Water-Soluble Aromatic Crown Ethers

From Molecular Recognition to Molecular Assembly

  • Reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 1412 Accesses

Abstract

After the serendipitous discovery by Pedersen [1], crown ethers have been widely applied as brine separators, phase-transfer catalysts [2], and chiral sensors [3]. The simplest crown ethers are heterocycles with cyclic oligomers of ethyleneoxy. Although dioxane is compliant to this definition, it is not realized as a crown ether due to small cavity. The other crown ethers with simple chemical formula of (–CH2CH2O–)n in which n ≥ 3 are both soluble in almost all the known solvents, they can binding small guests containing binding site of metal ions, ammoniums, and diazonium [4]. To broaden the range of molecular recognition of crown ethers, lots of crown ethers with aromatic backbones have been developed which can associate with π-electron-poor guests like organic ammonium [5], pyridinium [6], pyromellitic diimide [7], and naphthalene diimide with the aid of π-stacking interaction [8]. During past three decades, a lot of supramolecular architecture based on molecular recognition of aromatic crown ethers has been developed [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pedersen CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    Article  CAS  Google Scholar 

  2. Jane YS (1994) Crown ether phase-transfer catalysts for polymerization of phenylacetylene. J Mol Catal 89:29–40

    Article  CAS  Google Scholar 

  3. (a) Cram DJ, Helgeson RC, Peacock SC, Kaplan LJ, Domeier LA, Moreau P, Koga K, Mayer JM, Chao Y (1978) Host-guest complexation. 8. Macrocyclic polyethers shaped by two rigid substituted dinaphthyl or ditetralyl units. J Org Chem 43:1930–1946; (b) Merten C, Hyun MH, Xu Y (2013) Absolute configuration and predominant conformations of a chiral crown ether-based colorimetric sensor: a vibrational circular dichroism spectroscopy and DFT study of chiral recognition. Chirality 25:294–300

    Google Scholar 

  4. Gokel GW, Leevy WM, Weber ME (2004) Crown ethers: sensors for ions and molecular scaffolds for materials and biological models. Chem Rev 104:2723–2750

    Article  CAS  Google Scholar 

  5. Ashton PR, Campbell PJ, Chrystal EJT, Glink PT, Menzer S, Philp D, Spencer N, Stoddart JF, Tasker PA, Williams DJ (1995) Dialkylammonium ion/crown ether complexes: the forerunners of a new family of interlocked molecules. Angew Chem Int Ed 34:1865–1869

    Article  CAS  Google Scholar 

  6. Barin G, Coskun A, Fouda MMG, Stoddart JF (2012) Mechanically interlocked molecules assembled by π–π recognition. Chem Plus Chem 77:159–185

    CAS  Google Scholar 

  7. Kaiser G, Jarrosson T, Otto S, Ng Y-F, Bond AD, Sanders JKM (2004) Lithium-templated synthesis of a donor–acceptor pseudorotaxane and catenane. Angew Chem Int Ed 43:1959–1962

    Article  CAS  Google Scholar 

  8. Hansen JG, Feeder N, Hamilton DG, Gunter MJ, Becher J, Sanders JKM (2000) Macrocyclization and molecular interlocking via Mitsunobu alkylation: highlighting the role of C–H⋯O interactions in templating. Org Lett 2:449–452

    Article  CAS  Google Scholar 

  9. Xue M, Yang Y, Chi X, Yan X, Huang F (2015) Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications. Chem Rev 115:7398–7501

    Article  CAS  Google Scholar 

  10. Dunitz JD, Seiler P (1974) 1,4,7,10,13,16-Hexaoxacyclooctadecane. Acta Crystallogr Sect B 30:2739–2741

    Article  Google Scholar 

  11. Tamao K, Hayashi T, Ito Y, Shiro M (1992) Electronic and steric effects in pentacoordinate anionic diorganotrifluorosilicates: x-ray structures and carbon-13 NMR studies for evaluation of charge distribution in aryl groups on silicon. Organometallics 11:182–191

