The Role of RASSF1 Methylation in Lung Carcinoma

  • Chapter
  • First Online:
Single-cell Sequencing and Methylation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1255))

Abstract

Lung carcinoma is the most frequently diagnosed malignant neoplasms and mainly consists of small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC). Large number of lung carcinoma patients have poor outcomes due to the late diagnosis and the limited therapeutic options. Previous attempts have proved that the evolution of lung carcinoma is a multistep molecular aberration which various genetic or epigenetic alterations may be take part in. Among these molecular aberrations, the inactivation of tumor suppressor gene has been widely observed in all types of carcinoma including lung carcinoma. As a vital inactivated mechanism, DNA methylation of tumor suppressor gene is frequently found in lung cancer. To gain exhaustive comprehension of the carcinogenesis of lung carcinoma, we summarize our current knowledge on DNA methylation of RASSF1 (RAS-Association Domain Family 1) and its clinical significance in lung carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SCLC:

Small-cell lung carcinoma

NSCLC:

Non-small-cell lung carcinoma

RASSF1:

RAS-Association Domain Family 1

TEADs:

Transcriptional enhancer factors

TAZ:

WW domain-containing transcriptional coactivators

YAP:

TAZ paralog

hMOB1:

MOB kinase activator 1B

hSAV1:

The adaptor/scaffold proteins Salvador homolog 1

LATS1 and LATS2:

Large tumor suppressor 1 and 2

MST1 and MST2:

Mammalian sterile 20-like kinase 1 and 2

LOH:

Heterozygosity

References

  1. Torre LA, Siegel RL, Jemal A (2016) Lung cancer statistics. Adv Exp Med Biol 893:1–19

    Article  PubMed  Google Scholar 

  2. Ferlay J, Colombet M, Soerjomataram I et al (2018) Cancer incidence and mortality patterns in Europe: estimates for 40 countries and 25 major cancers in 2018. Eur J Cancer 103:356

    Article  CAS  PubMed  Google Scholar 

  3. Winkler V, Mangolo NJ, Becher H (2015) Lung cancer in South Africa: a forecast to 2025 based on smoking prevalence data. BMJ Open 5:e006993

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wang L, Yu C, Liu Y et al (2016) Lung cancer mortality trends in China from 1988 to 2013: new challenges and opportunities for the government. Int J Environ Res Public Health 13:1052

    Article  PubMed Central  Google Scholar 

  5. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  PubMed  Google Scholar 

  6. Hong S, Mok Y, Jeon C et al (2016) Tuberculosis, smoking and risk for lung cancer incidence and mortality. Int J Cancer 139:2447–2455

    Article  CAS  PubMed  Google Scholar 

  7. Raaschou-Nielsen O, Andersen ZJ, Beelen R et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol 14:813–822

    Article  PubMed  Google Scholar 

  8. Mirtavoos-Mahyari H, Ghafouri-Fard S, Khosravi A, Motevaseli E, Esfahani-Monfared Z, Seifi S, Salimi B et al (2019) Circulating free DNA concentration as a marker of disease recurrence and metastatic potential in lung cancer. Clin Transl Med 8(1):14. https://doi.org/10.1186/s40169-019-0229-6

    Article  PubMed  PubMed Central  Google Scholar 

  9. Phan TT, Tran BT, Nguyen ST, Ho TT, Hang Nguyen HT, Le VT, Le AT (2019) EGFR plasma mutation in prediction models for resistance with EGFR TKI and survival of non-small cell lung cancer. Clin Transl Med 8(1):4. https://doi.org/10.1186/s40169-019-0219-8

    Article  PubMed  PubMed Central  Google Scholar 

  10. Virmani AK, Gazdar AF (2003) Tumor suppressor genes in lung cancer. Methods Mol Biol 222:97–115

    CAS  PubMed  Google Scholar 

  11. Devarakonda S, Morgensztern D, Govindan R (2015) Genomic alterations in lung adenocarcinoma. Lancet Oncol 16:e342–e351

