Abstract

Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics and being cultivated in about 110 countries. The rate of genetic gain in sorghum has been slower compared to other field crops, that could be because the crop is grown under marginal environments with limited resources, and often affected by biotic and abiotic stresses, besides other constraints such as poor crop management and low research priority than other cereals. Globally, a large number of sorghum germplasm accessions have been conserved in genebanks, and they are source of genetic variation to potentially raise genetic gain, and have played a key role in improving sorghum productivity. This chapter detailed about major constraints in sorghum production and research domains, germplasm diversity, capturing germplasm diversity in the form of representative subsets, mini core collection as a source of variation for important traits, wild and weedy relatives for sorghum improvement, and enhancing genetic gains. This information could greatly help sorghum researchers in planning and prioritizing traits for enhancing productivity and nutrient density of sorghum cultivars that can deliver genetic gains in the farmers’ fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdi A, Bekele E, Asfaw Z, Teshome A (2002) Patterns of morphological variation of sorghum (Sorghum bicolor L. Moench) landraces in qualitative characters in North Shewa and South Welo, Ethiopia. Hereditas 137:161–172

    Article  Google Scholar 

  • Ashok Kumar A (2018) Sorghum hybrids development for important traits: progress and way forward. In: Ciampitti I, Prasad V (eds) Sorghum: state of the art and future perspectives. Agronomy monograph 58. © ASA and CSSA, Madison. https://doi.org/10.2134/agronmonogr58.2014.0059

  • Ashok Kumar A, Reddy BVS, Sharma HC, Hash CT, Rao PS, Ramaiah B, Reddy PS (2011) Recent advances in sorghum genetic enhancement research at ICRISAT. Am J Plant Sci 2:589–600

    Article  Google Scholar 

  • Bandyopadhyay R, Mughogho LK, Prasada Rao KE (1988) Sources of resistance to sorghum grain molds. Plant Dis 72:504–508

    Google Scholar 

  • Bandyopadhyay R, Butler DR, Chandrashekar A, Reddy AK, Navi SS (2000) Biology, epidemiology and management of sorghum grain mold. In: Chandrashekar A, Bandyopadhyay R, Hall AJ (eds) Technical and institutional options for sorghum grain mold management: proceedings of an international consultation, 18−19 May 2000, ICRISAT, Patancheru, India. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 34–71

    Google Scholar 

  • Bantilan MCS, Deb UK, Gowda CLL, Reddy BVS, Obilana AB, Evenson RE (2004) Sorghum genetic enhancement research process, dissemination and impacts. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 320. ISBN: 92-9066-470-3

    Google Scholar 

  • Billot C, Ramu P, Bouchet S, Chantereau J, Deu M, Gardes L, Noyer J-L, Rami J-F, Rivallan R, Li Y, Lu P, Wang T, Folkertsma RT, Arnaud E, Upadhyaya HD, Glaszmann J-C, Hash CT (2013) Massive sorghum collection genotyped with SSR markers to enhance use of global genetic resources. PLoS One 8:e59714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borad PK, Mittal VP (1983) Assessment of losses caused by pest complex to sorghum hybrid CSH 5. In: Krishnamurthy Rao BH, Murthy KSRK (eds) Crop losses due to insect pests. Special issue of the Indian Journal of Entomology. Entomological Society of India, Rajendranagar, Hyderabad, pp 271−278

    Google Scholar 

  • Borphukan B (2014) Evaluation of minicore germplasm of rabi sorghum for charcoal rot resistance and yield component traits, expression analysis of selected R-genes during charcoal rot disease incidence. M.Sc. Dissertation, University of Agricultural Sciences, Dharwad

    Google Scholar 

  • Borrell AK, Hammer GL (2000) Nitrogen dynamics and the physiological basis of stay-green in Sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  • Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association map** in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Dahlberg JA, Hash CT, Kresovich S, Maunder B, Gilbert M (1997) Sorghum and pearl millet genetic resources utilization. In: Proceedings of the international conference on genetic improvement of sorghum and pearl millet, 22−27 September 1996, Lubbock, TX, pp 42–54

