Sulfur-Mediated Physiological and Biochemical Alterations to Improve Abiotic Stress Tolerance in Food Crops

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

Sulfur (S) is an important macronutrient that plays a significant role in plant growth and development. In the past few decades, efforts focused on reducing sulfur dioxide emission for environment protection had limited the use of S-based fertilizers in agriculture, thereby causing S deficiency in food crops. It also triggered the susceptibility of crop plants to environmental stresses as S assimilation and synthesis of different S compounds modulate several metabolic processes to induce tolerance against various abiotic stresses. The use of inorganic fertilizers containing S has increased tremendously in recent years due to its significance in enhancing crop yield and quality. Therefore, in this chapter, we discuss recent studies on effects of S fertilizers on growth and yield of major cereals (wheat, maize, rice), legumes (mung bean, chickpea, black gram), and oilseeds (sunflower, brassica, soybean). An overview of current state of knowledge on S-mediated physiological and biochemical alterations in food crops may facilitate in develo** appropriate fertilizer management strategies to improve yield and quality under abiotic stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

(NH4)2SO4:

Ammonium sulfate

γGCS:

Gamma-glutamylcysteine synthetase

ABA:

Abscisic acid

ABA:

Abscisic acid

AM:

Arbuscular mycorrhizal

APX:

Ascorbate peroxidase

As:

Arsenic

CAN:

Calcium ammonium nitrate

CaSO4:

Calcium sulfate

CAT:

Catalase

Cd:

Cadmium

Cr:

Chromium

Cys:

Cysteine

DHAR:

Dehydroascorbate reductase

FeSO4:

Iron sulfate

GPX:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Reduced glutathione

GST:

Glutathione S-transferases

H2S:

Hydrogen sulfide

HMs:

Heavy metals

K2SO4:

Potassium sulfate

Met:

Methionine

NaHS:

Sodium hydrogen sulfide

Ni:

Nickel

PCs:

Phytochelatins

ROS:

Reactive oxygen species

S:

Sulfur

SOD:

Superoxide dismutase

Trx:

Thioredoxins

Vit:

Vitamins

Zn:

Zinc

ZnSO4:

Zinc sulfate

References

  • Abate T, Alene AD, Bergvinson D, Shiferaw B, Silim S, Orr A, Asfaw S (2012) Tropical grain legumes in Africa and south Asia: knowledge and opportunities. Int J Multidiscip Adv Res 10:1–12

    Google Scholar 

  • Abbas G, Aslam M, Malik AU, Abbas Z, Ali M, Hussain F (2011) Potassium sulfate effects on growth and yield of mungbean (Vigna radiata L.) under arid climate. Int J Agric Appl Sci 2:72–75

    Google Scholar 

  • AbdElgawad FK, Khalil WK, El-Kady AA, Waly AI, Abdel-Wahhab MA (2016) Carboxymethyl chitosan modulates the genotoxic risk and oxidative stress of perfluorooctanoic acid in Nile tilapia (Oreochromis niloticus). J Saudi Soc Agric Sci 15:57–66

    Google Scholar 

  • Adhikari B, Dhungana SK, Kim ID, Shin DH (2019) Effect of foliar application of potassium fertilizers on soybean plants under salinity stress. J Saudi Soc Agric Sci. In Press

    Google Scholar 

  • Aghajanzadeh T, Hawkesford MJ, De Kok LJ (2014) The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Front Plant Sci 5:1–10. https://doi.org/10.3389/fpls.2014.00704

    Article  Google Scholar 

  • Ahmad A, Selim MM, Alderfasi AA, Afzal M (2015) Effect of drought stress on mung bean (Vigna radiata L.) under arid climatic conditions of Saudi Arabia. In: Miralles i Garcia JL, Brebbia CA (eds) Ecosystem and sustainable development. WIT Press, Southampton, pp 185–193

    Google Scholar 

  • Ahmad N, Malagoli M, Wirtz M, Hell R (2016a) Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots. BMC Plant Biol 16:247–262

    PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Dawar K, Iqbal J, Wahab S (2016b) Effect of sulfur on nitrogen use efficiency and yield of maize crop. Adv Environ Biol 10:85–91

    CAS  Google Scholar 

  • Ahmed K, Qadir G, Jami AR, Saqib AI, Nawaz MQ, Kamal MA, Haq E (2016) Strategies for soil amelioration using sulphur in salt affected soils. Cer Agron Mold 49:5–16

