. Sibirev, G. Patriarche, B. Salem, F. Bassani, V.G. Dubrovskii, T. Baron, Composition-dependent interfacial abruptness in Au-catalyzed Si1xGex/Si/Si1xGex nanowire heterostructures. Nano Lett. 14, 5140–5147 (2014)

    Article  CAS  Google Scholar 

  108. G. Priante, F. Glas, G. Patriarche, K. Pantzas, F. Oehler, J.-C. Harmand, Sharpening the interfaces of axial heterostructures in self-catalyzed AlGaAs nanowires: experiment and theory. Nano Lett. 16, 1917–1924 (2016)

    Article  CAS  Google Scholar 

  109. F. Glas, Comparison of modeling strategies for the growth of heterostructures in III-V nanowires. Cryst. Growth Des. 17, 4785–4794 (2017)

    Article  CAS  Google Scholar 

  110. H. Reiss, The kinetics of phase transitions in binary systems. J. Chem. Phys. 18, 840–848 (1950)

    Article  CAS  Google Scholar 

  111. J. Johansson, M. Ghasemi, Composition of gold alloy seeded InGaAs nanowires in the nucleation limited regime. Cryst. Growth Des. 17, 1630–1635 (2017)

    Article  CAS  Google Scholar 

  112. M. Ghasemi, M. Selleby, J. Johansson, Thermodynamic assessment and binary nucleation modeling of Sn-seeded InGaAs nanowires. J. Cryst. Growth 478, 152–158 (2017)

    Article  CAS  Google Scholar 

  113. J. Johansson, E.D. Leshchenko, Zinc blende and wurtzite crystal structure formation in gold catalyzed InGaAs nanowires. J. Cryst. Growth 509, 118–123 (2019)

    Article  CAS  Google Scholar 

  114. J. Johansson, M. Ghasemi, Kinetically limited composition of ternary III-V nanowires. Phys. Rev. Mater. 1, 040401 (2017)

    Article  Google Scholar 

  115. A. Scaccabarozzi, A. Cattoni, G. Patriarche, L. Travers, S. Collin, J.-C. Harmand, F. Glas, F. Oehler, Stable and high yield growth of GaP and In0.2Ga0.8As nanowire arrays using In as a catalyst. Nanoscale 12, 18240-18248 (2020)

    Google Scholar 

  116. D. Spirkoska, J. Arbiol, A. Gustafsson, S. Conesa-Boj, F. Glas, I. Zardo, M. Heigoldt, M.H. Gass, A.L. Bleloch, S. Estrade, M. Kaniber, J. Rossler, F. Peiro, J.R. Morante, G. Abstreiter, L. Samuelson, A. Fontcuberta i Morral, Structural and optical properties of high quality zinc-blende/wurtzite GaAs nanowire heterostructures. Phys. Rev. B 80, 245325 (2009)

    Google Scholar 

  117. N. Akopian, P. Patriarche, L. Liu, J.-C. Harmand, V. Zwiller, Crystal phase quantum dots. Nano Lett. 10, 1198–1201 (2010)

    Article  CAS  Google Scholar 

  118. F. Glas, B. Daudin, Stress-driven island growth on top of nanowires. Phys. Rev. B 86, 174112 (2012)

    Article  CAS  Google Scholar 

  119. N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, U. Gösele, Growth phenomena of Si and Si/Ge nanowires on Si (1 1 1) by molecular beam epitaxy. J. Cryst. Growth 290, 6–10 (2006)

    Article  CAS  Google Scholar 

  120. S.A. Dayeh, J. Wang, N. Li, J.Y. Huang, A.V. Gin, S.T. Picraux, Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures. Nano Lett. 11, 4200–4206 (2011)

    Article  CAS  Google Scholar 

  121. K. Hiruma, H. Murakoshi, M. Yazawa, T. Katsuyama, Self-organized growth of GaAs/InAs heterostructure nanocylinders by organometallic vapor phase epitaxy. J. Cryst. Growth 163, 226–231 (1996)

    Article  CAS  Google Scholar 

  122. M. Paladugu, J. Zou, Y.-N. Guo, X. Zhang, Y. Kim, H.J. Joyce, Q. Gao, H.H. Tan, C. Jagadish, Nature of heterointerfaces in GaAs/InAs and InAs/GaAs axial nanowire heterostructures. Appl. Phys. Lett. 93, 101911 (2008)

    Article  CAS  Google Scholar 

  123. M.T. Björk, B.J. Ohlsson, T. Sass, A.I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L.R. Wallenberg, L. Samuelson, One-dimensional steeplechase for electrons realized. Nano Lett. 2, 87–89 (2002)

