Physiology of Astroglia

  • Chapter
  • First Online:
Neuroglia in Neurodegenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1175))

Abstract

Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 179.34
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 179.34
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbracchio MP, Ceruti S (2006) Roles of P2 receptors in glial cells: focus on astrocytes. Purinergic Signal 2:595–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Adermark L, Lovinger DM (2008) Electrophysiological properties and gap junction coupling of striatal astrocytes. Neurochem Int 52:1365–1372

    Article  CAS  PubMed  Google Scholar 

  3. Agarwal A, Wu PH, Hughes EG, Fukaya M, Tischfield MA, Langseth AJ, Wirtz D, Bergles DE (2017) Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93(587–605):e587

    Article  CAS  Google Scholar 

  4. Agulhon C, Fiacco TA, McCarthy KD (2010) Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–1254

    Article  CAS  PubMed  Google Scholar 

  5. Allbritton NL, Meyer T, Stryer L (1992) Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 258:1812–1815

    Article  CAS  PubMed  Google Scholar 

  6. Allen A, Messier C (2013) Plastic changes in the astrocyte GLUT1 glucose transporter and beta-tubulin microtubule protein following voluntary exercise in mice. Behav Brain Res 240:95–102

    Article  CAS  PubMed  Google Scholar 

  7. Allen JW, Shanker G, Aschner M (2001) Methylmercury inhibits the in vitro uptake of the glutathione precursor, cystine, in astrocytes, but not in neurons. Brain Res 894:131–140

    Article  CAS  PubMed  Google Scholar 

  8. Altevogt BM, Paul DL (2004) Four classes of intercellular channels between glial cells in the CNS. J Neurosci 24:4313–4323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alvarez-Maubecin V, Garcia-Hernandez F, Williams JT, Van Bockstaele EJ (2000) Functional coupling between neurons and glia. J Neurosci 20:4091–4098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Amin MS, Wang HW, Reza E, Whitman SC, Tuana BS, Leenen FH (2005) Distribution of epithelial sodium channels and mineralocorticoid receptors in cardiovascular regulatory centers in rat brain. Am J Physiol Regul Integr Comp Physiol 289:R1787–R1797

    Article  CAS  PubMed  Google Scholar 

  11. Amzica F, Massimini M (2002) Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 12:1101–1113

    Article  PubMed  Google Scholar 

  12. Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    Article  CAS  PubMed  Google Scholar 

  13. Andriezen WL (1893) The neuroglia elements of the brain. Br Med J 2:227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aoki C, Venkatesan C, Kurose H (1998) Noradrenergic modulation of the prefrontal cortex as revealed by electron microscopic immunocytochemistry. Adv Pharmacol 42:777–780

    Article  CAS  PubMed  Google Scholar 

  15. Araque A, Martin ED, Perea G, Arellano JI, Buno W (2002) Synaptically released acetylcholine evokes Ca2+ elevations in astrocytes in hippocampal slices. J Neurosci 22:2443–2450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arbones L, Picatoste F, Garcia A (1990) Histamine stimulates glycogen breakdown and increases 45Ca2+ permeability in rat astrocytes in primary culture. Mol Pharmacol 37:921–927

    CAS  PubMed  Google Scholar 

  17. Armstrong WE, Rubrum A, Teruyama R, Bond CT, Adelman JP (2005) Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. J Comp Neurol 491:175–185

    Article  CAS  PubMed  Google Scholar 

  18. Ashour F, Deuchars J (2004) Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res 1026:44–55

    Article  CAS  PubMed  Google Scholar 

  19. Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14:35–46

    Article  CAS  PubMed  Google Scholar 

  20. Babu AN, Cheng TP, Zhang A, Altura BT, Altura BM (1999) Low concentrations of ethanol deplete type-2 astrocytes of intracellular free magnesium. Brain Res Bull 50:59–62

    Article  CAS  PubMed  Google Scholar 

  21. Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L (2001) Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:477–482

    Article  CAS  PubMed  Google Scholar 

  22. Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214

    Article  CAS  PubMed  Google Scholar 

  23. Bal A, Bachelot T, Savasta M, Manier M, Verna JM, Benabid AL, Feuerstein C (1994) Evidence for dopamine D2 receptor mRNA expression by striatal astrocytes in culture: in situ hybridization and polymerase chain reaction studies. Brain Res Mol Brain Res 23:204–212

    Article  CAS  PubMed  Google Scholar 

  24. Ballerini P, Rathbone MP, Di Iorio P, Renzetti A, Giuliani P, D’Alimonte I, Trubiani O, Caciagli F, Ciccarelli R (1996) Rat astroglial P2Z (P2X7) receptors regulate intracellular calcium and purine release. NeuroReport 7:2533–2537

    Article  CAS  PubMed  Google Scholar 

  25. Barcelo-Torns M, Lewis AM, Gubern A, Barneda D, Bloor-Young D, Picatoste F, Churchill GC, Claro E, Masgrau R (2011) NAADP mediates ATP-induced Ca2+ signals in astrocytes. FEBS Lett 585:2300–2306

    Article  CAS  PubMed  Google Scholar 

  26. Barres BA, Chun LL, Corey DP (1988) Ion channel expression by white matter glia: I. Type 2 astrocytes and oligodendrocytes. Glia 1:10–30

    Article  CAS  PubMed  Google Scholar 

  27. Barres BA, Chun LL, Corey DP (1989) Calcium current in cortical astrocytes: induction by cAMP and neurotransmitters and permissive effect of serum factors. J Neurosci 9:3169–3175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barres BA, Chun LL, Corey DP (1989) Glial and neuronal forms of the voltage-dependent sodium channel: characteristics and cell-type distribution. Neuron 2:1375–1388

    Article  CAS  PubMed  Google Scholar 

  29. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189

    Article  CAS  PubMed  Google Scholar 

  30. Beck A, Nieden RZ, Schneider HP, Deitmer JW (2004) Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35:47–58

    Article  CAS  PubMed  Google Scholar 

  31. Beenhakker MP, Huguenard JR (2010) Astrocytes as gatekeepers of GABAB receptor function. J Neurosci 30:15262–15276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bekar LK, Loewen ME, Cao K, Sun X, Leis J, Wang R, Forsyth GW, Walz W (2005) Complex expression and localization of inactivating Kv channels in cultured hippocampal astrocytes. J Neurophysiol 93:1699–1709

    Article  CAS  PubMed  Google Scholar 

  33. Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    Article  CAS  PubMed  Google Scholar 

  34. Benjamin AM (1987) Influence of Na+, K+, and Ca2+ on glutamine synthesis and distribution in rat brain cortex slices: a possible linkage of glutamine synthetase with cerebral transport processes and energetics in the astrocytes. J Neurochem 48:1157–1164

    Article  CAS  PubMed  Google Scholar 

  35. Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR (2008) Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia 56:1138–1149

    Article  PubMed  Google Scholar 

  36. Bennett GC, Ford AP, Smith JA, Emmett CJ, Webb TE, Boarder MR (2003) P2Y receptor regulation of cultured rat cerebral cortical cells: calcium responses and mRNA expression in neurons and glia. Br J Pharmacol 139:279–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berger UV, Hediger MA (2000) Distribution of the glutamate transporters GLAST and GLT-1 in rat circumventricular organs, meninges, and dorsal root ganglia. J Comp Neurol 421:385–399