    Google Scholar 

  • Ali A, Arshadullah M, Hyder SI, Mahmood IA (2012) Effect of different levels of sulfur on the productivity of wheat in a saline sodic soil. Soil Environ 31:91–95

    CAS  Google Scholar 

  • Ali B, Ali A, Tahir M, Ali S (2014) Growth, Seed yield and quality of mungbean as influenced by foliar application of iron sulfate. Pak J Life Soc Sci 12:20–25

    Google Scholar 

  • Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci 6:1–9

    Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: Emerging roles of protein persulfidation. Front Plant Sci 9:1–8

    Google Scholar 

  • Arshadullah M, Hyder SI, Arshad A, Mahmood IA (2013) Cumulative effect of sulfur and calcium on wheat growth and yield under saline-sodic soils. Pak J Agric Res 26:46–53

    Google Scholar 

  • Ashraf R, Ali TA (2015) Effect of heavy metals on soil microbial community and mung beans seed germination. Pak J Bot 39:629–636

    Google Scholar 

  • Ashraf M, McNeilly T (2004) Salinity tolerance in brassica oilseeds. Crit Rev Plant Sci 23:157–174

    CAS  Google Scholar 

  • Astolfi S, Zuchi S, Neumann G, Cesco S, Sanita di Toppi L, Pinton R (2012) Response of barley plants to Fe deficiency and Cd contamination as affected by S starvation. J Exp Bot 63:1241–1250

    CAS  PubMed  Google Scholar 

  • Bagayoko M, Buerkert A, Lung G, Bationo A, Römheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant and Soil 218:103–116

    CAS  Google Scholar 

  • Bahadur L, Tiwari DD (2014) Nutrient management in mung bean (Vigna radiata L.) through sulphur and biofertilizers. Legum Res 37:180–187

    Google Scholar 

  • Bashir H, Ibrahim MM, Bagheri R, Ahmad J, Arif IA, Baig MA, Qureshi MI (2015) Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants 7:1–13

    Google Scholar 

  • Bittner F, Oreb M, Mendel RR (2001) ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384

    CAS  PubMed  Google Scholar 

  • Blake-Kalff M, Zhao J, Hawkesford M, McGrath S (2001) Using plant analysis to predict yield losses by sulphur deficiency. Ann Appl Biol 138:123–127. https://doi.org/10.1111/j.1744-7348.2001.tb00093.x

    Article  CAS  Google Scholar 

  • Cheema MA, Wahid MA, Ghaffar A, Sattar A, Abbas S (2014) Yield response of autumn planted sunflower hybrids to zinc sulfate application. J Agric Res 52:523–533

    Google Scholar 

  • Chen Z, Chen M, Jiang M (2017) Hydrogen sulfide alleviates mercury toxicity by sequestering it in roots or regulating reactive oxygen species productions in rice seedlings. Plant Physiol Biochem 111:179–192

    CAS  PubMed  Google Scholar 

  • Chiaiese P, Ohkama-Ohtsu N, Molvig L, Godfree R, Dove H, Hocart C, Fujiwara T, Higgins TJV, Tabe LM (2004) Sulphur and nitrogen nutrition influence the response of chickpea seeds to an added, transgenic sink for organic sulphur. J Exp Bot 55:1889–1901

    CAS  PubMed  Google Scholar 

  • Chorianopoulou SN, Giamouroglou M, Bouranis DL (2012) Differential early fluctuations in superoxide dismutase and catalase activities are included in the responses of young maize organs to s-deprivation. Am J Plant Sci 3:338–345

    CAS  Google Scholar 

  • Cigelske B (2017) Soybean response to nitrogen and sulfur fertilization. Doctoral dissertation, North Dakota State University

    Google Scholar 

  • Cui Y, Wang Q (2006) Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil Environ 52:523–529

    CAS  Google Scholar 

  • Cui Y, Zhao N (2011) Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc. Plant Soil Environ 57:34–39

    CAS  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58. https://doi.org/10.1038/nclimate1811

    Article  Google Scholar 

  • Dai H, Xu Y, Zhao L, Shan C (2016) Alleviation of copper toxicity on chloroplast antioxidant capacity and photosystem II photochemistry of wheat by hydrogen sulfide. Braz J Bot 39:787–793