    Article  CAS  Google Scholar 

  124. L.E. Fröberg, B.A. Wacaser, J.B. Wagner, S. Jeppesen, B.J. Ohlsson, K. Deppert, L. Samuelson, Transients in the formation of nanowire heterostructures. Nano Lett. 8, 3815–3818 (2008)

    Article  CAS  Google Scholar 

  125. J.P. Boulanger, R.R. LaPierre, Polytype formation in GaAs/GaP axial nanowire heterostructures. J. Cryst. Growth 332, 21–26 (2011)

    Article  CAS  Google Scholar 

  126. M. Pozuelo, H. Zhou, S. Lin, S.A. Lipman, M.S. Goorsky, R.F. Hicks, S. Kodambaka, Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J. Cryst. Growth 329, 6–11 (2011)

    Article  CAS  Google Scholar 

  127. P. Caroff, J.B. Wagner, K.A. Dick, H.A. Nilsson, M. Jeppsson, K. Deppert, L. Samuelson, L.R. Wallenberg, L.-E. Wernersson, High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. Small 4, 878–882 (2008)

    Article  CAS  Google Scholar 

  128. M.T. Borgström, M.A. Verheijen, G. Immink, T. de Smet, E.P.A.M. Bakkers, Interface study on heterostructured GaP-GaAs nanowires. Nanotechnology 17, 4010–4013 (2006)

    Article  CAS  Google Scholar 

  129. M. Jeppsson, K.A. Dick, J.A. Wagner, P. Caroff, K. Deppert, L. Samuelson, L.-E. Wernersson, GaAs/GaSb nanowire heterostructures grown by MOVPE. J. Cryst. Growth 310, 4115–4121 (2008)

    Article  CAS  Google Scholar 

  130. J.P. Boulanger, R.R. LaPierre, Unveiling transient GaAs/GaP nanowire growth behavior using group V oscillations. Cryst. Growth 388, 116–123 (2014)

    Article  CAS  Google Scholar 

  131. G. Priante, G. Patriarche, F. Oehler, F. Glas, J.-C. Harmand, Abrupt GaP/GaAs interfaces in self-catalyzed nanowires. Nano Lett. 15, 6036–6041 (2015)

    Article  CAS  Google Scholar 

  132. K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, T. Sogawa, VLS growth of alternating InAsP/InP heterostructure nanowires for multiple-quantum-dot structures. Nano Lett. 12, 2888–2893 (2012)

    Article  CAS  Google Scholar 

  133. L. Ouattara, A. Mikkelsen, N. Sköld, J. Eriksson, T. Knaapen, E. Cavar, W. Seifert, L. Samuelson, E. Lundgren, GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. Nano Lett. 7, 2859–2864 (2007)

    Article  CAS  Google Scholar 

  134. J. Guo, H. Huang, X. Ren, Y. **n, S. Cai, Y. Huang, Q. Wang, X. Zhang, W. Wang, Stacking-faults-free zinc blende GaAs/AlGaAs axial heterostructure nanowires during vapor-liquid-solid growth. Chinese Opt. Lett. 9, 041601 (2011)

    Article  CAS  Google Scholar 

  135. K. Tateno, G. Zhang, H. Nakano, Growth of GaInAs/AlInAs heterostructure nanowires for long-wavelength photon emission. Nano Lett. 8, 3645–3650 (2008)

    Article  CAS  Google Scholar 

  136. M. Heiß, A. Gustafsson, S. Conesa-Boj, F. Peiró, J.R. Morante, G. Abstreiter, J.G. Arbiol, L. Samuelson, A. Fontcuberta i Morral, Catalyst-free nanowires with axial InxGa1-xAs/GaAs heterostructures. Nanotechnology 20, 075603 (2009)

    Google Scholar 

  137. P. Krogstrup, J. Yamasaki, C.B. Sørensen, E. Johnson, J.B. Wagner, R. Pennington, M. Aagesen, N. Tanaka, J. Nygård, Junctions in axial III-V heterostructure nanowires obtained via an interchange of group III elements. Nano Lett. 9, 3689–3693 (2011)

    Article  CAS  Google Scholar 

  138. S. Plissard, K.A. Dick, X. Wallart, P. Caroff, Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 96, 121901 (2010)

    Article  CAS  Google Scholar 

  139. K. Tateno, G. Zhang, M. Takiguchi, H. Gotoh, Alternating InAsP/InP heterostructure nanowires grown with tertiarybutyl chloride. Nano Futures 2, 045006 (2018)

    Article  CAS  Google Scholar 

  140. C.H. Hsiao, S.J. Chang, S.C. Hung, Y.C. Cheng, B.R. Huang, S.B. Wang, B.W. Lan, S.H. Chih, ZnSe/ZnCdSe heterostructure nanowires. J. Cryst. Growth 312, 1670–1675 (2010)