    Article  CAS  PubMed  Google Scholar 

  38. Bernstein M, Behnisch T, Balschun D, Reymann KG, Reiser G (1998) Pharmacological characterisation of metabotropic glutamatergic and purinergic receptors linked to Ca2+ signalling in hippocampal astrocytes. Neuropharmacology 37:169–178

    Article  CAS  PubMed  Google Scholar 

  39. Binder DK, Yao X, Zador Z, Sick TJ, Verkman AS, Manley GT (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels. Glia 53:631–636

    Article  PubMed  Google Scholar 

  40. Black JA, Dib-Hajj S, Cohen S, Hinson AW, Waxman SG (1998) Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytes. Glia 23:200–208

    Article  CAS  PubMed  Google Scholar 

  41. Black JA, Newcombe J, Waxman SG (2010) Astrocytes within multiple sclerosis lesions upregulate sodium channel Nav1.5. Brain 133:835–846

    Article  PubMed  Google Scholar 

  42. Black JA, Sontheimer H, Minturn JE, Ransom BR, Waxman SG (1992) The expression of sodium channels in astrocytes in situ and in vitro. Prog Brain Res 94:89–107

    Article  CAS  PubMed  Google Scholar 

  43. Black JA, Waxman SG (2013) Noncanonical roles of voltage-gated sodium channels. Neuron 80:280–291

    Article  CAS  PubMed  Google Scholar 

  44. Black JA, Westenbroek R, Minturn JE, Ransom BR, Catterall WA, Waxman SG (1995) Isoform-specific expression of sodium channels in astrocytes in vitro: immunocytochemical observations. Glia 14:133–144

    Article  CAS  PubMed  Google Scholar 

  45. Blaustein MP, Juhaszova M, Golovina VA, Church PJ, Stanley EF (2002) Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann NY Acad Sci 976:356–366

    Article  CAS  PubMed  Google Scholar 

  46. Blazquez C, Sanchez C, Daza A, Galve-Roperh I, Guzman M (1999) The stimulation of ketogenesis by cannabinoids in cultured astrocytes defines carnitine palmitoyltransferase I as a new ceramide-activated enzyme. J Neurochem 72:1759–1768

    Article  CAS  PubMed  Google Scholar 

  47. Blomstrand F, Giaume C, Hansson E, Ronnback L (1999) Distinct pharmacological properties of ET-1 and ET-3 on astroglial gap junctions and Ca(2+) signaling. Am J Physiol 277:C616–C627

    Article  CAS  PubMed  Google Scholar 

  48. Bordey A, Sontheimer H (2000) Ion channel expression by astrocytes in situ: comparison of different CNS regions. Glia 30:27–38

    Article  CAS  PubMed  Google Scholar 

  49. Bramham CR, Torp R, Zhang N, Storm-Mathisen J, Ottersen OP (1990) Distribution of glutamate-like immunoreactivity in excitatory hippocampal pathways: a semiquantitative electron microscopic study in rats. Neuroscience 39:405–417

    Article  CAS  PubMed  Google Scholar 

  50. Brasko C, Hawkins V, De La Rocha IC, Butt AM (2016) Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS. Brain Struct Funct

    Google Scholar 

  51. Breslin K, Wade JJ, Wong-Lin K, Harkin J, Flanagan B, Van Zalinge H, Hall S, Walker M, Verkhratsky A, McDaid L (2018) Potassium and sodium microdomains in thin astroglial processes: a computational model study. PLoS Comput Biol 14:e1006151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Brito V, Beyer C, Kuppers E (2004) BDNF-dependent stimulation of dopamine D5 receptor expression in develo** striatal astrocytes involves PI3-kinase signaling. Glia 46:284–295

    Article  PubMed  Google Scholar 

  53. Brodie C (1994) Functional PAF receptors in glia cells: binding parameters and regulation of expression. Int J Dev Neurosci 12:631–640

    Article  CAS  PubMed  Google Scholar 

  54. Brodie C (1995) Platelet activating factor induces nerve growth factor production by rat astrocytes. Neurosci Lett 186:5–8

    Article  CAS  PubMed  Google Scholar 

  55. Brune T, Deitmer JW (1995) Intracellular acidification and Ca2+ transients in cultured rat cerebellar astrocytes evoked by glutamate agonists and noradrenaline. Glia 14:153–161

    Article  CAS  PubMed  Google Scholar 

  56. Bruner G, Murphy S (1993) UTP activates multiple second messenger systems in cultured rat astrocytes. Neurosci Lett 162:105–108

    Article  CAS  PubMed  Google Scholar 

  57. Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S, Anderova M (2012) The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS ONE 7:e39959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10:33–44

    Article  CAS  PubMed  Google Scholar 

  59. Butt AM, Ransom BR (1989) Visualization of oligodendrocytes and astrocytes in the intact rat optic nerve by intracellular injection of lucifer yellow and horseradish peroxidase. Glia 2:470–475

    Article  CAS  PubMed  Google Scholar 

  60. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, **ng Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Carson MJ, Thomas EA, Danielson PE, Sutcliffe JG (1996) The 5HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: a mechanism for neuronal suppression of reactive astrocytes. Glia 17:317–326

    Article  CAS  PubMed  Google Scholar 

  62. Catus SL, Gibbs ME, Sato M, Summers RJ, Hutchinson DS (2011) Role of β-adrenoceptors in glucose uptake in astrocytes using beta-adrenoceptor knockout mice. Br J Pharmacol 162:1700–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Charles AC, Merrill JE, Dirksen ER, Sanderson MJ (1991) Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. Neuron 6:983–992

    Article  CAS  PubMed  Google Scholar 

  64. Chatton JY, Magistretti PJ, Barros LF (2016) Sodium signaling and astrocyte energy metabolism. Glia 64:1667–1676

    Article  PubMed  Google Scholar 

  65. Chatton JY, Pellerin L, Magistretti PJ (2003) GABA uptake into astrocytes is not associated with significant metabolic cost: implications for brain imaging of inhibitory transmission. Proc Natl Acad Sci USA 100:12456–12461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chaudhry FA, Lehre KP, van Lookeren Campagne M, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  CAS  PubMed  Google Scholar 

  67. Chen N, Sugihara H, Sharma J, Perea G, Petravicz J, Le C, Sur M (2012) Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc Natl Acad Sci USA 109:E2832–E2841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chen Y, Rathbone MP, Hertz L (2001) Guanosine-induced increase in free cytosolic calcium concentration in mouse astrocytes in primary cultures: does it act on an A3 adenosine receptor? J Neurosci Res 65:184–189

    Article  CAS  PubMed  Google Scholar 

  69. Chesler M (2003) Regulation and modulation of pH in the brain. Physiol Rev 83:1183–1221

    Article  CAS  PubMed  Google Scholar 

  70. Cho Y, Bannai S (1990) Uptake of glutamate and cysteine in C-6 glioma cells and in cultured astrocytes. J Neurochem 55:2091–2097

    Article  CAS  PubMed  Google Scholar 

  71. Cholewinski AJ, Stevens G, McDermott AM, Wilkin GP (1991) Identification of B2 bradykinin binding sites on cultured cortical astrocytes. J Neurochem 57:1456–1458