    Google Scholar 

  • Dehnavi MM, Sheshbahre MJ (2017) Soybean leaf physiological responses to drought stress improved via enhanced seed zinc and iron concentrations. J Plant Proc Funct 5:13–21

    Google Scholar 

  • Dhruw SS, Swaroop N, Swamy A, Upadhayay Y (2017) Effects of different levels of NPK and sulphur on growth and yield attributes of Mustard (Brassica juncea L.) Cv. Varuna. Int J Cur Microbiol Appl Sci 6:1089–1098

    Google Scholar 

  • Dixit G, Singh AP, Kumar A, Singh PK, Kumar S, Dwivedi S, Trivedi PK, Pandey V, Norton GJ, Dhankher OP, Tripathi RD (2015) Sulfur mediated reduction of arsenic toxicity involves efficient thiol metabolism and the antioxidant defense system in rice. J Hazard Mater 298:241–251

    CAS  PubMed  Google Scholar 

  • Ebrahimian E, Bybordi A (2011) Effect of iron foliar fertilization on growth, seed and oil yield of sunflower grown under different irrigation regimes. Middle East J Sci Res 9:621–627

    CAS  Google Scholar 

  • Ernst L, Goodger JQ, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J Exp Bot 61:3395–3405

    CAS  PubMed  Google Scholar 

  • Fahad S, Hussain S, Khan F, Wu C, Saud S, Hassan S, Ahmad N, Gang D, Ullah A, Huang J (2015) Effects of tire rubber ash and zinc sulfate on crop productivity and cadmium accumulation in five rice cultivars under field conditions. Environ Sci Pollut Res 22:12424–12434

    CAS  Google Scholar 

  • Fan JL, Hu ZY, Ziadi N, **a X (2010) Excessive sulfur supply reduces cadmium accumulation in brown rice (Oryza sativa L.). Environ Pollut 158:409–415

    CAS  PubMed  Google Scholar 

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    CAS  Google Scholar 

  • Fediuc E, Lips SH, Erdei L (2005) O-acetylserine (thiol) lyase activity in Phragmites and Typha plants under cadmium and NaCl stress conditions and the involvement of ABA in the stress response. J Plant Physiol 162:865–872

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KHM, Varshney R et al (2016) Neglecting legumes has compromised global food and nutritional security. Nat Plant 2:16112. https://doi.org/10.1038/nplants.2016.112

    Article  Google Scholar 

  • Frederick JR, Camp CR, Bauer PJ (2001) Drought-stress effects on branch and mainstem seed yield and yield components of determinate soybean. Crop Sci 41:759–763

    Google Scholar 

  • Gaafar ARZ, Ghdan AA, Siddiqui MH, Al-Whaibi MH, Basalah MO, Ali HM, Sakran AM (2012) Influence of sulfur on cadmium (Cd) stress tolerance in Triticum aestivum L. Afr J Biotechnol 11:10108–10114

    CAS  Google Scholar 

  • Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan MB, Al Mahmud J, Baluska F, Fujita M (2018) Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotech Rep 12:77–92

    Google Scholar 

  • Heidarzade A, Esmaeili M, Bahmanyar M, Abbasi R (2016) Response of soybean (Glycine max) to molybdenum and iron spray under well-watered and water deficit conditions. J Exp Biol Agric Sci 4:37–46

    CAS  Google Scholar 

  • Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and assimilation. Curr Opin Biotechnol 12:161–168

    CAS  PubMed  Google Scholar 

  • Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Giovannetti M, Kopriva S, Krishnan HB, Jez JM (2014) Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem 289:10919–10929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2011) Sulphur limitation and early sulphur deficiency responses in poplar: significance of gene expression, metabolites, and plant hormones. J Exp Bot 63:1873–1893

    PubMed  PubMed Central  Google Scholar 

  • Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393

    CAS  PubMed  Google Scholar 

  • Islam M (2012) The effect of different rates and forms of sulfur on seed yield and micronutrient uptake by chickpea. Plant Soil Environ 58:399–404

    CAS  Google Scholar 

  • Islam MS, Sabagh EL, Hasana A, Akhter K, Hasan M, Barutçulard C (2017) Growth and yield response of mung bean (Vigna radiata L.) as influenced by sulphur and boron application. Sci. J Crop Sci 6:153–160

    Google Scholar 

  • Ivezić V, Lončarić Z, Engler M, Kerovec D, Singh BR (2013) Comparison of different extraction methods representing available and total concentrations of Cd, Cu, Fe, Mn and Zn in soil. Poljoprivreda 19:53–58

    Google Scholar 

  • Jafar MZ, Farooq M, Cheema MA, Afzal I, Basra SMA, Wahid MA, Aziz T, Shahid M (2012) Improving the performance of wheat by seed priming under saline conditions. J Agron Crop Sci 198:38–45

    Google Scholar 

  • Jamal A, Ismail MK, Tariq M, Fawad M (2018) Response of Mung bean crop to different levels of applied iron and zinc. J Hortic Plant Res 3:13–22

    Google Scholar 

  • Ji K, Wang Y, Sun W, Lou Q, Mei H, Shen S, Chen H (2012) Drought-responsive mechanisms in rice genotypes with contrasting drought tolerance during reproductive stage. J Plant Physiol 169:336–344

    CAS  PubMed  Google Scholar 

  • Kausar A, Ashraf MY, Gull M, Ghafoor R, Ilyas M, Zafar S, Niaz M, Akhtar N, Kanwal H, Iqbal N, Aftab K (2016) Alleviation of salt stress by K2SO4 in two wheat (Triticum aestivum L.) cultivars. Appl Ecol Environ Res 14:137–147

    Google Scholar 

  • Kelly JJ, Häggblom MM, Tate RL (2003) Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biol Fertil Soils 38:65–71

    CAS  Google Scholar 

  • Khalid S, Afridi MZ, Munsif F, Imranuddin I, Ullah I, Nadia U (2018) Effect of sulphur foliar application on yield and yield components of Brassica napus L. Int J Agric Environ Res 2:232–236

    Google Scholar 

  • Khan MI, Asgher M, Iqbal N, Khan NA (2013) Potentiality of sulphur-containing compounds in salt stress tolerance. In: Ecophysiology and responses of plants under salt stress. Springer, New York, pp 443–472

    Google Scholar 

  • Khan NA, Khan MIR, Asgher M, Fatma M, Masood A, Syeed S (2014) Salinity tolerance in plants: revisiting the role of sulfur metabolites. J Plant. Biochem Physiol 2:1–8

    Google Scholar 

  • Khan MIR, Nazir F, Asgher M, Per TS, Khan NA (2015) Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J Plant Physiol 173:9–18

    CAS  PubMed  Google Scholar 

  • Khan R, Gul S, Hamayun M, Shah M, Sayyed A, Ismail H, Gul H (2016) Effect of foliar application of zinc and manganese on growth and some biochemical constituents of Brassica juncea grown under water stress. Am Eur J Agric Environ Sci 16:984–997

    CAS  Google Scholar 

  • Lee BR, Muneer S, Kim KY, Avice JC, Ourry A, Kim TH (2013) S-deficiency responsive accumulation of amino acids is mainly due to hydrolysis of the previously synthesized proteins – not to de novo synthesis in Brassica napus. Physiol Plant 147:369–380. https://doi.org/10.1111/j.1399-3054.2012.01669.x

    Article  CAS  PubMed  Google Scholar 

  • Lee BR, Muneer S, Jung WJ, Avice JC, Ourry A, Kim TH (2014) Partitioning of newly absorbed and previously stored nitrogen and sulphur under sulphate deficient nutrition. J Plant Nutr 37:1702–1716. https://doi.org/10.1080/01904167.2014.889148

    Article  CAS  Google Scholar 

  • Lee BR, Zaman R, Avice JC, Ourry A, Kim TH (2016) Sulfur use efficiency is a significant determinant of drought stress tolerance in relation to photosynthetic activity in Brassica napus cultivars. Front Plant Sci 7:1–11

    Google Scholar 

  • Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci 105:8197–8202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang H, Yin Y, Chen H (2017) Effects of exogenous hydrogen sulfide on antioxidant metabolism of rice seed germinated under drought stress. J South Agric 48:31–37

    Google Scholar 

  • Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134:508–521

    CAS  PubMed  Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Lu H, **e Y, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS One 11:1–16

    Google Scholar 

  • Maheswari UM, Karthik A (2017) Effect of foliar nutrition on growth, yield attributes and seed yield of pulse crops. Adv Crop Sci Technol 5:1–3