    Article  CAS  Google Scholar 

  141. E. Bellet-Amalric, M. Elouneg-Jamroz, P. Rueda-Fonseca, S. Bounouar, M. Den Hertog, C. Bougerol, R. André, Y. Genuist, J.P. Poizat, K. Kheng, J. Cibert, S. Tatarenko, Growth of II–VI ZnSe/CdSe nanowires for quantum dot luminescence. J. Cryst. Growth 378, 233–237 (2013)

    Article  CAS  Google Scholar 

  142. D. Ercolani, F. Rossi, A. Li, S. Roddaro, V. Grillo, G. Salviati, B. Beltram, L. Sorba, InAs/InSb nanowire heterostructures grown by chemical beam epitaxy. Nanotechnology 20, 505605 (2009)

    Article  CAS  Google Scholar 

  143. V. Zannier, F. Rossi, D. Ercolani, L. Sorba, Growth dynamics of InAs/InP nanowire heterostructures by Au-assisted chemical beam epitaxy. Nanotechnology 30, 094003 (2019)

    Article  CAS  Google Scholar 

  144. P.-Y. Chevalier, A thermodynamic evaluation of the Au-Ge and Au-Si systems. Thermochim. Acta 141, 217–226 (1989)

    Article  CAS  Google Scholar 

  145. R.A. Burke, X. Weng, M.-W. Kuo, Y.-W. Song, A.M. Itsuno, T.S. Mayer, S.M. Durbin, R.J. Reeves, J.M. Redwing, Growth and characterization of unintentionally doped GaSb nanowires. J. Electron. Mater. 39, 355–364 (2010)

    Article  CAS  Google Scholar 

  146. K.A. Dick, J. Bolinsson, B.M. Borg, J. Johansson, Controlling the abruptness of axial heterojunctions in III−V nanowires: Beyond the reservoir effect. Nano Lett. 12, 3200–3206 (2012)

    Article  CAS  Google Scholar 

  147. C. Li, J.B. Li, Z. Du, L. Lu, W. Zhang, A thermodynamic reassessment of the Al-As-Ga system. J. Phase Equilib. 22, 26–33 (2001)

    Article  Google Scholar 

  148. J.-B. Li, W. Zhang, C. Li, Z. Du, A thermodynamic assessment of the Ga-As-Sb system. J. Phase Equil. 19, 466–472 (1998)

    Article  CAS  Google Scholar 

  149. C. Li, J.-B. Li, Z. Du, W. Zhang, A thermodynamic assessment of the Ga-In-P system. J. Phase Equil. 21, 357–363 (2000)

    Article  CAS  Google Scholar 

  150. I. Ansara, C. Chatillon, H.L. Lukas, T. Nishizawa, H. Ohtani, K. Ishida, M. Hillert, B. Sundman, B.B. Argent, A. Watson, T.G. Chart, T. Anderson, A binary database for III-V compound semiconductor systems. Calphad 18, 177–222 (1994)

    Article  CAS  Google Scholar 

  151. F. Glas, Elastic strain relaxation: thermodynamics and kinetics, in Mechanical stress on the nanoscale - Simulation, material systems and characterization techniques, ed. by M. Hanbücken, P. Müller, R.B. Wehrspohn (Wiley-VCH, Weinheim, 2011), pp. 3–26

    Google Scholar 

  152. V. Zannier, F. Rossi, V.G. Dubrovskii, D. Ercolani, S. Battiato, L. Sorba, Nanoparticle stability in axial InAs-InP nanowire heterostructures with atomically sharp interfaces. Nano Lett. 18, 167–174 (2018)

    Article  CAS  Google Scholar 

  153. J. Tang, J.-L. Maurice, F. Fossard, I. Florea, W. Chen, E.V. Johnson, M. Foldyna, L. Yu, P. Roca i Cabarrocas, Natural occurrence of the diamond hexagonal structure in silicon nanowires grown by plasma assisted vapour-liquid-solid method. Nanoscale 9, 8113–8118 (2017)

    Google Scholar 

  154. D.L. Dheeraj, G. Patriarche, H. Zhou, T.B. Hoang, A.F. Moses, S. Grønsberg, A.T.J. van Helvoort, B.O. Fimland, H. Weman, Growth and characterization of wurtzite GaAs nanowires with defect-free zinc blende GaAsSb inserts. Nano Lett. 8, 4459–4463 (2008)

    Article  CAS  Google Scholar 

  155. M. Koguchi, H. Kakiyabashi, M. Yazawa, K. Hiruma, T. Katsuyama, Crystal structure change of GaAs and InAs whiskers from zinc-blende to wurtzite type. Jpn. J. Appl. Phys. 31, 2061–2065 (1992)