    Article  CAS  Google Scholar 

  12. Buschmann H-J (1988) The influence of acetonitrile on complex formation of crown ethers containing different donor atoms. J Solut Chem 17:277–286

    Article  CAS  Google Scholar 

  13. Lamb JD, Izatt RM, Swain CS, Christensen JJ (1980) A systematic study of the effect of macrocycle ring size and donor atom type on the log K, .DELTA.H, and T.DELTA.S of reactions at 25.degree.C in methanol of mono- and divalent cations with crown ethers. J Am Chem Soc 102:475–479

    Article  CAS  Google Scholar 

  14. Takeda Y, Arima O (1985) Temperature dependence of walden product of 18-crown-6–k+ complex in water. Bull Chem Soc Jpn 58:3403–3404

    Article  CAS  Google Scholar 

  15. Izatt RM, Lamb JD, Izatt NE, Rossiter BE, Christensen JJ, Haymore BL (1979) A calorimetric titration study of the reaction of several organic ammonium cations with 18-crown-6 in methanol. J Am Chem Soc 101:6273–6276

    Article  CAS  Google Scholar 

  16. Izatt RM, Terry RE, Haymore BL, Hansen LD, Dally NK, Avondet AG, Christensen JJ (1976) Calorimetric titration study of the interaction of several uni- and bivalent cations with 15-crown-5, 18-crown-6, and two isomers of dicyclohexo-18-crown-6 in aqueous solution at 25.degree.C and .mu. = 0.1. J Am Chem Soc 98:7620–7626

    Article  CAS  Google Scholar 

  17. Allwood BL, Spencer N, Shahriari-Zavareh H, Stoddart JF, Williams DJ (1987) Complexation of paraquat by a bisparaphenylene-34-crown-10 derivative. J Chem Soc Chem Comm 14:1064–1066

    Google Scholar 

  18. Lestini E, Nikitin K, Müller-Bunz H, Fitzmaurice D (2008) Introducing negative charges into bis-p-phenylene crown ethers: a study of bipyridinium-based [2]pseudorotaxanes and [2]rotaxanes. Chem Eur J 14:1095–1106

    Article  CAS  Google Scholar 

  19. (a) Umetani S, Sasaki T, Matsui M, Tsurubou S, Kimura T, Yoshid Z (1997) Complex formation of metal ions with sulfonated crown ethers in water as ion size selective masking reagents. Anal Sci 13:123–126; (b) Sasaki T, Umetani S, Matsui M, Tsurubou S, Kimura T, Yoshida Z (1998) Complex formation of lanthanide ions with sulfonated crown ethers in aqueous solution. Bull Chem Soc Jpn 71:371–377

    Google Scholar 

  20. Hoffart DJ, Tiburcio J, de la Torre A, Knight LK, Loeb SJ (2008) Cooperative ion–ion interactions in the formation of interpenetrated molecules. Angew Chem Int Ed 47:97–101

    Article  CAS  Google Scholar 

  21. Loeb SJ, Wisner JA (1998) A new motif for the self-assembly of [2]pseudorotaxanes; 1,2-bis(pyridinium)ethane axles and [24]crown-8 ether wheels. Angew Chem Int Ed 37:2838–2840

    Article  CAS  Google Scholar 

  22. Sekine M, Matsuzaki J-I, Hata T (1985) Oligodeoxyribonucleotide synthesis by use of S,S-diphenyl deoxyribonucleoside 3′-phosphorodithioates and bifunctional condensing reagents in the phosphotriester approach. Tetrahedron 41:5279–5288

    Article  CAS  Google Scholar 

  23. Chen L, Zhang Y-M, Liu Y (2012) Molecular binding behaviors between tetrasulfonated bis(m-phenylene)-26-crown-8 and bispyridinium guests in aqueous solution. J Phys Chem B 116:9500–9506