    Google Scholar 

  • Dahlberg JA, Burke JJ, Rosenow DT (2004) Development of a sorghum core collection: refinement and evaluation of a subset from Sudan. Econ Bot 58:556–567

    Article  Google Scholar 

  • Das IK, Fakrudin B, Arora DK (2008) RAPD cluster analysis and chlorate sensitivity of some Indian isolates of Macrophomina phaseolina from sorghum and their relationships with pathogenicity. Microbiol Res 163:215–224

    Article  CAS  PubMed  Google Scholar 

  • Duncan RR, Bramel-Cox PJ, Miller FR (1991) Contributions of introduced sorghum germplasm to hybrid development in the USA. Use Plant Introduction in Cultivar Development, Part 1 CSSA Special Publication no. 17:69–102

    Google Scholar 

  • Ejeta G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host-parasite biology. Crop Sci 47(S3):S216–S227

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspective of germplasm conservation. In: Arber W, Illmensee K, Peacock WJ, Starlinger P (eds) Genetic manipulations: impact of man and society. Cambridge University Press, Cambridge, pp 161–170

    Google Scholar 

  • Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G (2017) Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci U S A 114:4471–4476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grenier C, Hamon P, Bramel-Cox PJ (2001) Core collection of sorghum: II. Comparison of three random sampling strategies. Crop Sci 41:241–246

    Article  Google Scholar 

  • Harris K, Subudhi PK, Borrell A (2007) Sorghum stay green QTL individually reduce post-flowering drought-induced leaf senescence. J Exp Bot 58:327–338

    Article  CAS  PubMed  Google Scholar 

  • Hash CT, Bhasker Raj AG, Lindup S, Sharma A, Beniwal CR, Folkertsma RT, Mahalakshmi V, Zerbini E, Blümmel M (2003) Opportunities for marker-assisted selection (MAS) to improve the feed quality of crop residues in pearl millet and sorghum. Field Crop Res 84:79–88

    Article  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL map** of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:133–142

    Article  CAS  PubMed  Google Scholar 

  • ICRISAT (1992) ICRISAT medium-term plan 1994-1998. International Crops Research Institute for the Semi-Arid Tropics, Patancheru

    Google Scholar 

  • Jordan DR, Tao YZ, Godwin ID, Henzell RG, Cooper M, McIntyre CL (1998) Loss of genetic diversity associated with selection for resistance to sorghum midge in Australian sorghum. Euphytica 102:1–7

    Article  Google Scholar 

  • Jordan DR, Tao Y, Godwin ID, Henzell RG, Cooper M, McIntyre CL (2003) Prediction of hybrid performance in grain sorghum using RFLP markers. Theor Appl Genet 106:559–567

    Article  CAS  PubMed  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramel P (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 128:137–142

    Article  Google Scholar 

  • Kamala V, Sharma HC, Rao DM, Varaprasad KS, Bramul PJ, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131(4):511–521

    Google Scholar 

  • Kapanigowda MH, Perumal R, Djanaguiraman M, Aiken RM, Tesso T, Prasad PV, Little CR (2013) Genotypic variation in sorghum [Sorghum bicolor (L.) Moench] exotic germplasm collections for drought and disease tolerance. Springerplus 2:650

    Article  PubMed  PubMed Central  Google Scholar 

  • Kassahun B, Bidinger FR, Hash CT, Kuruvinashetti MS (2010) Stay-green expression in early generation sorghum [Sorghum bicolor (L.) Moench] QTL introgression lines. Euphytica 172:351–362

    Article  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang J (2013) Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320. https://doi.org/10.1038/ncomms3320