    CAS  Google Scholar 

  • Mahmood I, Razzaq A, Qayyum A, Ali Khan A (2017) Mitigating the terminal drought stress in chickpea (Cicer Arietinum L.) through exogenous application of nutrients. J Agric Res 55:291–302

    Google Scholar 

  • Manesh AK, Armin M, Moeini MJ (2013) The effect of sulfur application on yield and yield components of corn in two different planting methods in saline conditions. Int J Agron Plant Prod 4:1474–1478

    CAS  Google Scholar 

  • Matraszek R, Hawrylak-Nowak B, Chwil S, Chwil M (2016) Macronutrient composition of nickel-treated wheat under different sulfur concentrations in the nutrient solution. Environ Sci Pollut Res 23:5902–5914

    CAS  Google Scholar 

  • Mishra SV, Deepak M, Gupta G (2010) Effect of phosphorus and sulphur and their interaction on mustard crop. Asian Sci 5:79–84

    Google Scholar 

  • Misra N, Dwivedi UN (2004) Genotypic difference in salinity tolerance of green gram cultivars. Plant Sci 166:1135–1142. https://doi.org/10.1016/j.plantsci.2003.11.028

    Article  CAS  Google Scholar 

  • Mostofa MG, Saegusa D, Fujita M, Tran LSP (2015) Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front Plant Sci 6:1055

    PubMed  PubMed Central  Google Scholar 

  • Muniswamy RS, Singh V, Mithare P (2018) Response of nitrogen, Sulphur and foliar application of zinc on yield and quality of greengram (Vigna radiata L.). J Pharma Phytochem 7:517–522

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Nautiyal N, Shukla K (2013) Evaluation of seed priming zinc treatments in chickpea for seedling establishment under zinc deficient conditions. J Plant Nutr 36:251–258

    CAS  Google Scholar 

  • Noctor G, Mhamdi A, Chaouch S, Han YI, Neukermans J, Marquez-Garcia B, Queval G, Foyer CH (2012) Glutathione in plants: an integrated overview. Plant Cell Environ 35:454–484

    CAS  PubMed  Google Scholar 

  • Okoko NEK, Mahasi MJ, Kidula N, Ojowi M, Makini F (2008) Participatory sunflower production, technology dissemination and value addition in Southwest Kenya. Afr J Agric Res 3:396–399

    Google Scholar 

  • Pandey SK, Bahuguna RN, Madan P, Trivedi AK, Hemantaranjan A, Srivastava JP (2010) Effects of pre-treatment and foliar application of zinc on growth and yield components of mungbean (Vigna radiata L.) under induced salinity. Indian J Plant Physiol 15:164–167

    CAS  Google Scholar 

  • Pathak GC, Gupta B, Pandey N (2012) Improving reproductive efficiency of chickpea by foliar application of zinc. Brazilian J Plant Physiol 24:173–180

    Google Scholar 

  • Patel AK, Nath T, Prajapati A, Singh VK, Pandey SK (2018) Effect of doses and sources of sulphur on growth and yield of black gram (Vigna mungo L. Hepper) under rainfed condition of Vindhyan Soil. J Pharmacog Phytochem 1:91–94

    Google Scholar 

  • Poonia KL (2000) Effect of planting geometry, nitrogen and sulfur on growth and yield of sunflower (Helianthus annuus L.). J Eco Physiol 3:59–71

    Google Scholar 

  • Promila K, Kumar S (2000) Vigna radiata seed germination under salinity. Biol Plant 43:423–426. https://doi.org/10.1093/pcp/pcs/040

    Article  CAS  Google Scholar 

  • Prosser IM, Purves JV, Saker LR, Clarkson DT (2001) Rapid disruption of nitrogen metabolism and nitrate transport in spinach plants deprived of sulphate. J Exp Bot 52:113–121

    CAS  PubMed  Google Scholar 

  • Ranawake AL, Dahanayaka N, Amarasingha UGS, Rodrigo WDRJ, Rodrigo UTD (2011) Effect of water stress on growth and yield of mung bean (Vigna radiata L). Trop Agric Res Ext 14:76–79

    Google Scholar 

  • Rasheed M, Ali H, Mahmood T (2004) Impact of nitrogen and sulfur application on growth and yield of maize (Zea mays L.) crop. J Res Sci 15:153–157

    Google Scholar 

  • Rehman UH, Iqbal Q, Farooq M, Wahid A, Afzal I, Basra SM (2013) Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol Plant 35:2999–3006

    CAS  Google Scholar 

  • Riffat A, Ahmad MS (2016a) Amelioration of adverse effects of salt stress on maize (Zea mays L.) cultivars by exogenous application of sulfur at seedling stage. Pak J Bot 48:1323–1334

    CAS  Google Scholar 

  • Riffat A, Ahmad MS (2016b) Amelioration of adverse effects of salt stress on maize (Zea mays L.) cultivars by exogenous application of sulfur at seedling stage. Pak J Bot 48:1323–1334

    CAS  Google Scholar 

  • Rouphael Y, Cardarelli M, Schwarz D, Franken P, Colla G (2012) Effects of drought on nutrient uptake and assimilation in vegetable crops. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 171–195

    Google Scholar 

  • Royo A, Abió D (2003) Salt tolerance in durum wheat cultivars. Spanish J Agric Res 1:27–35

    Google Scholar 

  • Sadeghipour O, Abbasi S (2012) Soybean response to drought and seed inoculation. World Appl Sci J 17:55–60

    CAS  Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense and osmolyte accumulation in mungbean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600

    CAS  PubMed  Google Scholar 

  • Sainju UM, Whitehead WF, Singh BP (2005) Biculture legume–cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron J 97:1403–1412

    CAS  Google Scholar 

  • Sajedi NA, Ardakani MR, Rejali F, Mohabbati F, Miransari M (2010) Yield and yield components of hybrid corn (Zea mays L.) as affected by mycorrhizal symbiosis and zinc sulfate under drought stress. Physiol Mol Biol Plants 16:343–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sauter M, Moffatt B, Saechao MC, Hell R, Wirtz M (2013) Methionine salvage and S-adenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem J 1:145–154

    Google Scholar 

  • Sexton PJ, Naeve SL, Paek NC, Shibles R (1998) Sulphur availability, cotyledon nitrogen:sulphur ratio, and relative abundance of seed storage proteins of soybean. Crop Sci 38:983–986

    CAS  Google Scholar 

  • Seyedi M (2011) The effect of seed priming with zinc sulphate on germination characteristics and seedling growth of chickpea (Cicer arietinum L.) under salinity stress. Euphrates J Agric Sci 3:205–210

    Google Scholar 

  • Shah S, Hussain M, Jalal A, Khan MS, Shah T, Ilyas M, Uzair M (2018) Nitrogen and sulfur rates and timing effects on phenology, biomass yield and economics of wheat. Sarhad J Agric 34:671–679

    Google Scholar 

  • Shahri ZB, Zamani GR, Sayyari-Zahan MH (2012) Effect of drought stress and zinc sulfate on the yield and some physiological characteristics of sunflower (Helianthus. annuus L.). Adv Environ Biol 6:518–525

    CAS  Google Scholar 

  • Shahzad AN, Fatima A, Sarwar N, Bashir S, Rizwan M, Qayyum MF, Qureshi MK, Javaid MH, Ahmad S (2017) Foliar application of potassium sulfate partially alleviates pre-anthesis drought-induced kernel abortion in maize. Int J Agric Biol 19:495–501

    CAS  Google Scholar 

  • Shan CJ, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL, Wu YX, Wei XY, Liu RQ (2011) Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol Plant 33:2533

    CAS  Google Scholar 

  • Shan C, Liu H, Zhao L, Wang X (2014) Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biol Plant 58:169–173

    CAS  Google Scholar 

  • Shao HB, Chu LY, Shao MA, Jaleel CA, Hong-mei M (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441

    CAS  PubMed  Google Scholar 

  • Siddiqui MH, Mohammad F, Khan MM, Al-Whaibi MH (2012) Cumulative effect of nitrogen and sulphur on Brassica juncea L. genotypes under NaCl stress. Protoplasma 249:139–153

    CAS  PubMed  Google Scholar 

  • Skwierawska M, Zawartka L, Skwierawski A, Nogalska A (2012) The effect of different sulfur doses and forms on changes of soil heavy metals. Plant Soil Environ 58:135–140