    Article  CAS  PubMed  Google Scholar 

  12. The World Health Organization (1982) Histological ty** of lung tumours. Neoplasma 29:111–123

    Google Scholar 

  13. Solyanik GI (2010) Multifactorial nature of tumor drug resistance. Exp Oncol 32:181–185

    CAS  PubMed  Google Scholar 

  14. Hesson LB, Cooper WN, Latif F (2007) Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 26:7283–7301

    Article  CAS  PubMed  Google Scholar 

  15. Vos MD, Ellis CA, Bell A et al (2000) Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275:35669–35672

    Article  CAS  PubMed  Google Scholar 

  16. Zhou Y, Zhang X, Klibanski A (2014) Genetic and epigenetic mutations of tumor suppressive genes in sporadic pituitary adenoma. Mol Cell Endocrinol 386:16–33

    Article  CAS  PubMed  Google Scholar 

  17. Shivakumar L, Minna J, Sakamaki T et al (2002) The RASSF1A tumor suppressor blocks cell cycle progression and inhibits cyclin D1 accumulation. Mol Cell Biol 22:4309–4318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hamilton G, Yee KS, Scrace S et al (2009) ATM regulates a RASSF1A-dependent DNA damage response. Curr Biol 19:2020–2025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J, Wang F, Protopopov A et al (2004) Inactivation of RASSF1C during in vivo tumor growth identifies it as a tumor suppressor gene. Oncogene 23:5941–5949

    Article  CAS  PubMed  Google Scholar 

  20. Guo W, Dong Z, Guo Y et al (2016) Decreased expression and frequent promoter hypermethylation of RASSF2 and RASSF6 correlate with malignant progression and poor prognosis of gastric cardia adenocarcinoma. Mol Carcinog 55:1655–1666

    Article  CAS  PubMed  Google Scholar 

  21. Fukatsu A, Ishiguro F, Tanaka I et al (2014) RASSF3 downregulation increases malignant phenotypes of non-small cell lung cancer. Lung Cancer 83:23–29

    Article  PubMed  Google Scholar 

  22. Hesson L, Dallol A, Minna JD et al (2003) NORE1A, a homologue of RASSF1A tumour suppressor gene is inactivated in human cancers. Oncogene 22:947–954

    Article  CAS  PubMed  Google Scholar 

  23. Aoyama Y, Avruch J, Zhang XF (2004) Nore1 inhibits tumor cell growth independent of Ras or the MST1/2 kinases. Oncogene 23:3426–3433

    Article  CAS  PubMed  Google Scholar 

  24. Vos MD, Martinez A, Ellis CA et al (2003) The pro-apoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J Biol Chem 278:21938–21943

    Article  CAS  PubMed  Google Scholar 

  25. Liang YY, Deng XB, Zeng LS et al (2018) RASSF6-mediated inhibition of Mcl-1 through JNK activation improves the anti-tumor effects of sorafenib in renal cell carcinoma. Cancer Lett 432:75–83

    Article  CAS  PubMed  Google Scholar 

  26. Mi Y, Zhang D, Jiang W et al (2017) miR-181a-5p promotes the progression of gastric cancer via RASSF6-mediated MAPK signalling activation. Cancer Lett 389:11–22

    Article  CAS  PubMed  Google Scholar 

  27. Chen E, Yang F, He H et al (2016) Decreased level of RASSF6 in sporadic colorectal cancer and its anti-tumor effects both in vitro and in vivo. Oncotarget 7:19813–19823

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ma H, Chen X, Hu H et al (2018) Hypermethylation of MDFI promoter with NSCLC is specific for females, non-smokers and people younger than 65. Oncol Lett 15:9017–9024