    Article  PubMed  PubMed Central  Google Scholar 

  • Mbuvi DA, Masiga CW, Kuria E, Masanga J, Wamalwa M, Mohamed A, Odeny DA, Hamza N, Timko MP, Runo S (2017) Novel sources of witchweed (Striga) resistance from wild sorghum accessions. Front Plant Sci 8:116. https://doi.org/10.3389/fpls.2017.00116

    Article  PubMed  PubMed Central  Google Scholar 

  • Morris GP, Rhodes DH, Brenton Z, Ramu P, Thayil VM, Deshpande S, Hash CT, Acharya C, Mitchell SE, Buckler ES, Yu J, Kresovich S (2013) Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 (Bethesda) 3:2085–2094

    Article  CAS  Google Scholar 

  • Murray SC, Rooney WL, Hamblin MT, Mitchell SE, Kresovich S (2009) Sweet sorghum genetic diversity and association map** for Brix and height. Plant Genome J 2:48–62

    CAS  Google Scholar 

  • Mutegi E, Sagnard F, Semagn K, Deu M, Muraya M, Kanyenji B, de Villiers S, Kiambi D, Herselman L, Labuschagne M (2011) Genetic structure and relationships within and between cultivated and wild sorghum (Sorghum bicolor (L.) Moench) in Kenya as revealed by microsatellite markers. Theor Appl Genet 122:989–1004

    Article  CAS  PubMed  Google Scholar 

  • Ngugi K, Onyango CM (2012) Analysis of the molecular diversity of Kenya sorghum germplasm using microsatellites. J Crop Sci Biotechnol 15:189–194

    Article  Google Scholar 

  • Okeno JA, Mutegi E, de Villiers S, Wolt JD, Misra MK (2012) Morphological variation in the wild-weedy complex of Sorghum bicolor in situ in western Kenya: preliminary evidence of crop-to-wild gene flow? Int J Plant Sci 173:507–515

    Article  Google Scholar 

  • Pande S, Thakur RP, Karunakar RI, Bandyopadhyay R, Reddy BVS (1994) Development of screening methods and identification of stable resistance to anthracnose in sorghum. Field Crop Res 38:157–166

    Article  Google Scholar 

  • Pande S, Bock CH, Bandyopadhyay R, Narayana YD, Reddy BVS, Lenné JM, Jeger MJ (1997) Downy mildew of Sorghum. Information Bulletin no. 51. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 1–35

    Google Scholar 

  • Prasada Rao KE, Ramanatha Rao V (1995) The use of characterisation data in develo** a core collection of sorghum. In: Hodgkin T, Brown AHD, van Hintum TJL, Morales EAV (eds) Core collections of plant genetic resources. Wiley, Chichester, pp 109–116

    Google Scholar 

  • Prasada Rao KE, Mengesha MH, Reddy VG (1989) International use of sorghum germplasm collection. In: Brown AHD, Frankel OH, Marshall DR, Williams JT (eds) The use of plant genetic resources. Cambridge University Press, Cambridge, pp 150–167

    Google Scholar 

  • Price HJ, Hodnett GL, Burson BL, Dillon SL, Stelly DM, Rooney WL (2006) Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci 46:2617–2622

    Article  CAS  Google Scholar 

  • Rabbi IY, Geiger HH, Haussmann BIG, Kiambi D, Folkertsma R, Parzies HK (2010) Impact of farmers’ practices and seed systems on the genetic structure of common sorghum varieties in Kenya and Sudan. Plant Genet Resour Character Util 8:116–126

    Article  CAS  Google Scholar 

  • Radwan GL, Perumal R, Isakeit T, Magill CW, Prom LK, Little CR (2011) Screening exotic sorghum germplasm, hybrids, and elite lines for resistance to a new virulent pathotype (P6) of Peronosclerospora sorghi causing downy mildew. Plant Heal Prog. https://doi.org/10.1094/PHP-2011-0323-01-RS

  • Rakshit S, Hariprasanna K, Gomashe S, Ganapathy KN, Das IK, Ramana OV, Dhandapani A, Patil JV (2014) Changes in area, yield gains, and yield stability of sorghum in major sorghum-producing countries, 1970 to 2009. Crop Sci 54:1571–1584

    Article  Google Scholar 

  • Reddy BVS, Kumar AA, Reddy PS, Elangovan M (2008) Sorghum germplasm: diversity and utilization. In: Reddy BVS, Ramesh S, Kumar AA, Gowda CLL (eds) Sorghum improvement in the new millennium. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 153–169

    Google Scholar 

  • Reddy BVS, Ashok Kumar A, Sanjana Reddy P (2010) Recent advances in sorghum improvement research at ICRISAT. Kasetsart J (Nat Sci) 44:499–506

    CAS  Google Scholar 

  • Reddy BV, Reddy PS, Sadananda AR, Dinakaran E, Ashok Kumar A, Deshpande SP, Srinivasa Rao P, Sharma HC, Sharma R, Krishnamurthy L, Patil JV (2012) Postrainy season sorghum: constraints and breeding approaches. J SAT Agric Res 10(1):1–12

    Google Scholar 

  • Reddy NRR, Ragimasalawada M, Sabbavarapu MM, Nadoor S, Patil JV (2014) Detection and validation of stay-green QTL in post-rainy sorghum involving widely adapted cultivar, M35-1 and a popular stay-green genotype B35. BMC Genomics 15:909

    Article  Google Scholar 

  • Rich PJ, Grenier C, Ejeta G (2004) Striga resistance in the wild relatives of sorghum. Crop Sci 44:2221–2229

    Article  Google Scholar 

  • Sabadin PK, Malosetti M, Boer MP, Tardin FD, Santos FG, Guimarães CT, Gomide RL, Andrade CLT, Albuquerque PEP, Caniato FF, Mollinari M, Margarido GRA, Oliveira BF, Schaffert RE, Garcia AAF, van Eeuwijk FA, Magalhaes JV (2012) Studying the genetic basis of drought tolerance in sorghum by managed stress trials and adjustments for phenological and plant height differences. Theor Appl Genet 124:1389–1402

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AC, Subudhi PK, Rosenow DT, Nguyen HT (2002) Map** QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Mol Biol 48:713–726

    Article  CAS  PubMed  Google Scholar 

  • Seifers DL, Perumal R, Little CR (2012) New sources of resistance in sorghum (Sorghum bicolor) germplasm are effective against a diverse array of Potyvirus spp. Plant Dis 96:1775–1779

    Article  PubMed  Google Scholar 

  • Sharma HC (1993) Host plant resistance to insects in sorghum and its role in integrated pest management. Crop Prot 12:11–34

    Article  Google Scholar 

  • Sharma HC, Franzmann BA (2001) Host-plant preference and oviposition responses of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt., Cecidomyiidae) towards wild relatives of sorghum. J Appl Entomol 125:109–114

    Article  Google Scholar 

  • Sharma R, Rao VP, Upadhyaya HD, Reddy VG, Thakur RP (2010) Resistance to grain mold and downy mildew in a mini-core collection of sorghum sermplasm. Plant Dis 94:439–444

    Article  PubMed  Google Scholar 

  • Sharma R, Upadhyaya HD, Manjunatha SV, Rao VP, Thakur RP (2012) Resistance to foliar diseases in a mini-core collection of sorghum germplasm. Plant Dis 96:1629–1633

    Article  PubMed  Google Scholar 

  • Smith S, Primomo V, Monk R, Nelson B, Jons E, Porter K (2010) Genetic diversity of widely used U.S. sorghum hybrids 1980-2008. Crop Sci 50:1664–1673

    Article  Google Scholar 

  • Subudhi PK, Nguyen HT (2000) Linkage group alignment of sorghum RFLP maps using a RIL map** population. Genome 43:240–249

