Wavefunctions and Optical Gain in In0.24Ga0.76N/GaN Type-I Nano-heterostructure Under External Uniaxial Strain

  • Conference paper
  • First Online:
Intelligent Computing Techniques for Smart Energy Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 607))

Abstract

Wavefunctions and optical gain in a single In0.24Ga0.76N quantum well sandwiched between the GaN barriers has been reported. Optical gain within x-polarization and z-polarization have been investigated as quantum well width and external strain variations along [100]. The behavior of quasi Fermi levels for the valance bands and conduction bands have also been investigated. The InGaN/GaN type-I nano-heterostructure has been modeled and studied with the help of six band \( {\text{k}} \cdot {\text{p}} \) formalism. The \( 6\times 6 \) diagonalised \( {\text{k}} \cdot {\text{p}} \) Hamiltonian has been solved to evaluate the light and heavy hole energies. For an injected carrier density of 15 × 1012/cm2, the peak optical gain is found to be 15904/cm at wavelength of 0.48 µm in x-polarization and the peak optical gain is found to be 1576/cm at a wavelength of 0.44 µm in z-polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 277.13
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 353.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 353.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tansu N, Zhao H, Liu G, Li X-H, Zhang J (2010) III-nitride photonics. IEEE Photonics J 2(2)

    Google Scholar 

  2. Hwang SM, Seo YG, Baik KH, Cho IS, Baek JH, Jung S, Kim TG, Cho M (2009) Demonstration of non polar a-plane InGaN/GaN light emitting diode on r-plane sapphire substrate. Appl Phys Lett 95(7):071101-1–071101-3

    Article  Google Scholar 

  3. Detchprohm T, Zhu M, Li Y, **a Y, Liu L, Hanser D, Wetzel C (2009) Growth and characterization of green GaInN-based light emitting diodes on free-standing non-polar GaN templates. J Cryst Growth 311(10):2937–2941

    Article  Google Scholar 

  4. Lin YD, Chakraborty A, Brinkley S, Kuo HC, Melo T, Fujito K, Speck JS, Den Baars SP, Nakamura S (2009) Characterization of blue-green m-plane InGaN light emitting diodes. Appl Phys Lett 94(26):261108-1–261108-3

    Article  Google Scholar 

  5. Chang J-Y, Tsai M-C, Kuo Y-K (2010) Advantages of blue InGaN light emitting diode with AlGaN barriers. Opt Lett 35(9)

    Google Scholar 

  6. Zerg S-M, Fan G-H (2015) Advantages of blue InGaN light emitting diode with a mix of AlGaN and InGaN quantum barriers. J Electron Mater 44(10)

    Google Scholar 

  7. Chao L, Zhi-wei R (2013) Advantages of InGaN base light emitting diode with a p-InGaN/p-GaN superlattices hole accumulation layer. Chin Phys B 22(5)

    Google Scholar 

  8. Nirmal HK, Yadav N, Dalela S, Rathi A, Siddiqui MJ, Alvi PA (2016) Tunability of optical gain (SWIR region) in type-II \( {\text{In}}_{0.70} {\text{Ga}}_{0.30} {\text{As}}/{\text{GaAs}}_{0.40} {\text{Sb}}_{0.60} \) nano-heterostructure under high pressure. Phys E: Low-Dimens Syst Nanostructures 80:36–42

    Google Scholar 

  9. Yadav R, Lal P, Rahman F, Dalela S, Alvi PA (2014) Well width effects on material gain and lasing wavelength in InGaAsP/InP nano-heterostructure. J Optoelectron Eng 2(1):1–6

    Google Scholar 

  10. Pecora EF, Sun H, Negro LD, Moustakes TD (2015) Deep-UV optical gain in AlGan based graded index separate confinement hetrostructure. Opt Mater Express 5(4):809

    Google Scholar 

  11. Guo W, Bryan Z, Kirste R (2014) Stimulated emission and optical gain in AlGaN hetrostructures grown on bulk AlN substrates. J Appl phys

    Google Scholar 

  12. Zhao H, Arif RA, Tansu N (2008) Self consistent gain analysis of type-II ‘W’ InGaN-GaNAs quantum well lasers. J Appl Phys 104:043104

    Article  Google Scholar 

  13. Pan C-H, Chang C-H, Lee C-P (2012) Room temperature optically pumped 2.56-Lasers with “W” type InGaAs/GaAsSb quantum wells on InP substrates. Photonics Technol Lett IEEE 24(13):1145–1147

    Article  Google Scholar 

  14. Pan CH, Lee CP (2013) Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-Infrared laser applications. J Appl Phys 113(4):043112

    Article  Google Scholar 

  15. Chang C-H, Li Z-L, Lu H-T, Pan C-H, Lee C-P, Lin G, Lin S-D (2015) Low-threshold short-wavelength infrared InGaAs/GaAsSb ‘W’-type QW laser on InP substrate. Photonics Technol Lett IEEE 27(3):225–228