    PubMed  PubMed Central  Google Scholar 

  29. Grasse S, Lienhard M, Frese S et al (2018) Epigenomic profiling of non-small cell lung cancer xenografts uncover LRP12 DNA methylation as predictive biomarker for carboplatin resistance. Genome Med 10:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Toh TB, Lim JJ, Chow EK-H (2019) Epigenetics of hepatocellular carcinoma. Clin Transl Med 8(1):13. https://doi.org/10.1186/s40169-019-0230-0.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wistuba II, Behrens C, Virmani AK et al (2000) High resolution chromosome 3p alleloty** of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 60:1949–1960

    CAS  PubMed  Google Scholar 

  32. Lo KW, Kwong J, Hui AB et al (2001) High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 61:3877–3881

    CAS  PubMed  Google Scholar 

  33. Dammann R, Li C, Yoon JH et al (2000) Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25:315–319

    Article  CAS  PubMed  Google Scholar 

  34. Byun DS, Lee MG, Chae KS et al (2001) Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer Res 61:7034–7038

    CAS  PubMed  Google Scholar 

  35. Kuroki T, Trapasso F, Yendamuri S et al (2003) Allele loss and promoter hypermethylation of VHL, RAR-beta, RASSF1A, and FHIT tumor suppressor genes on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 63:3724–3728

    CAS  PubMed  Google Scholar 

  36. Lee MG, Kim HY, Byun DS et al (2001) Frequent epigenetic inactivation of RASSF1A in human bladder carcinoma. Cancer Res 61:6688–6692

    CAS  PubMed  Google Scholar 

  37. Wong N, Li L, Tsang K et al (2002) Frequent loss of chromosome 3p and hypermethylation of RASSF1A in cholangiocarcinoma. J Hepatol 37:633–639

    Article  CAS  PubMed  Google Scholar 

  38. Dammann R, Takahashi T, Pfeifer GP (2001) The CpG island of the novel tumor suppressor gene RASSF1A is intensely methylated in primary small cell lung carcinomas. Oncogene 20:3563–3567

    Article  CAS  PubMed  Google Scholar 

  39. Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grusche FA, Degoutin JL, Richardson HE et al (2011) The Salvador/Warts/Hippo pathway controls regenerative tissue growth in Drosophila melanogaster. Dev Biol 350:255–266

    Article  CAS  PubMed  Google Scholar 

  41. Dobrokhotov O, Samsonov M, Sokabe M, Hirata H (2018) Mechanoregulation and pathology of YAP/TAZ via Hippo and non-Hippo mechanisms. Clin Transl Med 7(1):23. https://doi.org/10.1186/s40169-018-0202-9

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hong JH, Hwang ES, McManus MT et al (2005) TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078

    Article  CAS  PubMed  Google Scholar 

  43. Bora-Singhal N, Nguyen J, Schaal C et al (2015) YAP1 regulates OCT4 activity and SOX2 expression to facilitate self-renewal and vascular mimicry of stem-like cells. Stem Cells 33:1705–1718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lehmann W, Mossmann D, Kleemann J et al (2016) ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun 7:10498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pefani DE, Latusek R, Pires I et al (2014) RASSF1A-LATS1 signalling stabilizes replication forks by restricting CDK2-mediated phosphorylation of BRCA2. Nat Cell Biol 16:962–971. 1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lange AW, Sridharan A, Xu Y et al (2015) Hippo/Yap signaling controls epithelial progenitor cell proliferation and differentiation in the embryonic and adult lung. J Mol Cell Biol 7:35–47

    Article  CAS  PubMed  Google Scholar 

  47. Lau AN, Curtis SJ, Fillmore CM et al (2014) Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 33:468–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Luo SY, Sit KY, Sihoe AD et al (2014) Aberrant large tumor suppressor 2 (LATS2) gene expression correlates with EGFR mutation and survival in lung adenocarcinomas. Lung Cancer 85:282–292

    Article  PubMed  Google Scholar 

  49. Dhanasekaran SM, Balbin OA, Chen G et al (2014) Transcriptome meta-analysis of lung cancer reveals recurrent aberrations in NRG1 and Hippo pathway genes. Nat Commun 5:5893