    CAS  Google Scholar 

  • Srivalli S, Khanna-Chopra R (2008) Role of glutathione in abiotic stress tolerance. In: Sulfur assimilation and abiotic stress in plants. Springer, Berlin, Heidelberg, pp 207–225

    Google Scholar 

  • Srivastava S, Shukla AK (2016) Differential response of black gram towards heavy metal stress. Environ Pollut Prot 1:89–96

    Google Scholar 

  • Tea I, Genter T, Naulet N, Lummerzheim M, Kleiber D (2007) Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J Sci Food Agric 87:2853–2859

    CAS  Google Scholar 

  • Tomooka N (2002) Two new species, new species combinations and sectional designations in Vigna subgenus Ceratotropis (Piper) Verdcourt (Leguminosae, Phaseoleae). Kew Bull 57:613–624

    Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2017) Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutr 40:615–623

    CAS  Google Scholar 

  • Tsujimoto Y, Inusah B, Katsura K, Fuseini A, Dogbe W, Zakaria AI, Fujihara Y, Oda M, Sakagami JI (2017) The effect of sulfur fertilization on rice yields and nitrogen use efficiency in a floodplain ecosystem of northern Ghana. Field Crop Res 211:155–164

    Google Scholar 

  • Ullah S, Anwar S, Khan GR, Anjum MM, Ali N, Jalal A, Ali K, Zaman KU, Miraj M, Sohail A (2019) Effect of potassium and sulfur on grain yield, oil concentration and fatty acid profile of sunflower. Pure Appl Biol 8:139–150

    CAS  Google Scholar 

  • Usha Rani K, Sharma KL, Nagasri K, Srinivas K, Vishnu Murthy T, Maruthi Shankar GR, Korwar GR, Sridevi Sankar K, Madhavi M, Kusuma Grace J (2009) Response of sunflower to sources and levels of sulfur under rainfed semi-arid tropical conditions. Commun Soil Sci Plant Anal 40:2926–2944

    Google Scholar 

  • Usman M, Tahir M, Majeed MA (2014) Effect of zinc sulphate as soil application and seed treatment on green gram (Vigna radiata L.). Pak J Life Social Sci 12:87–91

    Google Scholar 

  • Vazin F (2012) Effect of zinc sulfate on quantitative and qualitative characteristics of corn (Zea mays) in drought stress. Cer Agron Mold 45:15–24

    Google Scholar 

  • Wani MA, Agha FA, Malik MA, Rather ZA (2001) Response of sunflower to sulphur application under Kashmir conditions. Appl Biol Res 3:19–22

    Google Scholar 

  • Wu CYH, Lu J, Hu ZY (2014) Influence of sulfur supply on the iron accumulation in rice plants. Commun Soil Sci Plant Anal 45:1149–1161

    CAS  Google Scholar 

  • Xu J, Qu D, Zhou LN (2008) Effects of sulfur nutrition on the chlorophyll content of maize leaf under zinc and drought stress. Agric Res Arid Areas 2. In Chinese

    Google Scholar 

  • Yi H, Galant A, Ravilious GE, Preuss ML, Jez JM (2010) Sensing sulfur conditions: simple to complex protein regulatory mechanisms in plant thiol metabolism. Mol Plant 3:269–279

    CAS  PubMed  Google Scholar 

  • Zafar S, Nasri M, Moghadam HRT, Zahedi H (2014) Effect of zinc and sulfur foliar applications on physiological characteristics of sunflower (Helianthus annuus L.) under water deficit stress. Int J Biosci 5:87–96

    CAS  Google Scholar 

  • Zawude S, Shanko D (2017) Effects of salinity stress on chickpea (Cicer arietinum L.) landraces during early growth stage. Int J Sci Rep 3:214–219

    Google Scholar 

  • Zhang MY, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP, Jones RL (2010) Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress. Acta Physiol Plant 32:849–857

    CAS  Google Scholar 

  • Zhong L, Hu C, Tan Q, Liu J, Sun X (2012) Effects of sulfur application on sulfur and arsenic absorption by rapeseed in arsenic-contaminated soil. Plant Soil Environ 57:429–434

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahim Nawaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nawaz, F. et al. (2020). Sulfur-Mediated Physiological and Biochemical Alterations to Improve Abiotic Stress Tolerance in Food Crops. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_14

Download citation

Publish with us

Policies and ethics

Navigation