Fault Detection and Classification in Microgrid Using Wavelet Transform and Artificial Neural Network

  • Conference paper
  • First Online:
Advances in VLSI, Communication, and Signal Processing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 683))

  • 852 Accesses

Abstract

In the proposed work, Wavelet Transform analysis and wavelet entropy methods have been used to classify various types of fault in a nine bus microgrid system. Both methods are compared and analyzed. The simulation result shows that the proposed method successfully identifies the fault type and phase involved in the fault. The proposed algorithm is validated for different locations and fault types on nine bus microgrid system. In addition to the above, wavelet analysis and wavelet coefficients are also used with the Artificial Neural Network (ANN) for detecting and classifying the faults. The different fault cases have different fault resistances and inception angles. The fault detection process is done by the summation of sixth level detail coefficients of current obtained using Discrete Wavelet Transform (DWT) based Multiresolution Analysis (MRA) technique for all the three phases while, for the classification of fault type, wavelet entropy calculations for each phase currents are acquired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prasad A, Belwin Edward J, Ravi K (2018) A review on fault classification methodologies in power transmission systems: Part—I. J Electr Syst Inf Technol 5(1):48–60. ISSN 2314-7172

    Google Scholar 

  2. Prasad A, Belwin Edward J, Ravi K (2018) A review on fault classification methodologies in power transmission systems: Part-II. J Electr Syst Inf Technol 5(1):61–67. ISSN 2314-7172

    Google Scholar 

  3. Chan PPK, Zhu J, Qiu Z, Ng WWY, Yeung DS (2011) Comparison of different classifiers in fault detection in microgrid. In: 2011 international conference on machine learning and cybernetics, Guilin, pp 1210–1213

    Google Scholar 

  4. Hare J, Shi X, Gupta S, Bazzi A (2016) Fault diagnostics in smart micro-grids: a survey. Renew Sustain Energy Rev 60:1114–1124. ISSN 1364-0321

    Google Scholar 

  5. Sivanandam SN, Sumathi S, Deepa SN (2015) Introduction to neural networks using MATLAB 6.0. 22nd reprint, McGraw Hill

    Google Scholar 

  6. Upendar J, Gupta CP, Singh GK (2008) ANN based power system fault classification. IEEE Region 10 annual international conference, Proceedings/TENCON. 1–6. https://doi.org/10.1109/tencon.2008.4766623

  7. Karmacharya IM, Gokaraju R (2018) Fault location in ungrounded photovoltaic system using wavelets and ANN. IEEE Trans Power Delivery 33(2):549–559

    Article  Google Scholar 

  8. Srinivasa Rao P (2013) Pattern recognition approach for fault identification in power transmission lines. Int J Eng Res Appl 3:1051–1056

    Google Scholar 

  9. Goharrizi A, Sepehri N (2018) Application of fast fourier and wavelet transforms towards actuator leakage diagnosis: a comparative study. Int J Fluid Power 14(2):39–51. Retrieved from http://journals.riverpublishers.com/index.php/IJFP/article/view/221

  10. Chanda D, Kishore NK, Sinha AK (2003) A wavelet multiresolution analysis for location of faults on transmission lines. Int J Electr Power Energy Syst 25(1):59–69. ISSN 0142-0615

    Google Scholar 

  11. Kirubadevi S, Sutha S (2017) Wavelet based transmission line fault identification and classification, pp 737–741. https://doi.org/10.1109/iccpeic.2017.8290461

  12. Cesar TM, Pimentel SP, Marra EG, Alvarenga BP (2017) Wavelet transform analysis for grid-connected photovoltaic systems. In: 2017 6th international conference on clean electrical power (ICCEP), Santa Margherita Ligure, pp 1–6

    Google Scholar 

  13. Liang J, Elangovan Saikishore, Devotta JBX (1998) A wavelet multiresolution analysis approach to fault detection and classification in transmission lines. Int J Electr Power Energy Syst 20:327–332. https://doi.org/10.1016/S0142-0615(97)00076-8

    Article  Google Scholar 

  14. Manohar M, Koley E, Ghosh S (2017) A reliable fault detection and classification scheme based on wavelet transform and ensemble of SVM for microgrid protection. In: 2017 3rd international conference on applied and theoretical computing and communication technology (iCATccT), Tumkur, pp 24–28

    Google Scholar 

  15. Kar S, Samantaray SR (2016) High impedance fault detection in microgrid using maximal overlap** discrete wavelet transform and decision tree. In: 2016 international conference on electrical power and energy systems (ICEPES), Bhopal, pp 258–263

    Google Scholar 

  16. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27(3):379–423

    Article  MathSciNet  Google Scholar 

  17. El Safty S, El-Zonkoly A (2009) Applying wavelet entropy principle in fault classification. Int J Electr Power Energy Syst 31(10):604–607. ISSN 0142-0615

    Google Scholar 

  18. He Zhengyou, Chen **aoqin, Qian Qingquan (2007) A study of wavelet entropy measure definition and its application for fault feature pick-up and classification. J Electron 24:628–634. https://doi.org/10.1007/s11767-005-0253-0

    Article  Google Scholar 

  19. Adewoleand AC, Tzoneva R (2012) Fault detection and classification in a distribution network integrated with distributed generators. In: IEEE power and energy society conference and exposition in Africa: intelligent grid integration of renewable energy resources (PowerAfrica), Johannesburg, pp 1–8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, P., Singh, N., Choudhary, N.K. (2021). Fault Detection and Classification in Microgrid Using Wavelet Transform and Artificial Neural Network. In: Harvey, D., Kar, H., Verma, S., Bhadauria, V. (eds) Advances in VLSI, Communication, and Signal Processing. Lecture Notes in Electrical Engineering, vol 683. Springer, Singapore. https://doi.org/10.1007/978-981-15-6840-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6840-4_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6839-8

  • Online ISBN: 978-981-15-6840-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation