Olfactory Cues as Functional Traits in Plant Reproduction

  • Chapter
  • First Online:
Reproductive Ecology of Flowering Plants: Patterns and Processes

Abstract

Floral scents are important traits which mediate interactions within biotic communities. These volatiles perform diverse functions, ranging from attracting pollinators, repelling florivores or herbivores, as well as controlling the growth of pathogens. Therefore, floral volatiles are under constant selection to balance attraction and repellence in accordance with local communities and this has led to the evolution of highly complex volatile profiles. To date, more than 1000 volatile compounds have been identified from flowers, which ultimately ensure plant reproduction by attracting pollinators. Plant–pollinator interactions mediated by floral volatiles can range from highly generalized to extremely specialized systems. By evolving exclusive relationships with pollinators that are most abundant or efficient, plants increase reproductive success. On the other hand, attracting many kinds of insects by providing generic cues and rewards leads to generalization, where plants benefit by taking advantage of pollinator diversity. Such interactions of varied strength could be achieved through tailoring different floral volatile blends. Floral scents vary widely among plants but despite the variation, there are mainly three major classes of floral volatile organic compounds (FVOCs) based on their origin, function and biosynthesis. They are terpenoids, benzenoids or phenylpropanoids, and fatty acid derivatives. Along with these, certain flowers also produce unusual compounds, which attract pollinators by mimicking food or brood sources. The production, composition, quantity and timing of volatile emissions are tightly regulated by biotic and abiotic factors that help in fine-tuning the ecological interactions mediated by FVOCs. This chapter updates the current knowledge on these aspects and emphasizes the ecological importance of floral volatiles. Further, the various methods for collection and analyses of FVOCs are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aleklett K, Hart M, Shade A (2014) The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253–266

    Article  Google Scholar 

  • Ando T, Nomura M, Tsukahara J, Watanabe H, Kokubun H, Tsukamoto T, Hashimoto G, Marchesi E, Kitching IJ (2001) Reproductive isolation in a native population of Petunia sensu Jussieu (Solanaceae). Ann Bot 88:403–413

    Article  Google Scholar 

  • Andrews ES, Theis N, Adler LS (2007) Pollinator and herbivore attraction to Cucurbita floral volatiles. J Chem Ecol 33:1682–1691

    Article  CAS  PubMed  Google Scholar 

  • Ashman TL, Bradburn M, Cole DH, Blaney BH, Raguso RA (2005) The scent of a male: the role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105

    Article  Google Scholar 

  • Ayasse M, Schiestl FP, Paulus HF, Ibarra F, Francke W (2003) Pollinator attraction in a sexually deceptive orchid by means of unconventional chemicals. Proc R Soc Lond [Biol] 270(1514):517–522

    Article  CAS  Google Scholar 

  • Bakkali F, Averbecka S, Averbecka D, Idaomar M (2008) Biological effects of essential oils – a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Balao F, Herrera J, Talavera S, Dotterl S (2011) Spatial and temporal patterns of floral scent emission in Dianthus inoxianus and electroantennographic responses of its hawkmoth pollinator. Phytochemistry 72:601–609

    Article  CAS  PubMed  Google Scholar 

  • Becklin KM, Gamez G, Uelk B, Raguso RA, Galen C (2011) Soil fungal effects on floral signals, rewards, and aboveground interactions in an alpine pollination web. Am J Bot 98:1299–1308

    Article  PubMed  Google Scholar 

  • Blande JD, Holopainen JK, Li T (2010) Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 13(9):1172–1181

    Article  PubMed  Google Scholar 

  • Boatright J, Negre F, Chen XL, Kish CM, Wood B, Peel G, Orlova I, Gang D, Rhodes D, Dudareva N (2004) Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol 135:1993–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohman B, Phillips RD, Menz MHM, Bertsson BW, Flematti GR, Barrow RA, Dixon KW, Peakall R (2014) Discovery of pyrazines as pollinator sex pheromones and semiochemicals: implications for the evolution of sexual deception. New Phytol 203(3):939–352

    Article  CAS  PubMed  Google Scholar 

  • Bohman B, Phillips RD, Flematti GR, Barrow RA, Peakall R (2017) The spider orchid Caladenia crebra produces sulfurous pheromone mimics to attract its male wasp pollinator. Angew Chem Int Ed 129(29):8575–8578

    Article  Google Scholar 

  • Bruinsma M, Lucas-Barbosa D, ten Boreke CJM, van Dam NM, van Beek TA, Dicke M, van Loon JJA (2014) Folivory affects composition of nectar, floral odor and modifies pollinator behaviour. J Chem Ecol 40:39–49

    Article  CAS  PubMed  Google Scholar 

  • Burdon RCF, Junker RR, Scofield DG, Parachnowitsch AL (2018) Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology 28(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger H, Dotterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Funct Ecol 24:1234–1240

    Article  Google Scholar 

  • Burzynski-Chang E, Ryona I, Reisch B, Gonda I, Foolad M, Giovannoni J, Sacks G (2018) HS-SPME-GC-MS analyses of volatiles in plant populations—quantitating compound × individual matrix effects. Molecules 23(10):2436

    Article  PubMed Central  CAS  Google Scholar 

  • Byers KJRP, Bradshaw HD, Riffell JA (2014) Three floral volatiles contribute to differential pollinator attraction in monkeyflowers (Mimulus). J Exp Biol 217(4):614–623

    PubMed  PubMed Central  Google Scholar 

  • Cane DE (1999) Sesquiterpene biosynthesis: cyclization mechanisms. In: Cane DE (ed) Comprehensive natural products chemistry: isoprenoids including carotenoids and steroids. Elsevier, Amsterdam, pp 155–200

    Chapter  Google Scholar 

  • Caruso CM, Parachnowitsch AL (2016) Do plants eavesdrop on floral scent signals? Trends Plant Sci 21(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AT, Dotterl S, Schlindwein C (2014) An aromatic volatile attracts oligolectic bee pollinators in an interdependent bee-plant relationship. J Chem Ecol 40(10):1126–1134

    Article  CAS  PubMed  Google Scholar 

  • Chen F, D’Auria JC, Tholl D, Ross JR, Gershenzon J, Noel JP, Pichersky E (2003) An Arabidopsis thaliana gene for methylsalicylate biosynthesis, identified by a biochemical genomics approach, has a role in defense. Plant J 36:577–588

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Song Q, Proffit M, Bessière JM, Li Z, Hossaert-Mckey M (2009) Private channel: a single unusual compound assures specific pollinator attraction in Ficus semicordata. Funct Ecol 23:941–950

    Article  Google Scholar 

  • Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229

    Article  CAS  PubMed  Google Scholar 

  • Cheng AX, Lou YG, Mao YB, Lu S, Wang LJ, Chen XY (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49(2):179–186

    Article  CAS  Google Scholar 

  • Chittka L, Thomson JD (2001) Cognitive ecology of pollination; animal behaviour and floral evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Chittka L, Wells H (2004) Color vision in bees: mechanisms, ecology, and evolution. In: Prete FR (ed) Complex worlds from simpler nervous systems. MIT Press, Boston, pp 165–191

    Google Scholar 

  • Ciccioli P, Brancaleoni E, Frattoni M, Maris C (2002) Sampling of atmospheric volatile organic compounds (VOCs) with sorbent tubes and their analysis by GC-MS. In: Burden FR (ed) Environ-mental monitoring handbook. McGraw-Hill Publisher, New York, pp 21.1–21.85

    Google Scholar 

  • Contreras JA, Murray JA, Tolley SE, Oliphant JL, Tolley HD, Lammert SA, Lee ED, Later DW, Lee ML (2008) Hand-portable gas chromatograph-toroidal ion trap mass spectrometer (GC-TMS) for detection of hazardous compounds. J Am Soc Mass Spectrom 19:1425–1434

    Article  CAS  PubMed  Google Scholar 

  • Cosacov A, Cocucci AA, Sérsic AN (2014) Geographical differentiation in floral traits across the distribution range of the Patagonian oil-secreting Calceolaria polyrhiza: do pollinators matter? Ann Bot 113:251–266

    Article  PubMed  Google Scholar 

  • Degenhardt J, Köllner TG, Gershenzon J (2009) Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70:1621–1637

    Article  CAS  PubMed  Google Scholar 

  • Dexter R, Qualley A, Kish CM, Ma CJ, Koeduka T, Nagegowda DA, Dudareva N, Pichersky E, Clark D (2007) Characterization of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275

    Article  CAS  PubMed  Google Scholar 

  • Dicke M (2009) Behavioural and community ecology of plants that cry for help. Plant Cell Environ 32:654–665

    Article  CAS  PubMed  Google Scholar 

  • Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent, 1st edn. CRC Press, Boca Raton, pp 147–198

    Google Scholar 

  • Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222(1):63–87

    Article  CAS  Google Scholar 

  • Dobson HEM, Groth I, Bergström G (1996) Pollen advertisement: chemical contrasts between whole-flower and pollen odors. Am J Bot 83:877–885

    Article  CAS  Google Scholar 

  • Dotterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  CAS  Google Scholar 

  • Dotterl S, Vereecken NJ (2010) The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can J Zool 88(7):668–697

    Article  Google Scholar 

  • Dotterl S, Jürgens A, Wolfe L, Biere A (2009) Disease status and population origin effects on floral scent: potential consequences for oviposition and fruit predation in a complex interaction between a plant, fungus, and noctuid moth. J Chem Ecol 35:307–331

    Article  CAS  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2000) Update on biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E (2006) Floral scent metabolic pathways: their regulation and evolution. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 55–78

    Chapter  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Andersson S, Orlova I, Gatto N, Reichelt M, Rhodes D, Boland W, Gershenzon J (2005) The non-mevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci U S A 102:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Klempien A, Muhlemann JK, Kaplan I (2013) Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol 198:16–32

    Article  CAS  PubMed  Google Scholar 

  • Duman AD, Telci I, Dayisoylu KS, Digrak M, Demirtas I, Alma MH (2010) Evaluation of bioactivity of linalool-rich essential oils from Ocimum basilucum and Coriandrum sativum varieties. Nat Prod Commun 5(6):969–974

    CAS  PubMed  Google Scholar 

  • Durrer S, Schmid-Hempel P (1994) Shared use of flowers leads to horizontal pathogen transmission. Proc R Soc Lond B 258:299–302

    Article  Google Scholar 

  • Effmert U, Buss D, Rohrbeck D, Piechulla B (2006) Localization of synthesis and emission of scent compound swithin the flowers. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 105–124

    Chapter  Google Scholar 

  • Effmert U, Dinse C, Piechulla B (2008) Influence of green leaf herbivory by Manduca sexta on floral volatile emission by Nicotiana suaveolens. Plant Physiol 146:1996–2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhi M, Lavie O, Masci T, Hendel-Rahmanim K, Weiss D, Abeliovich H, Vainstein A (2010) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 72:235–245

    Article  CAS  PubMed  Google Scholar 

  • Farkas A, Mihalik E, Dorgai L, Buban T (2011) Floral traits affecting fire blight infection and management. Trees 26:47–66

    Article  Google Scholar 

  • Farre-Armengol G, Filella I, Llusia J, Peñuelas J (2013) Floral volatile organic compounds: between attraction and deterrence of visitors under global change. Perspect Plant Ecol Evol Syst 15(1):56–67

    Article  Google Scholar 

  • Feng Z, Huber U, Boland W (1993) Biosynthesis of the irregular C12-terpenoid dehydrogeosmin in flower heads of Rebutia marsoneri WERD. (Cactaceae). Helv Chim Acta 76(7):2547–2552

    Article  CAS  Google Scholar 

  • Flamini G, Cioni PL, Morelli I (2003) Differences in the fragrances of pollen, leaves and floral parts of garland (Chrysanthemum coronarium) and composition of the essential oils from flower heads and leaves. J Agric Food Chem 51:2267–2271

    Article  CAS  PubMed  Google Scholar 

  • Forney CF, Javorek CF, Jordan MA, Kloet SPV (2012) Floral volatile composition of four species of Vaccinium. Botany 90(5):365–371

    Article  CAS  Google Scholar 

  • Friedrich A, Thomas U, Muller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase: a cascade in formation of long-term memory. J Neurosci 24:4460–4468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galen C, Kaczorowski R, Todd SL, Geib J, Raguso RA (2011) Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. Am Nat 177:258–272

    Article  PubMed  Google Scholar 

  • Giurfa M, Vorobyev M, Kevan P, Menzel R (1996) Detection of coloured stimuli by honeybees: minimum visual angles and receptor specific contrasts. J Comp Physiol A 178:699–709

    Article  Google Scholar 

  • Gomez JM, Perfectii F, Abdelaziz M, Lorite J, Munoz-Pajares AJ, Valverde J (2015) Evolution of pollination niches in a generalist plant clade. New Phytol 205:440–453

    Article  PubMed  Google Scholar 

  • Gong WC, Chen G, Vereecken NJ, Dunn BL, Ma YP, Sun WB (2015) Floral scent composition predicts bee pollination system in five butterfly bush (Buddleja, Scrophulariaceae) species. Plant Biol 17(1):245–255

    Article  CAS  PubMed  Google Scholar 

  • Good AP, Gauthier MPL, Vannette RL, Fukami T (2014) Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut. PLoS One 9(1):e86494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guo J, Guo A (2005) Cross-modal interactions between olfactory and visual learning in Drosophila. Science 309(5732):307–310

    Article  CAS  PubMed  Google Scholar 

  • Hammerbacher A, Coutinho TA, Gershenzon J (2019) Roles of plant volatiles in defense against microbial pathogens and microbial exploitation of volatiles. Plant Cell Environ 42:2827

    Article  CAS  PubMed  Google Scholar 

  • Heiduk A, Brake I, Tolasch T, Frank J, Jurgens A, Meve U, Dotterl S (2010) Scent chemistry and pollinator attraction in the deceptive trap flowers of Ceropegia dolichophylla. S Afr J Bot 76:762–769

    Article  CAS  Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    Article  CAS  PubMed  Google Scholar 

  • Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D (2007) Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Hirata H, Ohnishib T, Ishidac H, Tomidac K, Sakaic M, Harad M, Watanabe N (2012) Functional characterization of aromatic amino acid aminotransferase involved in 2-phenylethanol biosynthesis in isolated rose petal protoplasts. J Plant Physiol 169:444–451

    Article  CAS  PubMed  Google Scholar 

  • Howell AD, Alarcon R (2007) Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim Behav 74:99–205

    Article  Google Scholar 

  • Hsieh MH, Chang CY, Hsu SJ, Chen JJ (2008) Chloroplast localization of methylerythritol 4-phosphate pathway enzymes and regulation of mitochondrial genes in IspD and IspE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Ings TC, Montoya JM, Bascompte J, Blüthgen N, Brown L, Dormann CF, Edwards F, Figueroa D, Jacob U, Jones JI, Lauridsen RB, Ledger ME, Lewis HM, Olesen JM, Van Veen FJF, Warren PH, Woodward G (2009) Ecological networks – beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Article  Google Scholar 

  • Jersakova J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    Article  PubMed  Google Scholar 

  • Johnson KB, Stockwell VO (1998) Management of fire blight: a case study in microbial ecology. Annu Rev Phytopathol 36:227–248

    Article  CAS  PubMed  Google Scholar 

  • Juergens A, Dötterl S (2004) Chemical composition of anther volatiles in Ranunculaceae: genera-specific profiles in Anemone, Aquilegia, Caltha, Pulsatilla, Ranunculus, and Trollius species. Am J Bot 91(12):1969–1980

    Article  CAS  Google Scholar 

  • Juergens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol 172:452–468

    Article  CAS  Google Scholar 

  • Junker RR (2016) Multifunctional and diverse floral scents mediate biotic interactions embedded in communities. In: Blande JD, Glinwood R (eds) Deciphering chemical language of plant communication. Springer, Cham, pp 257–282

    Chapter  Google Scholar 

  • Junker RR, Heidinger IMM, Blüthgen N (2010) Floral scent terpenoids deter the facultative florivore Metrioptera bicolor (Ensifera, Tettigoniidae, Decticinae). J Orthop Res 19:69–74

    Article  Google Scholar 

  • Junker RR, Loewel C, Gross R, Dotterl S, Keller A, Blüthgen N (2011) Composition of epiphytic bacterial communities differs on petals and leaves. Plant Biol 13:918–924

    Article  CAS  PubMed  Google Scholar 

  • Kallenbach M, Oh Y, Eilers EJ, Veit D, Baldwin IT, Schuman MC (2015) A robust, simple, high-throughput technique for time resolved plant volatile analysis in field experiments. Plant J 78:1060–1072

    Article  CAS  Google Scholar 

  • Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, Orlova I, Lavie O, Rhodes D, Wood K, Porterfield DM, Cooper AJL, Schloss JV, Pichersky E, Vainstein A, Dudareva N (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366

    Article  CAS  PubMed  Google Scholar 

  • Karban R, Yang LH, Edwards KF (2014) Volatile communication between plants that affects herbivory: a meta-analysis. Ecol Lett 17:44–52

    Article  PubMed  Google Scholar 

  • Katzenberger TD, Lunau K, Junker RR (2013) Salience of multimodal flower cues manipulates initial responses and facilitates learning performance of bumblebees. Behav Ecol Sociobiol 67:1587–1599

    Article  Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321(5893):1200–1202

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Halitschke R, Poveda K (2011) Herbivory-mediated pollinator limitation: negative impacts of induced volatiles on plant–pollinator interactions. Ecology 92:1769–1780

    Article  PubMed  Google Scholar 

  • Kessler D, Diezel C, Clark DG, Colquhoun TA, Baldwin IT (2013) Petunia flowers solve the defence/apparency dilemma of pollinator attraction by deploying complex floral blends. Ecol Lett 16:299–306

    Article  PubMed  Google Scholar 

  • Klempien A, Kaminaga Y, Qualley A, Nagegowda DA, Widhalm JR, Orlova I, Shasany AK, Taguchi G, Kish CM, Cooper BR, D’Auria JC, Rhodes D, Pichersky E, Dudareva N (2012) Contribution of CoA ligases to benzenoid biosynthesis in petunia flowers. Plant Cell 24:2015–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knauer AC, Bakhtiari M, Schiestl FP (2018) Crab spiders impact floral-signal evolution indirectly through removal of florivores. Nat Commun 9:1367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knudsen JT, Gershenzon J (2006) The chemical diversity of floral scent. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, pp 41–68

    Google Scholar 

  • Knudsen JT, Tollsten L (1993) Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Bot J Linn Soc 113:263

    Article  Google Scholar 

  • Knudsen JT, Tollsten L, Groth I, Bergstrom G, Raguso RA (2004) Trends in floral scent chemistry in pollination syndromes: floral scent composition in hummingbird-pollinated taxa. Bot J Linn Soc 146:191–199

    Article  Google Scholar 

  • Knudsen JT, Eriksson R, Gershenzon J, Stahl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  • Koeduka T, Fridman E, Gang DR, Vassao DG, Jackson BL, Kish CM, Orlova I, Spassova SM, Lewis NG, Noel JP, Baiga TJ, Dudareva N, Pichersky E (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci U S A 103:10128–10133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koeduka T, Louie GV, Orlova I, Kish CM, Ibdah M, Wilkerson CG, Bowman ME, Baiga TJ, Noel JP, Dudareva N, Pichersky E (2008) The multiple phenylpropene synthases in both Clarkia breweri and Petunia hybrida represent two distinct protein lineages. Plant J 54:362–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolosova N, Gorenstein N, Kish CM, Dudareva N (2001) Regulation of circadian methyl benzoate emission in diurnally and nocturnally emitting plants. Plant Cell 13:2333–2347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo I, Kim S, Zhang X (2013) Comparative analysis of mass spectral matching-based compound identification in gas chromatography-mass spectrometry. J Chromatogr A 1298:132–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kost C (2008) Chemical communication. In: Jorgensen SE, Fath BD (eds) Encyclopedia of ecology. Elsevier, Oxford

    Google Scholar 

  • Kulahci IG, Dornhaus A, Papaj DR (2008) Multimodal signals enhance decision making in foraging bumble-bees. Proc R Soc B 275:797–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunert M, Biedermann A, Koch T, Boland W (2002) Ultrafast sampling and analysis of plant volatiles by a hand-held miniaturised GC with pre-concentration unit: kinetic and quantitative aspects of plant volatile production. J Sep Sci 25:677–684

    Article  CAS  Google Scholar 

  • Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol 12:447–456

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011a) Forget-me-not: complex floral displays, inter-signal interactions, and pollinator cognition. Curr Zool 57:215–224

    Article  Google Scholar 

  • Leonard AS, Dornhaus A, Papaj DR (2011b) Flowers help bees cope with uncertainty: signal detection and the function of floral complexity. J Exp Biol 214:113–121

    Article  PubMed  Google Scholar 

  • Long MC, Nagegowda DA, Kaminaga Y, Ho KK, Kish CM, Schnepp J, Sherman D, Weiner H, Rhodes D, Dudareva N (2009) Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant J 59:256–265

    Article  CAS  PubMed  Google Scholar 

  • Lucas-Barbosa D, van Loon JJA, Dicke M (2011) The effects of herbivore-induced plant volatiles on interactions between plants and flower- visiting insects. Phytochemistry 72:1647–1654

    Article  CAS  PubMed  Google Scholar 

  • Lucas-Barbosa D, Sun P, Hakman A, van Beek TA, van Loon JJA, Dicke M (2016) Visual and odour cues: plant responses to pollination and herbivory affect the behavior of flower visitors. Funct Ecol 30:431–441

    Article  Google Scholar 

  • Maia ACD, Dötterl S, Kaiser R, Gottsberger IS, Teichert H, Gibernau M, Navarro DMAF, Schlindwein C, Gottsberger G (2012) The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J Chem Ecol 38(9):1072–1080

    CAS  PubMed  Google Scholar 

  • Martos F, Cariou ML, Pailler T, Fournel J, Bytebier B, Johnson SD (2015) Chemical and morphological filters in a specialized floral mimicry system. New Phytol 207(1):225–234

    Article  CAS  PubMed  Google Scholar 

  • Masek P, Worden K, Aso Y, Rubin GM, Keene AC (2015) A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr Biol 25:1535–1541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McArt SH, Miles TD, Rodriguez-Saona C, Schilder A, Adler LS, Griesho MJ (2016) Floral scent mimicry and vector-pathogen associations in a pseudoflower-inducing plant pathogen system. PLoS One 11(11):e0165761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McCall AC (2008) Florivory affects pollinator visitation and female fitness in Nemophila menziesii. Oecologia 155:729–737

    Article  PubMed  Google Scholar 

  • McFrederick QS, Kathilankal JC, Fuentes JD (2008) Air pollution modifies floral scent trails. Atmos Environ 42:2336–2348

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel R (1999) Memory dynamics in the honeybee. J Comp Physiol A 185:323–340

    Article  Google Scholar 

  • Milet-Pinheiro P, Ayasse M, Schlindwein C, Dobson HEM, Dotterl S (2012) Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behaviour. Behav Ecol 23:531–538

    Article  Google Scholar 

  • Mohney BK, Matz T, LaMoreaux J, Wilcox DS, Gimsing ALG, Mayer P, Weidenhamer JD (2009) In situ silicone tube microextraction: a new method for undisturbed sampling of root-exuded thiophenes from Marigold (Tagetes erecta L.) in soil. J Chem Ecol 35:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Muhlemann JK, Waelti MO, Widmer A, Schiestl FP (2006) Postpollination changes in floral odor in Silene latifolia: adaptive mechanisms for seed-predator avoidance. J Chem Ecol 32:1855–1860

    Article  CAS  PubMed  Google Scholar 

  • Muhlemann JK, Klempien A, Dudareva N (2014) Floral volatiles: from biosynthesis to function. Plant Cell Environ 37:1936–1949

    Article  PubMed  Google Scholar 

  • Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239

    Article  CAS  PubMed  Google Scholar 

  • Negre F, Kish CM, Boatright J, Underwood B, Shibuya K, Wagner C, Dudareva N (2003) Regulation of methylbenzoate emission after pollination in snapdragon and petunia flowers. Plant Cell 5:2992–3006

    Article  CAS  Google Scholar 

  • Neiland MR, Wilcock CC (1998) Fruit set, nectar reward, and rarity in the Orchidaceae. Am J Bot 85(12):1657

    Article  CAS  PubMed  Google Scholar 

  • Nicklen EF, Wagner D (2006) Conflict resolution in an ant–plant interaction: Acacia constricta traits reduce ant costs to reproduction. Oecologia 148(1):81–87

    Article  PubMed  Google Scholar 

  • Nieuwenhuizen NJ, Wang MY, Matich AJ, Green SA, Chen X, Yauk YK, Beuning LL, Nagegowda DA, Dudareva N, Atkinson RG (2009) Two terpene synthases are responsible for the major sesquiterpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes CEP, Peñaflor MFGV, Bento JMS, Salvador MJ, Sazima M (2016) The dilemma of being a fragrant flower: the major floral volatile attracts pollinators and florivores in the euglossine-pollinated orchid Dichaea pendula. Oecologia 182:933–946

    Article  PubMed  Google Scholar 

  • Oelschlagel B, Nuss M, von Tschirnhaus M, Patzold C, Neinhuis C, Dotterl S, Wanke S (2014) The betrayed thief – the extraordinary strategy of Aristolochia rotunda to deceive its pollinators. New Phytol 206(1):342–351

    Article  PubMed  PubMed Central  Google Scholar 

  • Oh SY (2017) Rapid monitoring of pharmacological volatiles of night-flowering evening-primrose according to flower opening or closing by fast gas chromatography/surface acoustic wave sensor (Electronic zNose). Phytochem Anal 29:275–283

    Article  PubMed  CAS  Google Scholar 

  • Omura H, Honda K, Hayashi N (2000) Floral scent of Osmanthus fragrans discourages foraging behavior of cabbage butterfly, Pieris rapae. J Chem Ecol 26:655–666

    Article  CAS  Google Scholar 

  • Orlova I, Marshall-Colon A, Schnepp J, Wood B, Varbanova M, Fridman E, Blakeslee JJ, Peer WA, Murphy AS, Rhodes D, Pichersky E, Dudareva N (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papadopulos AST, Powell MP, Pupulin F, Warner J, Hawkins JA, Salamin N, Chittka L, Williams NH, Whitten WM, Loader D, Valente LM, Chase MW, Savolainen V (2013) Convergent evolution of floral signals underlies the success of Neotropical orchids. Proc R Soc B 280(1765):20130960

    Article  PubMed  PubMed Central  Google Scholar 

  • Paré PW, Tumlinson JH (1997) De novo biosynthesis of volatiles lnduced by insect herbivory in cotton plants. Plant Physiol 114:1161–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Pareja M, Qvarfordt E, Webster B, Mayon P, Pickett J, Birkett M, Glinwood R (2012) Herbivory by a phloem-feeding insect inhibits floral volatile production. PLoS One 7(2):e31971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellmyr O, Thien LB (2006) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35(1):76–85

    Article  Google Scholar 

  • Penuelas J, Staudt M (2010) BVOCs and global change. Trends Plant Sci 15(3):133–144

    Article  CAS  PubMed  Google Scholar 

  • Penuelas J, Farre-Armengol G, Llusia J, Gargallo-Garriga A, Rico L, Sardans J, Terradas J, Filella I (2014) Removal of floral microbiota reduces floral terpene emissions. Sci Rep 4:6727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersson M (1997) Solitary plants do as well as clumped ones in Silene uniflora. Ecography 20:375–382

    Article  Google Scholar 

  • Policha T, Davis A, Barnadas M, Dentinger BTM, Raguso RR, Roy BA (2016) Disentangling visual and olfactory signals in mushroom-mimicking Dracula orchids using realistic three dimensional printing flower. New Phytol 210(3):1058–1071

    Article  CAS  PubMed  Google Scholar 

  • Proffit M, Johnson SD (2009) Specificity of the signal emitted by figs to attract their pollinating wasps: comparison of volatile organic compounds emitted by receptive syconia of Ficus sur and F. sycomorusin Southern Africa. S Afr J Bot 75:771–777

    Article  Google Scholar 

  • Pulido P, Perello C, Rodriguez-Concepcion M (2012) New insights into plant isoprenoid metabolism. Mol Plant 5:964–967

    Article  CAS  PubMed  Google Scholar 

  • Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N (2012) Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proc Natl Acad Sci U S A 109:16383–16388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Raguso RA, Roy BA (1998) ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol Ecol 7(9):1127–1136

    Article  CAS  PubMed  Google Scholar 

  • Raguso RA, Levin RA, Foose SE, Holmberg MW, McDade LA (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    Article  CAS  PubMed  Google Scholar 

  • Ramya M, An HR, Baek YS, Reddy KE, Park PH (2018) Orchid floral volatiles: biosynthesis genes and transcriptional regulations. Sci Hortic (Amsterdam) 235:62–69

    Article  CAS  Google Scholar 

  • Reinhard J, Srinivasan MV, Guez D, Zhang SW (2004) Floral scents induce recall of navigational and visual memories in honeybees. J Exp Biol 207:4371–4381

    Article  PubMed  Google Scholar 

  • Ren ZX, Li DZ, Bernhardt P, Wang H (2011) Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus infected foliage. Proc Natl Acad Sci 108(18):7478–7480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riffell JA, Alarcon R, Abrell L, Davidowitz G, Bronstein JL, Hildebrand JG (2008) Behavioral consequences of innate preferences and olfactory learning in hawkmoth-flower interactions. PNAS 105(9):3404–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivkin LR, Case AL, Caruso CM (2015) Frequency-dependent fitness in gynodioecious Lobelia siphilitica. Evolution 69:1232–1243

    Article  PubMed  Google Scholar 

  • Rodriguez-Saona C, Parra L, Quiroz A, Isaacs R (2011) Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Ann Bot 107:1377–1390

    Article  PubMed  PubMed Central  Google Scholar 

  • Rose US, Tumlinson JH (2004) Volatiles released from cotton plants in response to Helicoverpa zea feeding damage on cotton flower buds. Planta 218:824–832

    Article  PubMed  CAS  Google Scholar 

  • Sakai M, Hirata H, Sayama H, Sekiguchi K, Itano H, Asai T, Dohra H, Hara M, Watanabe N (2007) Production of 2-phenylethanol in roses as the dominant floral scent compound from L-phenylalanine by two key enzymes, a PLP- dependent decarboxylase and a phenylacetaldehyde reductase. Biosci Biotechnol Biochem 71:2408–2419

    Article  CAS  PubMed  Google Scholar 

  • Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Curr Zool 59(3):418–426

    Article  PubMed  Google Scholar 

  • Schade F, Legge RL, Thompson JE (2001) Fragrance volatiles of develo** and senescing carnation flowers. Phytochemistry 56:703–710

    Article  CAS  PubMed  Google Scholar 

  • Schaeffer RN, Irwin RE (2014) Yeasts in nectar enhance male fitness in a montane perennial herb. Ecology 95:1792–1798

    Article  PubMed  Google Scholar 

  • Schäfer AM, Kemler M, Bauer R, Begerow D (2010) The illustrated life cycle of Microbotryum on the host plant Silene latifolia. Botany 88(10):875–885

    Article  Google Scholar 

  • Schaffler I, Steiner KE, Haid M, van Berkel SS, Gerlach G, Johnson SD (2015) Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep 5:12779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoid derived signalling molecules. J Exp Bot 52:11–23

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP (2010) The evolution of floral scent and insect chemical communication. Ecol Lett 13(5):643–656

    Article  PubMed  Google Scholar 

  • Schiestl FP, Dotterl S (2012) The evolution of floral scent and olfactory preferences in pollinators: coevolution or pre-existing bias? Evolution 66:2042–2055

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315

    Article  PubMed  Google Scholar 

  • Schiestl FP, Schlüter PM (2009) Floral isolation, specialized pollination, and pollinator behavior in orchids. Annu Rev Entomol 54:425–446

    Article  CAS  PubMed  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Erdmann D, Francke W (1997) Variation of floral scent emission and postpollination changes in individual flowers of Ophrys sphegodes subsp. sphegodes. J Chem Ecol 23(12):2881–2895

    Article  CAS  Google Scholar 

  • Schiestl FP, Ayasse M, Paulus HF, Löfstedt C, Hansson BS, Ibarra F, Francke W (1999) Orchid pollination by sexual swindle. Nature 399(6735):421

    Article  CAS  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG, Ibarra F, Schulz C, Franke S, Francke W (2003) The chemistry of sexual deception in an orchid-wasp pollinationsystem. Science 302(5644):437–438

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, Underwood BA, Auldridge M, Loucas HM, Shibuya K, Schmelz E, Clark DG, Klee HJ (2004) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sõber V, Moora M, Teder T (2010) Florivores decrease pollinator visitation in a self-incompatible plant. Basic Appl Ecol 11:669–675

    Article  Google Scholar 

  • Stashenko EE, Martinez JR (2008) Sampling flower scent for chromatographic analysis. J Sep Sci 31(11):2022–2031

    Article  CAS  PubMed  Google Scholar 

  • Stensmyr MC, Urru I, Collu I, Celander M, Hansson BS, Angioy AM (2002) Rotting smell of dead-horse arum florets. Nature 420(6916):625–626

    Google Scholar 

  • Suchet C, Dormont L, Schatz B, Giurfa M, Simon V, Raynaud C, Chave J (2011) Floral scent variation in two Antirrhinum majus subspecies influences the choice of naïve bumblebees. Behav Ecol Sociobiol 65:1015–1027

    Article  Google Scholar 

  • Terry I, Walter GH, Moore C, Roemer R, Hull C (2007) Odor-mediated push-pull pollination in cycads. Science 318(5847):70

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Lee S (2011) Terpene specialized metabolism in Arabidopsis thaliana. Arabidopsis Book 9:e0143

    Article  PubMed  PubMed Central  Google Scholar 

  • Tholl D, Chen F, Petri J, Gershenzon J, Pichersky E (2005) Two sesquiterpenes synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771

    Article  CAS  PubMed  Google Scholar 

  • Tholl D, Boland W, Hansel A, Loreto F, Rose USR, Schnitzle JP (2006) Practical approaches to plant volatile analysis. Plant J 45:540–560

    Article  CAS  PubMed  Google Scholar 

  • van der Niet T, Hansen DM, Johnson SD (2011) Carrion mimicry in a South African orchid: flowers attract a narrow subset of the fly assemblage on animal carcasses. Ann Bot 107(6):981–992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Moerkercke A, Schauvinhold I, Pichersky E, Haring MA, Schuurink RC (2009) A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Plant J 60:292–302

    Article  PubMed  CAS  Google Scholar 

  • Vandendriessche T, Nicolai BM, Hertog MLATM (2013) Optimization of HS SPME fast GC-MS for high-throughput analysis of strawberry aroma. Food Anal Methods 6:512–520

    Article  Google Scholar 

  • Vanette RL, Gauthier MO, Fukami T (2012) Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism. Proc Biol Sci 280(1752):20122601

    Google Scholar 

  • von Helversen O, Winkler L, Bestmann HJ (2000) Suphur-containing “perfumes” attract flower-visiting bats. J Comp Physiol A 186(2):143–153

    Article  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  CAS  PubMed  Google Scholar 

  • Waelti MO, Muhlemann JK, Widmer A, Schiestl FP (2008) Floral odour and reproductive isolation in two species of Silene. J Evol Biol 21:111–121

    Article  CAS  PubMed  Google Scholar 

  • Waser NM, Ollerton J (2006) Plant-pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago

    Google Scholar 

  • Widhalm HR, Jiani R, Morgan JA, Dudareva N (2015) Rethinking how volatiles are released from plant cells. Trends Plant Sci 20(9):545–550

    Article  CAS  PubMed  Google Scholar 

  • Willmer PG, Stone GN (1997) How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388:165–167

    Article  CAS  Google Scholar 

  • Willmer PG, Nuttman CV, Raine NE, Stone GN, Pattrick JG, Henson K, Stillman P, McIlroy L, Potts SG, Knudsen JT (2009) Floral volatiles controlling ant behaviour. Funct Ecol 23:888–900

    Article  Google Scholar 

  • Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DD (ed) Comprehensive natural products chemistry: isoprenoids including carotenoids and steroids. Elsevier, Amsterdam

    Google Scholar 

  • Wong DCJ, Pichersky E, Peakall R (2017) The biosynthesis of unusual floral volatiles and blends involved in orchid pollination by deception: current progress and future prospects. Front Plant Sci 8:1–8

    Google Scholar 

  • Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23(5):841–851

    Article  Google Scholar 

  • Xu H, Bohman B, Wong DCJ, Rodriguez-Delgado C, Scaffidi A, Flematti GR, Phillips RD, Pichersky E, Peakall R (2017) Complex sexual deception in an orchid is achieved by co-opting two independent biosynthetic pathways for pollinator attraction. Curr Biol 27:1867–1877

    Article  CAS  PubMed  Google Scholar 

  • Zangerl AR, Berenbaum MR (2009) Effects of florivory on floral volatile emissions and pollination success in the wild parsnip. Arthropod-Plant Interact 3:181–191

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank NCBS-TIFR, Department of Science and Technology (Ramanujan Fellowship), Max-Planck Partner group grant and UGC fellowship for funding support. The authors acknowledge Dhara Mehrotra for the image in the figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhika Venkatesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasidharan, A., Venkatesan, R. (2020). Olfactory Cues as Functional Traits in Plant Reproduction. In: Tandon, R., Shivanna, K., Koul, M. (eds) Reproductive Ecology of Flowering Plants: Patterns and Processes. Springer, Singapore. https://doi.org/10.1007/978-981-15-4210-7_5

Download citation

Publish with us

Policies and ethics

Navigation