    Article  CAS  PubMed  Google Scholar 

  72. Chun LLY, Barres BA, Corey DP (1986) Induction of a calcium channel in astrocytes by cAMP. Soc Neurosci Abs 12:1346

    Google Scholar 

  73. Chvatal A, Pastor A, Mauch M, Sykova E, Kettenmann H (1995) Distinct populations of identified glial cells in the develo** rat spinal cord slice: ion channel properties and cell morphology. Eur J Neurosci 7:129–142

    Article  CAS  PubMed  Google Scholar 

  74. Clark B, Mobbs P (1992) Transmitter-operated channels in rabbit retinal astrocytes studied in situ by whole-cell patch clam**. J Neurosci 12:664–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Conti F, Minelli A, Brecha NC (1994) Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex. J Comp Neurol 350:241–259

    Article  CAS  PubMed  Google Scholar 

  76. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473

    Article  CAS  PubMed  Google Scholar 

  77. Cotrina ML, Lin JH, Lopez-Garcia JC, Naus CC, Nedergaard M (2000) ATP-mediated glia signaling. J Neurosci 20:2835–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dahl G (2015) ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 370

    Article  CAS  Google Scholar 

  79. Dall’Aglio C, Ceccarelli P, Pascucci L, Brecchia G, Boiti C (2006) Receptors for leptin and estrogen in the subcommissural organ of rabbits are differentially modulated by fasting. Brain Res 1124:62–69

    Article  CAS  PubMed  Google Scholar 

  80. Dallaporta M, Pecchi E, Pio J, Jean A, Horner KC, Troadec JD (2009) Expression of leptin receptor by glial cells of the nucleus tractus solitarius: possible involvement in energy homeostasis. J Neuroendocrinol 21:57–67

    Article  CAS  PubMed  Google Scholar 

  81. Dallerac G, Chever O, Rouach N (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci 7:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  CAS  PubMed  Google Scholar 

  83. Dani JW, Chernjavsky A, Smith SJ (1992) Neuronal activity triggers calcium waves in hippocampal astrocyte networks. Neuron 8:429–440

    Article  CAS  PubMed  Google Scholar 

  84. Dare E, Schulte G, Karovic O, Hammarberg C, Fredholm BB (2007) Modulation of glial cell functions by adenosine receptors. Physiol Behav 92:15–20

    Article  CAS  PubMed  Google Scholar 

  85. Deitmer JW, Rose CR (1996) pH regulation and proton signalling by glial cells. Prog Neurobiol 48:73–103

    Article  CAS  PubMed  Google Scholar 

  86. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M, Bouvier D, Tiret P, Volterra A (2011) Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat Neurosci 14:1276–1284

    Article  CAS  PubMed  Google Scholar 

  87. Di Scala-Guenot D, Mouginot D, Strosser MT (1994) Increase of intracellular calcium induced by oxytocin in hypothalamic cultured astrocytes. Glia 11:269–276

    Article  PubMed  Google Scholar 

  88. Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, **e L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394

    Article  CAS  PubMed  Google Scholar 

  89. Dixon SJ, Yu R, Panupinthu N, Wilson JX (2004) Activation of P2 nucleotide receptors stimulates acid efflux from astrocytes. Glia 47:367–376

    Article  PubMed  Google Scholar 

  90. Doengi M, Deitmer JW, Lohr C (2008) New evidence for purinergic signaling in the olfactory bulb: A2A and P2Y1 receptors mediate intracellular calcium release in astrocytes. FASEB J 22:2368–2378

    Article  CAS  PubMed  Google Scholar 

  91. Doly S, Fischer J, Salio C, Conrath M (2004) The vanilloid receptor-1 is expressed in rat spinal dorsal horn astrocytes. Neurosci Lett 357:123–126

    Article  CAS  PubMed  Google Scholar 

  92. Dong JH, Chen X, Cui M, Yu X, Pang Q, Sun JP (2012) β2-adrenergic receptor and astrocyte glucose metabolism. J Mol Neurosci 48:456–463

    Article  CAS  PubMed  Google Scholar 

  93. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA (2003) P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 23:1320–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Duan S, Neary JT (2006) P2X7 receptors: properties and relevance to CNS function. Glia 54:738–746

    Article  PubMed  Google Scholar 

  95. Dzamba D, Honsa P, Valny M, Kriska J, Valihrach L, Novosadova V, Kubista M, Anderova M (2015) Quantitative analysis of glutamate receptors in glial cells from the cortex of GFAP/EGFP mice following ischemic injury: focus on NMDA receptors. Cell Mol Neurobiol 35:1187–1202

    Article  CAS  PubMed  Google Scholar 

  96. Eaton MJ, Skatchkov SN, Brune A, Biedermann B, Veh RW, Reichenbach A (2002) SURI and Kir6.1 subunits of KATP-channels are co-localized in retinal glial (Muller) cells. NeuroReport 13:57–60

    Article  CAS  PubMed  Google Scholar 

  97. Edwards L, Nashmi R, Jones O, Backx P, Ackerley C, Becker L, Fehlings MG (2002) Upregulation of Kv 1.4 protein and gene expression after chronic spinal cord injury. J Comp Neurol 443:154–167

    Article  CAS  PubMed  Google Scholar 

  98. Emmi A, Wenzel HJ, Schwartzkroin PA, Taglialatela M, Castaldo P, Bianchi L, Nerbonne J, Robertson GA, Janigro D (2000) Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes. J Neurosci 20:3915–3925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Enkvist MO, Holopainen I, Akerman KE (1989) Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia 2:397–402

    Article  CAS  PubMed  Google Scholar 

  100. Enyedi P, Czirjak G (2010) Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  CAS  PubMed  Google Scholar 

  101. Eriksson PS, Hansson E, Ronnback L (1990) δ and κ opiate receptors in primary astroglial cultures from rat cerebral cortex. Neurochem Res 15:1123–1126

    Article  CAS  PubMed  Google Scholar 

  102. Eriksson PS, Hansson E, Ronnback L (1992) δ and κ opiate receptors in primary astroglial cultures. Part II: Receptor sets in cultures from various brain regions and interactions with beta-receptor activated cyclic AMP. Neurochem Res 17:545–551

    Article  CAS  PubMed  Google Scholar 

  103. Eriksson PS, Nilsson M, Wagberg M, Hansson E, Ronnback L (1993) κ-opioid receptors on astrocytes stimulate L-type Ca2+ channels. Neuroscience 54:401–407

    Article  CAS  PubMed  Google Scholar 

  104. Fam SR, Gallagher CJ, Salter MW (2000) P2Y1 purinoceptor-mediated Ca2+ signaling and Ca2+ wave propagation in dorsal spinal cord astrocytes. J Neurosci 20:2800–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fang Q, Hu WW, Wang XF, Yang Y, Lou GD, ** MM, Yan HJ, Zeng WZ, Shen Y, Zhang SH, Xu TL, Chen Z (2014) Histamine up-regulates astrocytic glutamate transporter 1 and protects neurons against ischemic injury. Neuropharmacology 77:156–166

    Article  CAS  PubMed  Google Scholar 

  106. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  CAS  PubMed  Google Scholar 