    Article  CAS  PubMed  Google Scholar 

  50. Su LL, Ma WX, Yuan JF et al (2012) Expression of Yes-associated protein in non-small cell lung cancer and its relationship with clinical pathological factors. Chin Med J 125:4003–4008

    CAS  PubMed  Google Scholar 

  51. Kim JM, Kang DW, Long LZ et al (2011) Differential expression of Yes-associated protein is correlated with expression of cell cycle markers and pathologic TNM staging in non-small-cell lung carcinoma. Hum Pathol 42:315–323

    Article  CAS  PubMed  Google Scholar 

  52. Noguchi S, Saito A, Horie M et al (2014) An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clin Cancer Res 20:4660–4672

    Article  CAS  PubMed  Google Scholar 

  53. Song MS, Song SJ, Ayad NG et al (2004) The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol 6:129–137

    Article  CAS  PubMed  Google Scholar 

  54. Liu L, Tommasi S, Lee DH et al (2003) Control of microtubule stability by the RASSF1A tumor suppressor. Oncogene 22:8125–8136

    Article  CAS  PubMed  Google Scholar 

  55. Dallol A, Agathanggelou A, Tommasi S et al (2005) Involvement of the RASSF1A tumor suppressor gene in controlling cell migration. Cancer Res 65:7653–7659

    Article  CAS  PubMed  Google Scholar 

  56. Whang YM, Kim YH, Kim JS et al (2005) RASSF1A suppresses the c-Jun-NH2-kinase pathway and inhibits cell cycle progression. Cancer Res 65:3682–3690

    Article  CAS  PubMed  Google Scholar 

  57. Jimenez AP, Traum A, Boettger T et al (2017) The tumor suppressor RASSF1A induces the YAP1 target gene ANKRD1 that is epigenetically inactivated in human cancers and inhibits tumor growth. Oncotarget 8:88437–88452

    Article  PubMed  PubMed Central  Google Scholar 

  58. Burbee DG, Forgacs E, Zochbauer-Muller S et al (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93:691–699

    Article  CAS  PubMed  Google Scholar 

  59. Ramirez JL, Taron M, Balana C et al (2003) Serum DNA as a tool for cancer patient management. Rocz Akad Med Bialymst 48:34–41

    CAS  PubMed  Google Scholar 

  60. Schmiemann V, Bocking A, Kazimirek M et al (2005) Methylation assay for the diagnosis of lung cancer on bronchial aspirates: a cohort study. Clin Cancer Res 11:7728–7734

    Article  CAS  PubMed  Google Scholar 

  61. van der Drift MA, Prinsen CFM, Knuiman GJ et al (2012) Diagnosing peripheral lung cancer: the additional value of the Ras-association domain family 1A gene methylation and Kirsten rat sarcoma 2 viral oncogene homolog mutation analyses in washings in nondiagnostic bronchoscopy. Chest 141:169–175

    Article  PubMed  Google Scholar 

  62. Grawenda AM, O’Neill E (2015) Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer 113:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Drilon A, Sugita H, Sima CS et al (2014) A prospective study of tumor suppressor gene methylation as a prognostic biomarker in surgically resected stage I to IIIA non-small-cell lung cancers. J Thorac Oncol 9:1272–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang J, Lee JJ, Wang L et al (2004) Value of p16INK4a and RASSF1A promoter hypermethylation in prognosis of patients with resectable non-small cell lung cancer. Clin Cancer Res 10:6119–6125

    Article  CAS  PubMed  Google Scholar 

  65. Pelosi G, Fumagalli C, Trubia M et al (2010) Dual role of RASSF1 as a tumor suppressor and an oncogene in neuroendocrine tumors of the lung. Anticancer Res 30:4269–4281

    CAS  PubMed  Google Scholar 

  66. Tomizawa Y, Kohno T, Kondo H et al (2002) Clinicopathological significance of epigenetic inactivation of RASSF1A at 3p21.3 in stage I lung adenocarcinoma. Clin Cancer Res 8:2362–2368

