Plant Metabolites as Immunomodulators

  • Chapter
  • First Online:
Plant Metabolites: Methods, Applications and Prospects

Abstract

The immune system defends the body from various pathogens. Occasionally immune mechanisms fail in responding to antigens or they respond to self-antigens leading to severe complications like hypersensitivity, autoimmune disorders, cancer and AIDS. These conditions necessitate the use of compounds capable of modifying the immune system called immunomodulators. A large number of synthetic compounds are currently used for augmenting the immune system causing variety of side effects. Using natural biomolecules which are benign and economical can lead to safe immunomodulation. Application of plant metabolites for activating or suppressing the immune system is currently a fascinating area of research. This rational approach of immunomodulation has led to the discovery of many phytocompounds from known medicinal plants. Berberine, leonurine, piperine, gelselegine, chelerythrine and pseudo coptisine are some immunomodulatory agents derived from plants. Exploring plants with the use of innovative techniques will increase the choice of immunomodulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal SS, Singh VK (1999) Medicinal plants; immunomodulators review of studies on Indian medicinal plants and synthetic peptides. Proc Indian Natl Sci Acad B65:179–204

    Google Scholar 

  • Agarwal SS, Khadase SC, Talele GS (2010) Studies on immunomodulatory activity of Capparis zeylanica leaf extracts. Int J Pharm Sci Nanotechnol 3(1):887–892

    Google Scholar 

  • Amirghofran Z, Azadbakht M, Karimi MH (2000) Evaluation of the immunomodulatory effects of five herbal plants. J Ethnopharmacol 72(1–2):167–172

    Article  CAS  PubMed  Google Scholar 

  • Antony S, Kuttan R, Kuttan G (1999) Immunomodulatory activity of Curcumin. Immunol Invest 28(5–6):291–303

    Article  CAS  PubMed  Google Scholar 

  • Attard E, Cuschieri A (2009) In vitro immunomodulatory activity of various extracts of Maltese plants from the Asteraceae family. J Med Plant Res 3(6):457–461

    Google Scholar 

  • Augustine BB, Dash S, Lahkar M, Amara VR, Samudrala PK, Thomas JM (2014) Evaluation of immunomodulatory activity of ethyl acetate extract of Leucas aspera in Swiss albino mice. Int J Green Pharm:84–89

    Google Scholar 

  • Banerjee M, Tripathi LM, Srivastava VML, Puri A, Shukla R (2003) Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacol Immunotoxicol 25:213–224

    Article  CAS  PubMed  Google Scholar 

  • Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials (Review Article). Precis Oncol 35:1–9

    Google Scholar 

  • Bob Allkin (2017) Useful plants—medicines. State of the World’s Plants 2017. Royal Botanic Gardens

    Google Scholar 

  • Boscolo P, del Signore A, Sabbioni E, Di Gioacchino M, Di Giampaolo L, Reale M, Conti P, Paganelli R, Giaccio M (2003) Effects of resveratrol on lymphocyte proliferation and cytokine release. Ann Clin Lab Sci 33(2):226–231

    CAS  PubMed  Google Scholar 

  • Bureau G, Longpre F, Martinoli MG (2008) Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. J Neurosci Res 86:403–410

    Article  CAS  PubMed  Google Scholar 

  • Chanan-Khan AA, Swaika A, Paulus A et al (2013) Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer J 3(9):e143. https://doi.org/10.1038/bcj.2013.38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cundelland DR, Wilkinson F (2014) Curcumin: powerful immunomodulator from turmeric. Curr Immunol Rev 10:122–132. https://doi.org/10.2174/1573395510666141029233003

    Article  CAS  Google Scholar 

  • Dahanukar SA, Kulkarni RA, Rege NN (2000) Pharmacology of medicinal plants and natural products. Indian J Pharm 32:S81–S118

    CAS  Google Scholar 

  • Delafuente JC, Devane CL (1991) Immunologic effects of cocaine and related alkaloids. Immunopharmacol Immunotoxicol 13:1–2

    Article  Google Scholar 

  • Dhama K, Saminathan M, Jacob SS, Mithilesh S, Karthik K, Amarpal RT, Sunkara LT, Malik YS, Singh RK (2015) Effect of immunomodulation and immunomodulatory agents on health with some bioactive principles, modes of action and potent biomedical applications. Int J Pharm 11:253–290