  107. Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403

    Article  CAS  PubMed  Google Scholar 

  108. Finkbeiner S (1992) Calcium waves in astrocytes-filling in the gaps. Neuron 8:1101–1108

    Article  CAS  PubMed  Google Scholar 

  109. Franke H, Grosche J, Schadlich H, Krugel U, Allgaier C, Illes P (2001) P2X receptor expression on astrocytes in the nucleus accumbens of rats. Neuroscience 108:421–429

    Article  CAS  PubMed  Google Scholar 

  110. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, Faber-Zuschratter H, Schneider D, Illes P (2004) P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 63:686–699

    Article  CAS  PubMed  Google Scholar 

  111. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8:629–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720–2732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fumagalli M, Brambilla R, D’Ambrosi N, Volonte C, Matteoli M, Verderio C, Abbracchio MP (2003) Nucleotide-mediated calcium signaling in rat cortical astrocytes: role of P2X and P2Y receptors. Glia 43:218–230

    Article  PubMed  Google Scholar 

  114. Garcia-Caceres C, Quarta C, Varela L, Gao Y, Gruber T, Legutko B, Jastroch M, Johansson P, Ninkovic J, Yi CX, Le Thuc O, Szigeti-Buck K, Cai W, Meyer CW, Pfluger PT, Fernandez AM, Luquet S, Woods SC, Torres-Aleman I, Kahn CR, Gotz M, Horvath TL, Tschop MH (2016) Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166:867–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    Article  CAS  PubMed  Google Scholar 

  116. Giaume C, Cordier J, Glowinski J (1992) Endothelins inhibit junctional permeability in cultured mouse astrocytes. Eur J Neurosci 4:877–881

    Article  PubMed  Google Scholar 

  117. Giaume C, Fromaget C, el Aoumari A, Cordier J, Glowinski J, Gros D (1991) Gap junctions in cultured astrocytes: single-channel currents and characterization of channel-forming protein. Neuron 6:133–143

    Article  CAS  PubMed  Google Scholar 

  118. Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N (2010) Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 11:87–99

    Article  CAS  PubMed  Google Scholar 

  119. Giaume C, Leybaert L, Naus CC, Saez JC (2013) Connexin and pannexin hemichannels in brain glial cells: properties, pharmacology, and roles. Front Pharmacol 4:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Golovina VA, Bambrick LL, Yarowsky PJ, Krueger BK, Blaustein MP (1996) Modulation of two functionally distinct Ca2+ stores in astrocytes: role of the plasmalemmal Na/Ca exchanger. Glia 16:296–305

    Article  CAS  PubMed  Google Scholar 

  121. Graham AJ, Ray MA, Perry EK, Jaros E, Perry RH, Volsen SG, Bose S, Evans N, Lindstrom J, Court JA (2003) Differential nicotinic acetylcholine receptor subunit expression in the human hippocampus. J Chem Neuroanat 25:97–113

    Article  CAS  PubMed  Google Scholar 

  122. Grichtchenko II, Chesler M (1994) Depolarization-induced alkalinization of astrocytes in gliotic hippocampal slices. Neuroscience 62:1071–1078

    Article  CAS  PubMed  Google Scholar 

  123. Griemsmann S, Hoft SP, Bedner P, Zhang J, von Staden E, Beinhauer A, Degen J, Dublin P, Cope DW, Richter N, Crunelli V, Jabs R, Willecke K, Theis M, Seifert G, Kettenmann H, Steinhauser C (2015) Characterization of panglial gap junction networks in the thalamus, neocortex, and hippocampus reveals a unique population of glial cells. Cereb Cortex 25:3420–3433

    Article  PubMed  Google Scholar 

  124. Grimaldi M, Maratos M, Verma A (2003) Transient receptor potential channel activation causes a novel form of [Ca2+]i oscillations and is not involved in capacitative Ca2+ entry in glial cells. J Neurosci 23:4737–4745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Grolla AA, Sim JA, Lim D, Rodriguez JJ, Genazzani AA, Verkhratsky A (2013) Amyloid-β and Alzheimer’s disease type pathology differentially affects the calcium signalling toolkit in astrocytes from different brain regions. Cell Death Dis 4:e623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Halestrap AP (2012) The monocarboxylate transporter family—structure and functional characterization. IUBMB Life 64:1–9

    Article  CAS  PubMed  Google Scholar 

  127. Han KS, Mannaioni G, Hamill CE, Lee J, Junge CE, Lee CJ, Traynelis SF (2011) Activation of protease activated receptor 1 increases the excitability of the dentate granule neurons of hippocampus. Mol Brain. 4:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hassinger TD, Guthrie PB, Atkinson PB, Bennet MVL, Kater SB (1997) An extracellular signaling component in propagation of astrocytic calcium waves. Proc Natl Acad Sci USA 93:13268–13273

    Article  Google Scholar 

  129. Hatton GI, Bicknell RJ, Hoyland J, Bunting R, Mason WT (1992) Arginine vasopressin mobilises intracellular calcium via V1-receptor activation in astrocytes (pituicytes) cultured from adult rat neural lobes. Brain Res 588:75–83

    Article  CAS  PubMed  Google Scholar 

  130. Haustein MD, Kracun S, Lu XH, Shih T, Jackson-Weaver O, Tong X, Xu J, Yang XW, O’Dell TJ, Marvin JS, Ellisman MH, Bushong EA, Looger LL, Khakh BS (2014) Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82:413–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Heni M, Hennige AM, Peter A, Siegel-Axel D, Ordelheide AM, Krebs N, Machicao F, Fritsche A, Haring HU, Staiger H (2011) Insulin promotes glycogen storage and cell proliferation in primary human astrocytes. PLoS ONE 6:e21594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Herman MA, Jahr CE (2007) Extracellular glutamate concentration in hippocampal slice. J Neurosci 27:9736–9741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hertle DN, Yeckel MF (2007) Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 150:625–638

    Article  CAS  PubMed  Google Scholar 

  134. Hertz L, Gerkau NJ, Xu J, Durry S, Song D, Rose CR, Peng L (2015) Roles of astrocytic Na+, K+-ATPase and glycogenolysis for K+ homeostasis in mammalian brain. J Neurosci Res 93:1019–1030

    Article  CAS  PubMed  Google Scholar 

  135. Hertz L, Lovatt D, Goldman SA, Nedergaard M (2010) Adrenoceptors in brain: cellular gene expression and effects on astrocytic metabolism and [Ca2+]i. Neurochem Int 57:411–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hertz L, Rothman DL, Li B, Peng L (2015) Chronic SSRI stimulation of astrocytic 5-HT2B receptors change multiple gene expressions/editings and metabolism of glutamate, glucose and glycogen: a potential paradigm shift. Front Behav Neurosci 9:25

    PubMed  PubMed Central  Google Scholar 

  137. Hertz L, Song D, Xu J, Peng L, Gibbs ME (2015) Role of the astrocytic Na+, K+-ATPase in K+ homeostasis in brain: K+ uptake, signaling pathways and substrate utilization. Neurochem Res 40:2505–2516

    Article  CAS  PubMed  Google Scholar 

  138. Hibino H, Fujita A, Iwai K, Yamada M, Kurachi Y (2004) Differential assembly of inwardly rectifying K+ channel subunits, Kir4.1 and Kir5.1, in brain astrocytes. J Biol Chem 279:44065–44073