    CAS  PubMed  Google Scholar 

  67. Kim DH, Kim JS, Ji YI et al (2003) Hypermethylation of RASSF1A promoter is associated with the age at starting smoking and a poor prognosis in primary non-small cell lung cancer. Cancer Res 63:3743–3746

    CAS  PubMed  Google Scholar 

  68. Wang J, Wang B, Chen X et al (2011) The prognostic value of RASSF1A promoter hypermethylation in non-small cell lung carcinoma: a systematic review and meta-analysis. Carcinogenesis 32:411–416

    Article  CAS  PubMed  Google Scholar 

  69. Wang X (2018) Clinical trans-omics: an integration of clinical phenomes with molecular multiomics. Cell Biol Toxicol 34(3):163–166. https://doi.org/10.1007/s10565-018-9431-3

    Article  CAS  PubMed  Google Scholar 

  70. Qiao T, Wang X (2019) A new light of proteomics in cell biology and toxicology. Cell Biol Toxicol 35(4):289–291. https://doi.org/10.1007/s10565-019-09492-6

    Article  PubMed  Google Scholar 

  71. Wu D, Cheng Y, Wang X (2019) CSGT group. Definition of clinical gene tests. Cell Biol Toxicol 35(2):83–87. https://doi.org/10.1007/s10565-019-09464-w

    Article  PubMed  Google Scholar 

  72. Song D, Yang D, Powell CA, Wang X (2019) Cell-cell communication: old mystery and new opportunity. Cell Biol Toxicol 35(2):89–93. https://doi.org/10.1007/s10565-019-09470-y

    Article  PubMed  Google Scholar 

  73. Chirshev E, Oberg KC, Ioffe YJ, Unternaehrer JJ (2019) Let-7 as biomarker, prognostic indicator, and therapy for precision medicine in cancer. Clin Transl Med 8(1):24. https://doi.org/10.1186/s40169-019-0240-y

    Article  PubMed  PubMed Central  Google Scholar 

  74. Malm J, Sugihara Y, Szasz M, Kwon HJ, Lindberg H, Appelqvist R, Marko-Varga G (2018) Biobank integration of large-scale clinical and histopathology melanoma studies within the European Cancer Moonshot Lund Center. Clin Transl Med 7(1):28. https://doi.org/10.1186/s40169-018-0203-8

    Article  PubMed  PubMed Central  Google Scholar 

  75. Omrani S, Taheri M, Omrani MD, Arsang-Jang S, Ghafouri-Fard S (2019) The effect of omega-3 fatty acids on clinical and paraclinical features of intractable epileptic patients: a triple blind randomized clinical trial. Clin Transl Med 8(3):3. https://doi.org/10.1186/s40169-019-0220-2

    Article  PubMed  PubMed Central  Google Scholar 

  76. Qi X, Yu C, Wang Y, Lin Y, Shen B (2019) Network vulnerability-based and knowledge-guided identification of microRNA biomarkers indicating platinum resistance in high-grade serous ovarian cancer. Clin Transl Med 8(1):28. https://doi.org/10.1186/s40169-019-0245-6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137:223S–228S

    Article  CAS  PubMed  Google Scholar 

  78. Wang XZ, Cheng Y, Wang KL et al (2016) Peperomin E reactivates silenced tumor suppressor genes in lung cancer cells by inhibition of DNA methyltransferase. Cancer Sci 107:1506–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work is supported by the project of “Henan province clinical biomedical big data” by Department of science and technology of Henan Province (CXJD2019002).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, T., Li, Y., Zhang, H., Wang, X., Liu, X., Li, L. (2020). The Role of RASSF1 Methylation in Lung Carcinoma. In: Yu, B., Zhang, J., Zeng, Y., Li, L., Wang, X. (eds) Single-cell Sequencing and Methylation. Advances in Experimental Medicine and Biology, vol 1255. Springer, Singapore. https://doi.org/10.1007/978-981-15-4494-1_8

Download citation

Publish with us

Policies and ethics

Navigation