    Article  CAS  PubMed  Google Scholar 

  • Thakur RP, Reddy BVS, Indira S, Rao VP, Navi SS, Yang XB , Ramesh S (2006) Sorghum grain mold. Information Bulletin no. 72. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 32 pp

    Google Scholar 

  • Upadhyaya D, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Vetriventhan M (2018) Ensuring the genetic diversity of sorghum. In: Roony W (ed) Achieving sustainable cultivation of sorghum. Burleigh Dodds Science Publishing Limited, Cambridge, p 546

    Google Scholar 

  • Upadhyaya HD, Pundir RPS, Dwivedi SL, Gowda CLL, Reddy VG, Singh S (2009) Develo** a mini core collection of sorghum for diversified utilization of germplasm. Crop Sci 49:1769–1780

    Article  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Ramu P, Singh SK, Singh S (2014) Genetic variability and effect of postflowering drought on stalk sugar content in sorghum mini core collection. Crop Sci 54:2120–2130. https://doi.org/10.2135/cropsci2014.01.0040

  • Upadhyaya HD, Dwivedi SL, Singh S, Sahrawat KL, Singh SK (2016a) Genetic variation and postflowering drought effects on seed iron and zinc in ICRISAT sorghum mini core collection. Crop Sci 56:374–383

    Article  CAS  Google Scholar 

  • Upadhyaya HD, Reddy KN, Vetriventhan M, Gumma MK, Ahmed MI, Reddy MT, Singh SK (2016b) Status, genetic diversity and gaps in sorghum germplasm from South Asia conserved at ICRISAT genebank. Plant Genet Resour Character Util 15:527–538

    Article  Google Scholar 

  • Upadhyaya HD, Wang Y-H, Dintyala SV, Dwivedi SL, Prasad PVV, Burrell AM, Klein R, Morris GP, Klein PE (2016c) Association map** of germinability and seedling vigor in sorghum under controlled low temperature conditions. Genome 59:137–145

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Dwivedi SL, Vetriventhan M, Krishnamurthy L, Singh SK (2017a) Post-flowering drought tolerance using managed stress trials, adjustment to flowering, and mini core collection in sorghum. Crop Sci 57:310–321

    Article  Google Scholar 

  • Upadhyaya HD, Kothapally NR, Vetriventhan M, Mohammed IA, Gumma MK, Mulinti TR, Singh SK (2017b) Sorghum germplasm from West and Central Africa maintained in the ICRISAT genebank: status, gaps, and diversity. Crop J 5:518–532

    Article  Google Scholar 

  • Upadhyaya HD, Narsimha RK, Vetriventhan M, Murali KG, Irshad AM, Manyasa E, Reddy MT, Singh SK (2017c) Geographical distribution, diversity and gap analysis of East African sorghum collection conserved at the ICRISAT genebank. Aust J Crop Sci 11:424–437

    Article  Google Scholar 

  • Upadhyaya HD, Vetriventhan M, Asiri AM, Azevedo VCR, Sharma HC, Sharma R, Sharma SR, Wang YH (2019) Multi-Trait diverse germplasm sources from mini core collection for sorghum improvement. Agriculture 9(6):121

    Google Scholar 

  • Vadez V, Deshpande SP, Kholova J, Hammer GL, Borrell AK, Talwar HS, Hash CT (2011) Stay green QTL effects on water extraction and transpiration efficiency in a lysimetric system: influence of genetic background. Funct Plant Biol 38:553–566

    Article  PubMed  Google Scholar 

  • Wang Y-H, Poudel DD, Hasenstein KH (2011) Identification of SSR markers associated with saccharification yield using pool-based genome-wide association map** in sorghum. Genome 54:883–889

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari D. Upadhyaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyaya, H.D., Vetriventhan, M., Are, A.K., Azevedo, V.C.R., Wang, Y.H. (2020). Sorghum Germplasm for Enhanced Productivity and Nutrition. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_5

Download citation

Publish with us

Policies and ethics

Navigation