    Article  Google Scholar 

  16. Chang C-H, Li Z-L, Pan C-H, Lu H-T, Lee C-P, Lin S-D (2014) Room-temperature mid-infrared “M”-type GaAsSb/InGaAs quantum well lasers on InP substrate. J Appl Phys 115(6):063104

    Article  Google Scholar 

  17. Vijay J, Singh K, Soni D, Rathi A (2019) Structural and optical characteristics of nanoscale semiconductor lasers for telecommunication and biomedical applications: a review. IOP Conf Ser: Mater Sci Eng 594(1)

    Google Scholar 

  18. Riyaj Md, Singh AK, Sandhya K, Rathi A, Alvi PA (2017) Optical properties of type-I GaAsP/AlGaAs nano-heterostructure under external uniaxial strain. AlP Conf Proc 1832:120022.1–120022.3

    Google Scholar 

  19. Rathi A, Singh AK, Riyaj Md, Dalela S, Alvi PA (2019) Red shift in optical properties of type-I Al0. 45Ga0. 55As/GaAs0. 84P0. 16/Al0. 45Ga0. 55As nano-heterostructure under external strain. IOP Conf Ser: Mater Sci Eng 576(1)

    Google Scholar 

  20. Riyaj Md, Singh AK, Rathi A, Kattayat S, Kumar S, Dalela S, Alvi PA (2019) High pressure affects on optical characteristics of AlGaAs/GaAsP/AlGaAs nano-heterostructure. Optik Elsevier 181:389–397

    Google Scholar 

  21. Chen B, Holmes AL, Khalfin V, Kudryashov I, Onat BM (2012) Modeling of the type-II InGaAs/GaAsSb quantum well designs for mid-infrared laser diodes by kp method. In: SPIE defense, security, and sensing. International society for optics and photonics, pp 83810F–83810F

    Google Scholar 

  22. Harrison P (2005) Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures. Wiley

    Google Scholar 

  23. Chuang SL (1995) Physics of optoelectronic devices. Wiley

    Google Scholar 

  24. Zory PS (1993) Quantum well lasers. Academic Press

    Google Scholar 

  25. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875

    Article  Google Scholar 

  26. Kumari V et al (2014) Optical gain of InGaAlAs quantum well with different barriers, claddings and substrates. J Optoelectron Eng 2(2):42–45

    MathSciNet  Google Scholar 

  27. Zahang J (2013) Optical gain and lasing characteristics of InGaN quantum wells on ternary InGaN substrates. IEEE Photonics J 2(5)

    Google Scholar 

  28. Yang W, Ying-** Q, Jiao-Qing P, Ling-Juan Z (2010) High characteristic temperature InGaAsP/InP tunnel injection multiple-quantum-well lasers. Chin Phys Lett 27(11):114201

    Article  Google Scholar 

  29. Chen B, Jiang WY, Holmes AL Jr (2012) Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes. Opt Quantum Electron 44(3):103–109

    Article  Google Scholar 

  30. Singh AK, Riyaj Md, Anjum SG, Yadav N, Rathi A, Siddiqui MJ, Alvi PA (2016) Anisotropy and optical gain improvement in type-II In0.3Ga0.7 As/GaAs0.4Sb0.6 nano-scale heterostructure under external uniaxial strain. Superlattices Microstruct 98:406–415

    Article  Google Scholar 

  31. Jeon JB, Lee BC, Sirenko Yu M, Kim KW, Littlejohn MA (1997) Strain effects on optical gain in wurtzite GaN. J Appl Phys 82(1):386–391

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Manipal University Jaipur, 303007, Rajasthan, India for the financial support provided under the project Seed grant scheme: MUJ/REGR/1467/13. Authors also take this opportunity to thank Dr. Konstantin I. Kolokolov (Faculty of Physics, M V Lomonosov Moscow State University, Moscow 119991, Russia) for supporting the work. P. A. Alvi is also thankful to ‘‘Banasthali Center for Research & Education in Basic Sciences’’ under CURIE programme supported by the Dept. of Science & tech. (DST), Govt. of India, New-Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Rathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Riyaj, M., Singh, A.K., Alvi, P.A., Rathi, A. (2020). Wavefunctions and Optical Gain in In0.24Ga0.76N/GaN Type-I Nano-heterostructure Under External Uniaxial Strain. In: Kalam, A., Niazi, K., Soni, A., Siddiqui, S., Mundra, A. (eds) Intelligent Computing Techniques for Smart Energy Systems. Lecture Notes in Electrical Engineering, vol 607. Springer, Singapore. https://doi.org/10.1007/978-981-15-0214-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0214-9_38

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0213-2

  • Online ISBN: 978-981-15-0214-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation