Potentiality of Impact Avalanche Transit Time Diode as Terahertz Source Based on Group IV and III–V Semiconducting Materials

  • Chapter
  • First Online:
Emerging Trends in Terahertz Solid-State Physics and Devices

Abstract

Through the numerical approach, we have determined the response time in avalanche and drift regions of the double drift region (DDR) impact ionization avalanche transit time (IMPATT) diode based on group IV materials like silicon (Si), germanium (Ge) and group III–V materials like wurtzite gallium nitride (WzGaN), gallium arsenide (GaAs) and indium phosphide (InP) at the window frequency of 0.094–30 THz. The study of response time reveals that it has impact on the limitation on high frequency power generated by the IMPATT as terahertz source. A comparison is being made for all the materials so that diode can be designed with suitable material as per the requirement for THz applications. Also DC-to-radio frequency (RF) conversion efficiency for InP, GaAs, Si, Ge and WzGaN is computed through the numerical technique. The efficiency obtained for all the materials are compared at the corresponding THz frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. T.A. Midford, R.L. Bernick, Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans. Microw. Theory Tech. 27(5), 483–492 (1979)

    Article  ADS  Google Scholar 

  2. D. Ke-Lin, M.N.S. Swamy, Wireless Communication Systems: From RF Subsystems to 4G Enabling Technologies (Cambridge University Press, Cambridge, 2010), pp. 416–417

    Google Scholar 

  3. J.H. Chris, S.R. Balmer, Diamond as an electronic material. Mater. Today 11, 22–28 (2008)

    Google Scholar 

  4. W.T. Read, A proposed high-frequency negative-resistance diode. Bell Syst. Tech. J. 37(2), 401–446 (1958)

    Article  Google Scholar 

  5. R.L. Johnston, B.C. De Loach Jr., B.G. Cohen, A silicon diode microwave oscillator. Bell Syst. Tech. J. 44(2), 369–372 (1965)

    Google Scholar 

  6. C.A. Lee, R.L. Batdorf, W. Wiegmann, G. Kaminski, The read diode-an avalanching, transit-time, negative resistance oscillator. Appl. Phys. Lett. 6(5), 89–91 (1965)

    Article  ADS  Google Scholar 

  7. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New Jersey, 2007), pp. 466–488

    Google Scholar 

  8. W. Shockley, Negative resistance arising from transit time in semiconductor diode. Bell Syst. Tech. J. 33(4), 799–826 (1954)

    Article  Google Scholar 

  9. B.C. DeLoach Jr., The IMPATT story. IEEE Trans. Electron. Dev. 23(7), 657–660 (1976)

    Article  ADS  Google Scholar 

  10. T. Misawa, Negative resistance in p-n junction under avalanche breakdown conditions, part I. IEEE Trans. Electron. Dev. 13(1), 137–143 (1966)

    Article  ADS  Google Scholar 

  11. T. Misawa, Negative resistance in p-n junction under avalanche breakdown conditions, part II. IEEE Trans. Electron. Dev. 13(1), 143–151 (1966)

    Article  ADS  Google Scholar 

  12. M. Gilden, M.E. Hines, Electronic tuning effects in the read microwave avalanche diode. IEEE Trans. Electron. Dev. 13(1), 169–175 (1966)

    Article  ADS  Google Scholar 

  13. Electronic archive: New semiconductor materials, characteristics and properties. http://www.ioffe.ru/SVA/NSM/Semicond

  14. D.N. Datta, S.P. Pati, J.P. Banerjee, B.B. Pal, S.K. Roy, Computer analysis of DC field and current density profiles of DAR impatt diode. IEEE Trans. Electron. Devices 29(11), 1813–1816 (1982)

    Article  ADS  Google Scholar 

  15. S.K. Roy, M. Sridharan, R. Ghosh, B.B. Pal, Computer method for the DC field and carrier current profiles in the field extremum in the depletion layer (NASECODEI Proc, Dublin (Ireland), 1982), pp. 266–274