    Article  CAS  Google Scholar 

  • Falchetti R, Fuggetta MP, Lanzilli G, Tricarico M, Ravagnan G (2001) Effects of resveratrol on human immune cell function. Life Sci 70(1):81–96

    Article  CAS  PubMed  Google Scholar 

  • Fu Q, Cui Q, Yang Y, Zhao X, Song X, GuangxiWang LB, Chen S, Tian Y, Zou Y, Li L, GuizhouYue RJ, Yin Z (2018) Effect of resveratrol dry suspension on immune function of piglets. Evid Based Complement Alternat Med:5952707. https://doi.org/10.1155/2018/5952707

  • Gately MK, Desai BB, Wolitzky AG, Quinn PM, Dwyer CM, Podlaski FJ, Familletti PC, Sinigaglia F, Chizzonite R, Gubler U (1991) Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J Immunol 147(3):874–882

    CAS  PubMed  Google Scholar 

  • Gaur K, Kori ML, Nema RK (2009) Comparative screening of immunomodulatory activity of hydro-alcoholic extract of Hibiscus rosa sinensis Linn. And Ethanolic extract of Cleome gynandra Linn. Global J Pharmacol 3(2):85–89

    Google Scholar 

  • Ghaemi A, Soleimanjahi H, Razeghi S, Gorji A, Tabaraei A, Moradi A, Alizadeh A, Vakili MA (2012) Genistein induces a protective immunomodulatory effect in a mouse model of cervical Cancer. Iran J Immunol 9(2):119–127

    CAS  PubMed  Google Scholar 

  • Gottwald T, Lhotak S, Stead RH (2003) Effect of truncal vagotomy and capsaicin on mast cells and IgA-positive plasma cells in rat jejunal mucosa. Neurogastroenterol Motil 9(1)

    Google Scholar 

  • Guo TL, McCay JA, Zhang LX, Brown RD, You L, Karrow NA, Germolec DR, White KL Jr (2001) Genistein modulates immune responses and increases host resistance to B16F10 tumor in adult female B6C3F1 mice. J Nutr 131(12)

    Google Scholar 

  • He X, Niu X, Li J, Xu S, Lu A (2012) Immunomodulatory activities of five clinically used Chinese herbal polysaccharides. J Exp Integr Med 2(1):15–27

    Article  Google Scholar 

  • Huynh NB (2017) The immunological benefits of green tea (Camellia sinensis). Int J Biol 9(1):10–17

    Article  CAS  Google Scholar 

  • Ilfeld D, Feierman E, Kuperman O, Kivity S, Topilsky M, Netzer L, Pecht M, Trainin N (1984) Effect of colchicine on T cell subsets of healthy volunteers. Immunology 53(3):595–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jagetia GC, Aggarwal BB (2007) “Spicing up” of the immune system by Curcumin. J Clin Immunol 27(1):1–19

    Article  CAS  Google Scholar 

  • Jantan I, Ahmad W, Bukhari SNA, Jantan I, Ahmad W, Bukhari SNA (2015) Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front Plant Sci 6:655

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayaraman S, Jayadevi Variyar E (2015) Evaluation of immunomodulatory and antioxidant activities of polysaccharides isolated from Callicarpa macrophylla Vahl. Int J Pharm Pharm Sci 7(9):1–4

    Google Scholar 

  • Jayaraman S, Sumesh Kumar TM, Jayadevi Variyar E (2015) Evaluation of immunomodulation by Lepidagathis cuspidate and Phaseolus trilobus. Intl J Innov Pharm Sci Res 3(7):1–10

    Google Scholar 

  • Jobin C, Bradhan CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB (2011) Curcumin blocks cytokine mediated NF-kappa B activation and pro-inflammatory gene expression. J Immunol 50(3):163–172

    Google Scholar 

  • Jose J, Dhanya AT, Haridas KR, Sumesh Kumar TM, Jayaraman S, Variyar EJ, Sudhakaran S (2016) Structural characterization of a novel derivative of myricetin from Mimosa pudica as an antiproliferative agent for the treatment of cancer. Biomed Pharmacother 84:1067–1077

    Article  CAS  PubMed  Google Scholar 

  • Jun W, Pei-Gen X, Shi-Ying L, Gao P (1992) The inhibitory effect of Sinomenine on immunological function in mice. Phytother Res 6(3):117–120

    Article  Google Scholar 

  • Jung J-H, Kang J-I, Kim H-S (2012) Effect of quercetin on impaired immune function in mice exposed to irradiation. Nutr Res Pract 6(4):301–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan MM (1997) The use of methotrexate, colchicine, and other immunomodulatory drugs in the treatment of primary biliary cirrhosis. Semin Liver Dis 17(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Kołodziej H, Kiderlen AF (2007) In vitro evaluation of antibacterial and immunomodulatory activities of Pelargonium reniforme, Pelargonium sidoides and the related herbal drug preparation EPs® 7630. Phytomedicine 14(Suppl 6):18–26

    Article  PubMed  CAS  Google Scholar 

  • Kumar SV, Kumar SP, Rupesh D, Nitin K (2011) Immunomodulatory effects of some traditional medicinal plants. J Chem Pharm Res 3(1):675–684

    Google Scholar 

  • Joanna Kurek (2017) Cytotoxic colchicine alkaloids: from plants to drugs, Cytotoxicity, Tülay Aşkın Çelik, IntechOpen: https://doi.org/10.5772/intechopen.72622. https://www.intechopen.com/books/cytotoxicity/cytotoxic-colchicine-alkaloids-from-plants-to-drugs

  • Kurup VP, Barrios CS (2008) Immunomodulatory effects of curcumin in allergy. Mol Nutr Food Res 52(9):1031–1039

    Article  CAS  PubMed  Google Scholar 

  • Lai JH (2002) Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine in autoimmune diseases. Acta Pharmacol Sin 23(12):1093–1101

    CAS  PubMed  Google Scholar 

  • Leung YY, Hui LLY, Kraus VB (2015) Colchicine—update on mechanisms of action and therapeutic uses. Semin Arthritis Rheum 45(3):341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, inflammation and immunity. Nutrients 8(3):167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malaguarnera L (2019) Review-influence of resveratrol on the immune response. Nutrients 11(5):94–96

    Article  CAS  Google Scholar 

  • Manosroi A, Saraphanchot Witthaya A, Manosroi J (2005) In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J Ethnopharmacol 101:90–94

    Article  CAS  PubMed  Google Scholar 

  • Min S-Y, Yan M, Kim SB, Ravikumar S, Kwon S-R, Vanarsa K, Kim H-Y, Davis LS, Mohan C (2015) Green tea Epigallocatechin-3-Gallate suppresses autoimmune arthritis through Indoleamine-2,3-Dioxygenase expressing dendritic cells and the nuclear factor, Erythroid 2-like 2 antioxidant pathway. J Inflamm 12(53)

    Google Scholar 

  • Mlcek J, Jurikova T, Skrivankova S, Sochor J (2016) Quercetin and its anti-allergic immune response. Molecules 21(5)

    Google Scholar 

  • Motte J, Ambrosius B, Grüter T, Bachir H, Sgodzai M, Pedreiturria X, Pitarokoili K, Gold R (2018) Capsaicin-enriched diet ameliorates autoimmune neuritis in rats. J Neuroinflammation 15:122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nevius E, Srivastava PK, Basu S (2012) Oral ingestion of capsaicin, the pungent component of chili pepper, enhances a discrete population of macrophages and confers protection from autoimmune diabetes. Mucosal Immunol 5(1):76–86

    Article  CAS  PubMed  Google Scholar 

  • Novak M, Vetvicka V (2008) β-Glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J Immunotoxicol 5:47–57

    Article  CAS  PubMed  Google Scholar 

  • Pae M, Wu D (2013) Immunomodulating effects of epigallocatechin-3-gallate from green tea: mechanisms and applications. Food Funct 4(9):1287–1303

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Lee CM, Jung ID, Lee JS, Jeong YI, Chang JH, Chun SH, Kim MJ, Choi IW, Ahn SC, Shin YK, Yeom SR, Park YM (2009) Quercetin regulates Th1/Th2 balance in a murine model of asthma. Int Immunopharmacol 3:261–267

    Article  CAS  Google Scholar 

  • Ramberg JE, Nelson ED, Sinnott RA (2010) Immunomodulatory dietary polysaccharides: a systematic review of the literature. Nutr J 9(54):1–22

    Google Scholar 

  • Raphael TJ, Kuttan G (2003) Immunomodulatory activity of naturally occurring monoterpenes carvone, limonene, and perillic acid. Immunopharmacol Immunotoxicol 25(2):285–294

    Article  CAS  PubMed  Google Scholar 

  • Saadé NE, Massaad CA, Ochoa-Chaar CI, Jabbur SJ, Safieh-Garabedian B, Atweh SF (2002) Upregulation of proinflammatory cytokines and nerve growth factor by intraplantar injection of capsaicin in rats. J Physiol 545(1):241–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res Rev 658:68–94

    Article  CAS  Google Scholar 

  • Satpute KL, Jadhav MM, Karodi RS, Katare YS, Patil MJ, Rub R, Bafna AR (2009) Immunomodulatory activity of fruits of Randia dumetorum Lamk. J Pharmacogn Phytother 1:1–5

    CAS  Google Scholar 

  • Schepetkin IA, Faulkner CL, Nelson-Overton LK, Wiley JA, Quinn MT (2005) Macrophage immunomodulatory activity of polysaccharides isolated from Juniperus scopulorum. Int Immunopharmacol 5(13):1783–1799

    Article  CAS  PubMed  Google Scholar 

  • Schwarz YA, Kivity S, Ilfeld DN, Schlesinger M, Greif J, Topilsky M, Garty MS (1990) A clinical and immunologic study of colchicines in asthma. J Allergy Clin Immunol 85(3):578–582

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Sharma RA (2015) Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech Biotech 5(2):129–151

    Google Scholar 

  • Singh VK, Biswas S, Mathur KB, Haq W, Garg SK, Agarwal SS (1998) Thymopentin and splenopentin as immunomodulators. Current status (review). Immunol Res 17(3):345–368

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Tailang M, Mehta SC (2016) A review on herbal plants as immunomodulators. Int J Pharm Sci Res 7(9):3602–3610

    CAS  Google Scholar 

  • Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC (2013) The immunomodulatory effect of plant lectins: a review with emphasis on Artin M properties. Glycoconj J 30:641–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Surh YJ, Chun KS, Cha HH, Han SS, Keum Y, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat Res:43–68

    Google Scholar 

  • Varma A, Padh H, Shrivastava N (2011) Andrographolide: a new plant-derived antineoplastic entity on horizon. Evid Based Complement Alternat Med 2011:815390. https://doi.org/10.1093/ecam/nep135

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson ES, Murphy JC, ElSohly HN, ElSohly MA, Turner CE (1983) Effects of the administration of coca alkaloids on the primary immune responses of mice: interaction with delta 9-tetrahydrocannabinol and ethanol. Toxicol Appl Pharmacol 71(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Wong CP, Nguyen LP, Noh SK, Bray TM, Bruno RS, Ho E (2011) Induction of regulatory T cells by green tea polyphenol EGCG. Immunol Lett 139(1):7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yellayi S, Zakroczymski MA, Selvaraj V, Valli VE, Ghanta V, Helferich WG, Cooke PS (2003) The phytoestrogen genistein suppresses cell-mediated immunity in mice. J Endocrinol 176(2):267–274

    Article  CAS  PubMed  Google Scholar 

  • Yu R, Park JW, Kurata T, Erickson KL (1998) Modulation of select immune responses by dietary capsaicin. Int J Vitam Nutr Res 68(2):114–119

    CAS  PubMed  Google Scholar 

  • Zhou T, Zhu M, Liang Z (2018) (−)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Mol Med Rep 17(4):4883–4888

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayaraman, S., Variyar, J. (2020). Plant Metabolites as Immunomodulators. In: Sukumaran, S.T., Sugathan, S., Abdulhameed, S. (eds) Plant Metabolites: Methods, Applications and Prospects. Springer, Singapore. https://doi.org/10.1007/978-981-15-5136-9_18

Download citation

Publish with us

Policies and ethics

Navigation