    Article  CAS  PubMed  Google Scholar 

  139. Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev 90:291–366

    Article  CAS  PubMed  Google Scholar 

  140. Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281:C922–C931

    Article  CAS  PubMed  Google Scholar 

  141. Hiyama TY, Yoshida M, Matsumoto M, Suzuki R, Matsuda T, Watanabe E, Noda M (2013) Endothelin-3 expression in the subfornical organ enhances the sensitivity of Nax, the brain sodium-level sensor, to suppress salt intake. Cell Metab 17:507–519

    Article  CAS  PubMed  Google Scholar 

  142. Ho T, Vessey KA, Fletcher EL (2014) Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 277:55–71

    Article  CAS  PubMed  Google Scholar 

  143. Hofer T, Venance L, Giaume C (2002) Control and plasticity of intercellular calcium waves in astrocytes: a modeling approach. J Neurosci 22:4850–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Holtzclaw LA, Pandhit S, Bare DJ, Mignery GA, Russell JT (2002) Astrocytes in adult rat brain express type 2 inositol 1,4,5-trisphosphate receptors. Glia 39:69–84

    Article  PubMed  Google Scholar 

  145. Honsa P, Pivonkova H, Harantova L, Butenko O, Kriska J, Dzamba D, Rusnakova V, Valihrach L, Kubista M, Anderova M (2014) Increased expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following ischemia. Glia 62:2004–2021

    Article  PubMed  Google Scholar 

  146. Horvat A, Zorec R, Vardjan N (2016) Adrenergic stimulation of single rat astrocytes results in distinct temporal changes in intracellular Ca(2+) and cAMP-dependent PKA responses. Cell Calcium 59:156–163

    Article  CAS  PubMed  Google Scholar 

  147. Hosli E, Hosli L (1991) Autoradiographic evidence for endothelin receptors on astrocytes in cultures of rat cerebellum, brainstem and spinal cord. Neurosci Lett 129:55–58

    Article  CAS  PubMed  Google Scholar 

  148. Houades V, Koulakoff A, Ezan P, Seif I, Giaume C (2008) Gap junction-mediated astrocytic networks in the mouse barrel cortex. J Neurosci 28:5207–5217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hsuchou H, Pan W, Barnes MJ, Kastin AJ (2009) Leptin receptor mRNA in rat brain astrocytes. Peptides 30:2275–2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hua X, Malarkey EB, Sunjara V, Rosenwald SE, Li WH, Parpura V (2004) Ca(2+)-dependent glutamate release involves two classes of endoplasmic reticulum Ca(2+) stores in astrocytes. J Neurosci Res 76:86–97

    Article  CAS  PubMed  Google Scholar 

  151. Huang C, Hu ZL, Wu WN, Yu DF, **ong QJ, Song JR, Shu Q, Fu H, Wang F, Chen JG (2010) Existence and distinction of acid-evoked currents in rat astrocytes. Glia 58:1415–1424

    Article  PubMed  Google Scholar 

  152. Huang H, Barakat L, Wang D, Bordey A (2004) Bergmann glial GlyT1 mediates glycine uptake and release in mouse cerebellar slices. J Physiol 560:721–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Huang Y, Grinspan JB, Abrams CK, Scherer SS (2007) Pannexin1 is expressed by neurons and glia but does not form functional gap junctions. Glia 55:46–56

    Article  PubMed  Google Scholar 

  154. Hung AC, Sun SH (2002) The P2X7 receptor-mediated phospholipase D activation is regulated by both PKC-dependent and PKC-independent pathways in a rat brain-derived Type-2 astrocyte cell line, RBA-2. Cell Signal 14:83–92

    Article  CAS  PubMed  Google Scholar 

  155. Hutchinson DS, Summers RJ, Gibbs ME (2007) β2- and β3-adrenoceptors activate glucose uptake in chick astrocytes by distinct mechanisms: a mechanism for memory enhancement? J Neurochem 103:997–1008

    Article  CAS  PubMed  Google Scholar 

  156. Hwang EM, Kim E, Yarishkin O, Woo DH, Han KS, Park N, Bae Y, Woo J, Kim D, Park M, Lee CJ, Park JY (2014) A disulphide-linked heterodimer of TWIK-1 and TREK-1 mediates passive conductance in astrocytes. Nat Commun 5:3227

    Article  CAS  PubMed  Google Scholar 

  157. Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009) Pannexin 1: the molecular substrate of astrocyte “hemichannels”. J Neurosci 29:7092–7097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Illes P, Verkhratsky A (2016) Purinergic neurone-glia signalling in cognitive-related pathologies. Neuropharmacology 104:62–75

    Article  CAS  PubMed  Google Scholar 

  159. Ishii M, Fujita A, Iwai K, Kusaka S, Higashi K, Inanobe A, Hibino H, Kurachi Y (2003) Differential expression and distribution of Kir5.1 and Kir4.1 inwardly rectifying K+ channels in retina. Am J Physiol Cell Physiol 285:C260–C267

    Article  CAS  PubMed  Google Scholar 

  160. Ishimoto H, Nakahata N, Matsuoka I, Nakanishi H (1997) Effects of ATP on phosphoinositide hydrolysis and prostaglandin E2 generation in rabbit astrocytes. J Pharm Pharmacol 49:520–524

    Article  CAS  PubMed  Google Scholar 

  161. Isokawa M, McKhann GM 2nd (2005) Electrophysiological and morphological characterization of dentate astrocytes in the hippocampus. J Neurobiol 65:125–134

    Article  CAS  PubMed  Google Scholar 

  162. Jabs R, Guenther E, Marquordt K, Wheeler-Schilling TH (2000) Evidence for P2X3, P2X4, P2X5 but not for P2X7 containing purinergic receptors in Muller cells of the rat retina. Brain Res Mol Brain Res 76:205–210

    Article  CAS  PubMed  Google Scholar 

  163. Jimenez AI, Castro E, Communi D, Boeynaems JM, Delicado EG, Miras-Portugal MT (2000) Coexpression of several types of metabotropic nucleotide receptors in single cerebellar astrocytes. J Neurochem 75:2071–2079

    Article  CAS  PubMed  Google Scholar 

  164. John GR, Simpson JE, Woodroofe MN, Lee SC, Brosnan CF (2001) Extracellular nucleotides differentially regulate interleukin-1b signaling in primary human astrocytes: implications for inflammatory gene expression. J Neurosci 21:4134–4142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity α subunit isoforms are differently distributed in cells. Proc Natl Acad Sci USA 94:1800–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Juric DM, Mele T, Carman-Krzan M (2011) Involvement of histaminergic receptor mechanisms in the stimulation of NT-3 synthesis in astrocytes. Neuropharmacology 60:1309–1317

    Article  CAS  PubMed  Google Scholar 

  167. Jurzak M, Muller AR, Gerstberger R (1995) Characterization of vasopressin receptors in cultured cells derived from the region of rat brain circumventricular organs. Neuroscience 65:1145–1159

    Article  CAS  PubMed  Google Scholar 

  168. Kafitz KW, Meier SD, Stephan J, Rose CR (2008) Developmental profile and properties of sulforhodamine 101–Labeled glial cells in acute brain slices of rat hippocampus. J Neurosci Methods 169:84–92