    Article  CAS  Google Scholar 

  24. Chen L, Zhang H-Y, Liu Y (2012) High affinity crown ether complexes in water: thermodynamic analysis, evidence of crystallography and binding of NAD+. J Org Chem 77:9766–9773

    Article  CAS  Google Scholar 

  25. Chen L, Zhang Y-M, Wang L-H, Liu Y (2013) Molecular binding behaviors of pyromellitic and naphthalene diimide derivatives by tetrasulfonated 1,5-dinaphtho-(3n+8)-crown-n (n = 8, 10) in aqueous solution. J Org Chem 78:5357–5363

    Article  CAS  Google Scholar 

  26. Zhang Y-M, Wang Z, Chen L, Song H-B, Liu Y (2014) Thermodynamics and structures of complexation between tetrasulfonated 1,5-dinaphtho-38-crown-10 and diquaternary salts in aqueous solution. J Phys Chem B 118:2433–2441

    Article  CAS  Google Scholar 

  27. Zhang Y-M, Zhang X-J, Xu X, Fu X-N, Hou H-B, Liu Y (2016) Rigid organization of fluorescence-active ligands by artificial macrocyclic receptor to achieve the thioflavin T-amyloid fibril level association. J Phys Chem B 120:3932–3940

    Article  CAS  Google Scholar 

  28. Zhang W, Zhang Y-M, Li S-H, Cui Y-L, Yu J, Liu Y (2016) Tunable nanosupramolecular aggregates mediated by host–guest complexation. Angew Chem Int Ed 55:11452–11456

    Article  CAS  Google Scholar 

  29. Credi A, Montalti M, Balzani V, Langford SJ, Raymo FM, Stoddart JF (1998) Simple molecular-level machines. Interchange between different threads in pseudorotaxanes. New J Chem 22:1061–1065

    Article  CAS  Google Scholar 

  30. Wu L, Liu M, Chem X, Li S, Huang F (2010) Negatively charged crown ethers for binding paraquat in water. Sci China Chem 53:1074–1080

    Google Scholar 

  31. Ji X, Zhang M, Yan X, Li J, Huang F (2013) Synthesis of a water-soluble bis(m-phenylene)-32-crown-10-based cryptand and its pH-responsive binding to a paraquat derivative. Chem Commun 49:1178–1180

    Article  CAS  Google Scholar 

  32. Vukotic VN, Loeb SJ (2012) Coordination polymers containing rotaxane linkers. Chem Soc Rev 41:5896–5906

    Article  CAS  Google Scholar 

  33. Knight LK, Vukotic VN, Viljoen E, Caputo CB, Loeb SJ (2009) Eliminating the need for independent counterions in the construction of metal–organic rotaxane frameworks (MORFs). Chem Commun 23:5585–5587

    Google Scholar 

  34. Vukotic VN, Loeb SJ (2010) One-, two- and three-periodic metal–organic rotaxane frameworks (MORFs): linking cationic transition-metal nodes with an anionic rotaxane ligand. Chem Eur J 16:13630–13637

    Article  CAS  Google Scholar 

  35. Carrasco-Ruiz A, Tiburcio J (2015) Electrostatic kinetic barriers in the threading/dethreading motion of a rotaxane-like complex. Org Lett 17:1858–1861

    Article  CAS  Google Scholar 

  36. Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101

    Article  CAS  Google Scholar 

  37. Ji X, Li J, Chen J, Chi X, Zhu K, Yan X, Zhang M, Huang F (2012) Supramolecular micelles constructed by crown ether-based molecular recognition. Macromolecules 45:6457–6463

    Article  CAS  Google Scholar 

  38. Wang J, Zhang H-Y, Zhang X-J, Song Z-H, Zhao X-J, Liu Y (2015) A light-controlled reversible formation and dissociation of nanorods via interconversion of pseudorotaxanes. Chem Commun 5:7329–7332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chen, L., Liu, Y. (2020). Water-Soluble Aromatic Crown Ethers. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-15-2686-2_2

Download citation

Publish with us

Policies and ethics

Navigation