    Google Scholar 

  16. G.C. Ghivela, J. Sengupta, Prospects of impact avalanche transit-time diode based on chemical-vapor-deposited diamond substrate. J. Electron. Mater. 48(2), 1044–1053 (2019)

    Article  ADS  Google Scholar 

  17. G.C. Ghivela, J. Sengupta, M. Mitra, Space charge effect of IMPATT diode using Si, Ge, GaAs, InP, WzGaN, 4H-SiC at Ka band. IETE J. Edu. 58(2), 61–66 (2017)

    Article  Google Scholar 

  18. G.C. Ghivela, J. Sengupta, Estimation of power density in IMPATT using different materials. Inter. J. Electron. https://doi.org/10.1080/00207217.2019.1672810

  19. J. Sengupta, G.C. Ghivela, A. Gajbhiye, M. Mitra, Measurement of noise and efficiency of 4H-SiC Impatt diode at Ka band. Int. J. Electron. Lett. 4(2), 134–140 (2016)

    Article  Google Scholar 

  20. G.C. Ghivela, J. Sengupta, M. Mitra, Ka band noise comparison for Si, Ge, GaAs, InP, WzGaN, 4H-SiC based IMPATT diode. Int. J. Electron. Lett. 7(1), 107–116 (2019)

    Article  Google Scholar 

  21. G.C. Ghivela, J. Sengupta, Noise performance of avalanche transit–time devices in the presence of acoustic phonons. J. Comput. Electron. 18(1), 222–230 (2019)

    Article  Google Scholar 

  22. G.C. Ghivela, J. Sengupta, Modeling and computation of double drift region transit time diode performance based on graphene-SiC. Int. J. Numer. Model 32(5), 01–11 (2019)

    Google Scholar 

  23. G.C. Ghivela, J. Sengupta, Effect of acoustic phonon scattering on impact ionization rate of electrons in monolayer graphene nanoribbons. Appl. Phys. A 124(762), 01–08 (2018)

    Google Scholar 

  24. G.C. Ghivela, J. Sengupta, M. Mitra, Quantum corrected drift diffusion based noise model for impact avalanche and transit time diode. Superlattices Microstruct. 128, 402–407 (2019)

    Article  ADS  Google Scholar 

  25. P. Banerjee, A. Acharyya, A. Biswas, A.K. Bhattacharjee, Effect of magnetic field on the RF performance of millimeter-wave IMPATT source. J. Comput. Electron. 15(1), 210–221 (2016)

    Article  Google Scholar 

  26. P.K. Bandyopadhyay, S. Chakraborty, A. Biswas, A. Acharyya, A.K. Bhattacharjee, Large-signal characterization of millimeter-wave IMPATTs: effect of reduced impact ionization rate of charge carriers due to carrier-carrier interactions. J. Comput. Electron. 15(2), 646–656 (2016)

    Article  Google Scholar 

  27. P.K. Bandyopadhyay, A. Biswas, A.K. Bhattacharjee, A. Acharyya, Influence of carrier–carrier interactions on the noise performance of millimeter-wave IMPATTs. IETE J. Res. (2018). https://doi.org/10.1080/03772063.2018.1433078

  28. A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, 1.0 THz GaN IMPATT source: Effect of parasitic series resistance. J. Infrared Millim. Terahertz Waves 39(10), 954–974 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girish Chandra Ghivela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghivela, G.C., Mukhopadhyay, S.J., Sengupta, J., Mitra, M. (2020). Potentiality of Impact Avalanche Transit Time Diode as Terahertz Source Based on Group IV and III–V Semiconducting Materials. In: Biswas, A., Banerjee, A., Acharyya, A., Inokawa, H., Roy, J. (eds) Emerging Trends in Terahertz Solid-State Physics and Devices. Springer, Singapore. https://doi.org/10.1007/978-981-15-3235-1_5

Download citation

Publish with us

Policies and ethics

Navigation