    Article  CAS  PubMed  Google Scholar 

  169. Kalsi AS, Greenwood K, Wilkin G, Butt AM (2004) Kir4.1 expression by astrocytes and oligodendrocytes in CNS white matter: a developmental study in the rat optic nerve. J Anat 204:475–485

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kanaka C, Ohno K, Okabe A, Kuriyama K, Itoh T, Fukuda A, Sato K (2001) The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 104:933–946

    Article  CAS  PubMed  Google Scholar 

  171. Kanemaru K, Kubota J, Sekiya H, Hirose K, Okubo Y, Iino M (2013) Calcium-dependent N-cadherin up-regulation mediates reactive astrogliosis and neuroprotection after brain injury. Proc Natl Acad Sci USA 110:11612–11617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kanemaru K, Sekiya H, Xu M, Satoh K, Kitajima N, Yoshida K, Okubo Y, Sasaki T, Moritoh S, Hasuwa H, Mimura M, Horikawa K, Matsui K, Nagai T, Iino M, Tanaka KF (2014) In vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive Ca(2+) indicator. Cell Rep 8:311–318

    Article  CAS  PubMed  Google Scholar 

  173. Kanjhan R, Housley GD, Thorne PR, Christie DL, Palmer DJ, Luo L, Ryan AF (1996) Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. NeuroReport 7:2665–2669

    Article  CAS  PubMed  Google Scholar 

  174. Karschin A, Brockhaus J, Ballanyi K (1998) KATP channel formation by the sulphonylurea receptors SUR1 with Kir6.2 subunits in rat dorsal vagal neurons in situ. J Physiol 509(Pt 2):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kastritsis CH, Salm AK, McCarthy K (1992) Stimulation of the P2Y purinergic receptor on type 1 astroglia results in inositol phosphate formation and calcium mobilization. J Neurochem 58:1277–1284

    Article  CAS  PubMed  Google Scholar 

  176. Kato S, Ishita S, Sugawara K, Mawatari K (1993) Cystine/glutamate antiporter expression in retinal Muller glial cells: implications for DL-alpha-aminoadipate toxicity. Neuroscience 57:473–482

    Article  CAS  PubMed  Google Scholar 

  177. Kavanaugh MP, Arriza JL, North RA, Amara SG (1992) Electrogenic uptake of γ-aminobutyric acid by a cloned transporter expressed in Xenopus oocytes. J Biol Chem 267:22007–22009

    CAS  PubMed  Google Scholar 

  178. Kelly T, Kafitz KW, Roderigo C, Rose CR (2009) Ammonium-evoked alterations in intracellular sodium and pH reduce glial glutamate transport activity. Glia 57:921–934

    Article  PubMed  Google Scholar 

  179. Kettenmann H, Backus KH, Schachner M (1984) Aspartate, glutamate and gamma-aminobutyric acid depolarize cultured astrocytes. Neurosci Lett 52:25–29

    Article  CAS  PubMed  Google Scholar 

  180. Kettenmann H, Backus KH, Schachner M (1987) γ-Aminobutyric acid opens Cl channels in cultured astrocytes. Brain Res 404:1–9

    Article  CAS  PubMed  Google Scholar 

  181. Kettenmann H, Ransom BR (1988) Electrical coupling between astrocytes and between oligodendrocytes studied in mammalian cell cultures. Glia 1:64–73

    Article  CAS  PubMed  Google Scholar 

  182. Kettenmann H, Schachner M (1985) Pharmacological properties of gamma-aminobutyric acid-, glutamate-, and aspartate-induced depolarizations in cultured astrocytes. J Neurosci 5:3295–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kettenmann H, Zorec R (2013) Release of gliotransmitters and transmitter receptors in astrocytes. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 197–211

    Chapter  Google Scholar 

  184. Khan ZU, Koulen P, Rubinstein M, Grandy DK, Goldman-Rakic PS (2001) An astroglia-linked dopamine D2-receptor action in prefrontal cortex. Proc Natl Acad Sci USA 98:1964–1969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim WT, Rioult MG, Cornell-Bell AH (1994) Glutamate-induced calcium signaling in astrocytes. Glia 11:173–184

    Article  CAS  PubMed  Google Scholar 

  186. Kimelberg HK, Macvicar BA, Sontheimer H (2006) Anion channels in astrocytes: biophysics, pharmacology, and function. Glia 54:747–757

    Article  PubMed  PubMed Central  Google Scholar 

  187. King AE, Ackley MA, Cass CE, Young JD, Baldwin SA (2006) Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci 27:416–425

    Article  CAS  PubMed  Google Scholar 

  188. Kirchhoff F, Mulhardt C, Pastor A, Becker CM, Kettenmann H (1996) Expression of glycine receptor subunits in glial cells of the rat spinal cord. J Neurochem 66:1383–1390

    Article  CAS  PubMed  Google Scholar 

  189. Kirischuk S, Kettenmann H, Verkhratsky A (1997) Na+/Ca2+ exchanger modulates kainate-triggered Ca2+ signaling in Bergmann glial cells in situ. FASEB J 11:566–572

    Article  CAS  PubMed  Google Scholar 

  190. Kirischuk S, Kettenmann H, Verkhratsky A (2007) Membrane currents and cytoplasmic sodium transients generated by glutamate transport in Bergmann glial cells. Pflugers Arch 454:245–252

    Article  CAS  PubMed  Google Scholar 

  191. Kirischuk S, Kirchhoff F, Matyash V, Kettenmann H, Verkhratsky A (1999) Glutamate-triggered calcium signalling in mouse bergmann glial cells in situ: role of inositol-1,4,5-trisphosphate-mediated intracellular calcium release. Neuroscience 92:1051–1059

    Article  CAS  PubMed  Google Scholar 

  192. Kirischuk S, Parpura V, Verkhratsky A (2012) Sodium dynamics: another key to astroglial excitability? Trends Neurosci 35:497–506

    Article  CAS  PubMed  Google Scholar 

  193. Kirischuk S, Tuschick S, Verkhratsky A, Kettenmann H (1996) Calcium signalling in mouse Bergmann glial cells mediated by α1-adrenoreceptors and H1 histamine receptors. Eur J Neurosci 8:1198–1208

    Article  CAS  PubMed  Google Scholar 

  194. Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, Reichenbach A (2002) Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia 39:292–303

    Article  PubMed  Google Scholar 

  195. von Kölliker A (1896) Handbuch der Gewebelehre des Menschen, 6 Aufl. Engelmann, Leipzig

    Google Scholar 

  196. Kong EK, Peng L, Chen Y, Yu AC, Hertz L (2002) Up-regulation of 5-HT2B receptor density and receptor-mediated glycogenolysis in mouse astrocytes by long-term fluoxetine administration. Neurochem Res 27:113–120

    Article  CAS  PubMed  Google Scholar 

  197. Kukley M, Barden JA, Steinhauser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    Article  CAS  PubMed  Google Scholar 

  198. Kunzelmann P, Schroder W, Traub O, Steinhauser C, Dermietzel R, Willecke K (1999) Late onset and increasing expression of the gap junction protein connexin30 in adult murine brain and long-term cultured astrocytes. Glia 25:111–119