    Article  CAS  Google Scholar 

  156. K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakiyabashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77, 447–462 (1995)

    Article  CAS  Google Scholar 

  157. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Zinc-blende-wurtzite polytypism in semiconductors. Phys. Rev. B 46, 10086–10097 (1992)

    Article  CAS  Google Scholar 

  158. C.-Y. Yeh, Z.W. Lu, S. Froyen, A. Zunger, Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds. Phys. Rev. B 45, 12130–12133 (1992)

    Article  CAS  Google Scholar 

  159. Takeuchi, S., Suzuki, K., Stacking fault energies of tetrahedrally coordinated crystals. phys. stat. sol. (a) 171, 99–103 (1999)

    Google Scholar 

  160. F. Glas, A simple calculation of energy changes upon stacking fault formation or local crystalline phase transition in semiconductors. J. Appl. Phys. 104, 093520 (2008)

    Article  CAS  Google Scholar 

  161. T. Akiyama, K. Nakamura, T. Ito, Structural stability and electronic structures of InP nanowires: Role of surface dangling bonds on nanowire facets. Phys. Rev. B 73, 235308 (2006)

    Article  CAS  Google Scholar 

  162. T. Akiyama, K. Sano, K. Nakamura, T. Ito, An empirical potential approach to wurtzite-zinc-blende polytypism in group III–V semiconductor nanowires. Jpn. J. Appl. Phys. 45, L275–L278 (2006)

    Article  CAS  Google Scholar 

  163. H. Shtrikman, R. Popovitz-Biro, A. Kretinin, L. Houben, M. Heiblum, M. Bukala, M. Galicka, R. Buczko, P. Kacman, Method for suppression of stacking faults in wurtzite III-V nanowires. Nano Lett. 9, 1506–1510 (2009)

    Article  CAS  Google Scholar 

  164. B. Mutaftschiev, R. Kern, C. Georges, Sur le mécanisme VLS de croissance des whiskers. Phys. Lett. 16, 32–33 (1965)

    Article  Google Scholar 

  165. E. Hilner, U. Håkanson, L.E. Fröberg, M. Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, A. Mikkelsen, Direct atomic scale imaging of III-V nanowire surfaces. Nano Lett. 8, 3978–3982 (2008)

    Google Scholar 

  166. N.V. Sibirev, M.A. Timofeeva, A.D. Bol’shakova, M.V. Nazarenko, V.G. Dubrovskii, Surface energy and crystal structure of nanowhiskers of III–V semiconductor compounds. Phys. Sol. State 52, 1531–1538 (2010)

    Google Scholar 

  167. R.E. Algra, V. Vonk, D. Wermeille, W.J. Szweryn, M.A. Verheijen, W.J.P. van Enckevort, A.A.C. Bode, W.L. Noorduin, E. Tancini, A.E.F. de Jong, E.P.A.M. Bakkers, E. Vlieg, Formation of wurtzite InP nanowires explained by liquid-ordering. Nano Lett. 11, 44–48 (2011)

    Article  CAS  Google Scholar 

  168. W.D. Kaplan, Y. Kauffmann, Structural order in liquids induced by interfaces with crystals. Annu. Rev. Mater. Res. 36, 1–48 (2006)

    Article  CAS  Google Scholar 

  169. K.A. Dick, C. Thelander, L. Samuelson, P. Caroff, Crystal phase engineering in single InAs nanowires. Nano Lett. 10, 3494–3499 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The long-established collaboration between the authors is currently supported by InternationalResearch Project "Physics of nanostructures and innovative devices based on compound semiconductors" (PHYNICS) established between Centre National de la Recherche Scientifique (CNRS) and the Russian Foundation for Basic Research (RFBR). The authors acknowledge fruitful discussions with their colleagues Jean-Christophe Harmand, Gilles Patriarche, Fabrice Oehler, Federico Panciera Giacomo Priante, George Cirlin, and Nikolai Sibirev. VGD thanks the Russian Science Foundation for financial support under the Grant 19-72-30004. FG acknowledges financial support from Agence Nationale de la Recherche within projects ESPADON ANR-15-CE24-0029 and NanoMAX 10-EQPX-0050, and from the European Commission within Marie Skodowska-Curie Innovative Training Network INDEED (No 722176).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Glas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubrovskii, V.G., Glas, F. (2021). Vapor–Liquid–Solid Growth of Semiconductor Nanowires. In: Fukata, N., Rurali, R. (eds) Fundamental Properties of Semiconductor Nanowires. Springer, Singapore. https://doi.org/10.1007/978-981-15-9050-4_1

Download citation

Publish with us

Policies and ethics

Navigation