    Article  CAS  PubMed  Google Scholar 

  199. Kuo J, Hariri OR, Micevych P (2009) An interaction of oxytocin receptors with metabotropic glutamate receptors in hypothalamic astrocytes. J Neuroendocrinol 21:1001–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lalo U, Palygin O, North RA, Verkhratsky A, Pankratov Y (2011) Age-dependent remodelling of ionotropic signalling in cortical astroglia. Aging Cell 10:392–402

    Article  CAS  PubMed  Google Scholar 

  201. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol 12:e1001747

    Article  PubMed  PubMed Central  Google Scholar 

  202. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lalo U, Pankratov Y, Parpura V, Verkhratsky A (2011) Ionotropic receptors in neuronal-astroglial signalling: what is the role of “excitable” molecules in non-excitable cells. Biochim Biophys Acta 1813:992–1002

    Article  CAS  PubMed  Google Scholar 

  204. Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA, Kirchhoff F, Verkhratsky A (2008) P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J Neurosci 28:5473–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Langer J, Rose CR (2009) Synaptically induced sodium signals in hippocampal astrocytes in situ. J Physiol 587:5859–5877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Langer J, Stephan J, Theis M, Rose CR (2012) Gap junctions mediate intercellular spread of sodium between hippocampal astrocytes in situ. Glia 60:239–252

    Article  PubMed  Google Scholar 

  207. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M, Kaila K, Voipio J, MacAulay N (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–622

    Article  PubMed  PubMed Central  Google Scholar 

  208. Latour I, Gee CE, Robitaille R, Lacaille JC (2001) Differential mechanisms of Ca2+ responses in glial cells evoked by exogenous and endogenous glutamate in rat hippocampus. Hippocampus 11:132–145

    Article  CAS  PubMed  Google Scholar 

  209. Latour I, Hamid J, Beedle AM, Zamponi GW, Macvicar BA (2003) Expression of voltage-gated Ca2+ channel subtypes in cultured astrocytes. Glia 41:347–353

    Article  PubMed  Google Scholar 

  210. Lee MC, Ting KK, Adams S, Brew BJ, Chung R, Guillemin GJ (2010) Characterisation of the expression of NMDA receptors in human astrocytes. PLoS ONE 5:e14123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Lee SM, Cho YS, Kim TH, ** MU, Ahn DK, Noguchi K, Bae YC (2012) An ultrastructural evidence for the expression of transient receptor potential ankyrin 1 (TRPA1) in astrocytes in the rat trigeminal caudal nucleus. J Chem Neuroanat 45:45–49

    Article  CAS  PubMed  Google Scholar 

  212. Lehre KP, Danbolt NC (1998) The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J Neurosci 18:8751–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. von Lenhossék M (1895) Der feinere Bau des Nervensystems im Lichte neuester Forschung, 2nd edn. Fischer’s Medicinische Buchhandlung H. Kornfield, Berlin

    Google Scholar 

  214. Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C (2001) Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci 114:987–998

    CAS  PubMed  Google Scholar 

  215. Letellier M, Park YK, Chater TE, Chipman PH, Gautam SG, Oshima-Takago T, Goda Y (2016) Astrocytes regulate heterogeneity of presynaptic strengths in hippocampal networks. Proc Natl Acad Sci USA 113:E2685–E2694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Leybaert L, Sanderson MJ (2001) Intercellular calcium signaling and flash photolysis of caged compounds. A sensitive method to evaluate gap junctional coupling. Methods Mol Biol 154:407–430

    CAS  PubMed  Google Scholar 

  217. Li B, Gu L, Hertz L, Peng L (2013) Expression of nucleoside transporter in freshly isolated neurons and astrocytes from mouse brain. Neurochem Res 38:2351–2358

    Article  CAS  PubMed  Google Scholar 

  218. Liang J, Chao D, Sandhu HK, Yu Y, Zhang L, Balboni G, Kim DH, **a Y (2014) δ-Opioid receptors up-regulate excitatory amino acid transporters in mouse astrocytes. Br J Pharmacol 171:5417–5430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Lisjak M, Potokar M, Rituper B, Jorgacevski J, Zorec R (2017) AQP4e-based orthogonal arrays regulate rapid cell volume changes in astrocytes. J Neurosci 37:10748–10756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    Article  CAS  PubMed  Google Scholar 

  221. Loesch A, Burnstock G (1998) Electron-immunocytochemical localization of P2X1 receptors in the rat cerebellum. Cell Tissue Res 294:253–260

    Article  CAS  PubMed  Google Scholar 

  222. Longden TA, Dunn KM, Draheim HJ, Nelson MT, Weston AH, Edwards G (2011) Intermediate-conductance calcium-activated potassium channels participate in neurovascular coupling. Br J Pharmacol 164:922–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Lu CC, Hilgemann DW (1999) GAT1 (GABA:Na+:Cl) cotransport function. Steady state studies in giant Xenopus oocyte membrane patches. J Gen Physiol 114:429–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Lu DC, Zhang H, Zador Z, Verkman AS (2008) Impaired olfaction in mice lacking aquaporin-4 water channels. FASEB J 22:3216–3223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Lu Z (2004) Mechanism of rectification in inward-rectifier K+ channels. Annu Rev Physiol 66:103–129

    Article  CAS  PubMed  Google Scholar 

  226. Macaulay N, Zeuthen T (2012) Glial K+ clearance and cell swelling: key roles for cotransporters and pumps. Neurochem Res 37:2299–2309

    Article  CAS  PubMed  Google Scholar 

  227. MacVicar BA, Feighan D, Brown A, Ransom B (2002) Intrinsic optical signals in the rat optic nerve: role for K+ uptake via NKCC1 and swelling of astrocytes. Glia 37:114–123

    Article  PubMed  Google Scholar 

  228. MacVicar BA, Tse FW (1988) Norepinephrine and cyclic adenosine 3′:5′-cyclic monophosphate enhance a nifedipine-sensitive calcium current in cultured rat astrocytes. Glia 1:359–365

    Article  CAS  PubMed  Google Scholar 

  229. MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl channels in astrocytes of hippocampal slices. J Neurosci 9:3577–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Magnotti LM, Goodenough DA, Paul DL (2011) Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia 59:26–34

    Article  PubMed  PubMed Central  Google Scholar 

  231. Malarkey EB, Ni Y, Parpura V (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56:821–835

    Article  PubMed  Google Scholar 

  232. Mantyh PW, Rogers SD, Allen CJ, Catton MD, Ghilardi JR, Levin LA, Maggio JE, Vigna SR (1995) β2-adrenergic receptors are expressed by glia in vivo in the normal and injured central nervous system in the rat, rabbit, and human. J Neurosci 15:152–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Marsault R, Vigne P, Breittmayer JP, Frelin C (1990) Astrocytes are target cells for endothelins and sarafotoxin. J Neurochem 54:2142–2144

    Article  CAS  PubMed  Google Scholar 

  234. Martineau M, Parpura V, Mothet JP (2014) Cell-type specific mechanisms of D-serine uptake and release in the brain. Front Synaptic Neurosci 6:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Maucler C, Pernot P, Vasylieva N, Pollegioni L, Marinesco S (2013) In vivo D-serine hetero-exchange through alanine-serine-cysteine (ASC) transporters detected by microelectrode biosensors. ACS Chem Neurosci. 4:772–781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. McCarthy KD, Salm AK (1991) Pharmacologically-distinct subsets of astroglia can be identified by their calcium response to neuroligands. Neuroscience 41:325–333

    Article  CAS  PubMed  Google Scholar 

  237. Miller RL, Loewy AD (2013) ENaC γ-expressing astrocytes in the circumventricular organs, white matter, and ventral medullary surface: sites for Na+ regulation by glial cells. J Chem Neuroanat 53:72–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Miller RL, Wang MH, Gray PA, Salkoff LB, Loewy AD (2013) ENaC-expressing neurons in the sensory circumventricular organs become c-Fos activated following systemic sodium changes. Am J Physiol Regul Integr Comp Physiol 305:R1141–R1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Milner TA, Lee A, Aicher SA, Rosin DL (1998) Hippocampal α2a-adrenergic receptors are located predominantly presynaptically but are also found postsynaptically and in selective astrocytes. J Comp Neurol 395:310–327

    Article  CAS  PubMed  Google Scholar 

  240. Minelli A, Castaldo P, Gobbi P, Salucci S, Magi S, Amoroso S (2007) Cellular and subcellular localization of Na+-Ca2+ exchanger protein isoforms, NCX1, NCX2, and NCX3 in cerebral cortex and hippocampus of adult rat. Cell Calcium 41:221–234

    Article  CAS  PubMed  Google Scholar 

  241. Minelli A, DeBiasi S, Brecha NC, Zuccarello LV, Conti F (1996) GAT-3, a high-affinity GABA plasma membrane transporter, is localized to astrocytic processes, and it is not confined to the vicinity of GABAergic synapses in the cerebral cortex. J Neurosci 16:6255–6264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Mishima T, Hirase H (2010) In vivo intracellular recording suggests that gray matter astrocytes in mature cerebral cortex and hippocampus are electrophysiologically homogeneous. J Neurosci 30:3093–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Mishima T, Sakatani S, Hirase H (2007) Intracellular labeling of single cortical astrocytes in vivo. J Neurosci Methods 166:32–40

    Article  CAS  PubMed  Google Scholar 

  244. Miyano K, Morioka N, Sugimoto T, Shiraishi S, Uezono Y, Nakata Y (2010) Activation of the neurokinin-1 receptor in rat spinal astrocytes induces Ca2+ release from IP3-sensitive Ca2+ stores and extracellular Ca2+ influx through TRPC3. Neurochem Int 57:923–934

    Article  CAS  PubMed  Google Scholar 

  245. Miyazaki I, Asanuma M, Diaz-Corrales FJ, Miyoshi K, Ogawa N (2004) Direct evidence for expression of dopamine receptors in astrocytes from basal ganglia. Brain Res 1029:120–123

    Article  CAS  PubMed  Google Scholar 

  246. Molnar T, Yarishkin O, Iuso A, Barabas P, Jones B, Marc RE, Phuong TT, Krizaj D (2016) Store-operated calcium entry in muller glia is controlled by synergistic activation of TRPC and Orai channels. J Neurosci 36:3184–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, Hirase H (2016) Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nat Commun 7:11100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Moreno C, Sampieri A, Vivas O, Pena-Segura C, Vaca L (2012) STIM1 and Orai1 mediate thrombin-induced Ca2+ influx in rat cortical astrocytes. Cell Calcium 52:457–467

    Article  CAS  PubMed  Google Scholar 

  249. Morgello S, Uson RR, Schwartz EJ, Haber RS (1995) The human blood-brain barrier glucose transporter (GLUT1) is a glucose transporter of gray matter astrocytes. Glia 14:43–54

    Article  CAS  PubMed  Google Scholar 

  250. Muhic M, Vardjan N, Chowdhury HH, Zorec R, Kreft M (2015) Insulin and insulin-like growth factor 1 (IGF-1) modulate cytoplasmic glucose and glycogen levels but not glucose transport across the membrane in astrocytes. J Biol Chem 290:11167–11176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Mulkey DK, Wenker IC (2011) Astrocyte chemoreceptors: mechanisms of H+ sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp Physiol 96:400–406

    Article  CAS  PubMed  Google Scholar 

  252. Muller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci 14:2503–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Muller T, Moller T, Berger T, Schnitzer J, Kettenmann H (1992) Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells. Science 256:1563–1566

    Article  CAS  PubMed  Google Scholar 

  254. Murphy S, Welk G (1990) Hydrolysis of polyphosphoinositides in astrocytes by platelet-activating factor. Eur J Pharmacol 188:399–401

    Article  CAS  PubMed  Google Scholar 

  255. Nadarajah B, Thomaidou D, Evans WH, Parnavelas JG (1996) Gap junctions in the adult cerebral cortex: regional differences in their distribution and cellular expression of connexins. J Comp Neurol 376:326–342

    Article  CAS  PubMed  Google Scholar 

  256. Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93:1543–1562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Nagy JI, Dudek FE, Rash JE (2004) Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Brain Res Rev 47:191–215

    Article  CAS  PubMed  Google Scholar 

  258. Nagy JI, Li X, Rempel J, Stelmack G, Patel D, Staines WA, Yasumura T, Rash JE (2001) Connexin26 in adult rodent central nervous system: demonstration at astrocytic gap junctions and colocalization with connexin30 and connexin43. J Comp Neurol 441:302–323

    Article  CAS  PubMed  Google Scholar 

  259. Nagy JI, Lynn BD, Tress O, Willecke K, Rash JE (2011) Connexin26 expression in brain parenchymal cells demonstrated by targeted connexin ablation in transgenic mice. Eur J Neurosci 34:263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF (2005) The cytokine IL-1β transiently enhances P2X7 receptor expression and function in human astrocytes. Glia. 49:245–258

    Article  PubMed  PubMed Central  Google Scholar 

  261. Navarrete M, Araque A (2008) Endocannabinoids mediate neuron-astrocyte communication. Neuron 57:883–893

    Article  CAS  PubMed  Google Scholar 

  262. Navarrete M, Araque A (2010) Endocannabinoids potentiate synaptic transmission through stimulation of astrocytes. Neuron 68:113–126

    Article  CAS  PubMed  Google Scholar 

  263. Newman EA (1996) Acid efflux from retinal glial cells generated by sodium bicarbonate cotransport. J Neurosci 16:159–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614

    Article  CAS  PubMed  Google Scholar 

  265. Nilsson M, Hansson E, Ronnback L (1991) Adrenergic and 5-HT2 receptors on the same astroglial cell. A microspectrofluorimetric study on cytosolic Ca2+ responses in single cells in primary culture. Brain Res Dev Brain Res 63:33–41

    Article  CAS  PubMed  Google Scholar 

  266. Nobile M, Monaldi I, Alloisio S, Cugnoli C, Ferroni S (2003) ATP-induced, sustained calcium signalling in cultured rat cortical astrocytes: evidence for a non-capacitative, P2X7-like-mediated calcium entry. FEBS Lett 538:71–76

    Article  CAS  PubMed  Google Scholar 

  267. Noda M, Sakuta H (2013) Central regulation of body-fluid homeostasis. Trends Neurosci 36:661–673

    Article  CAS  PubMed  Google Scholar 

  268. Norenberg W, Schunk J, Fischer W, Sobottka H, Riedel T, Oliveira JF, Franke H, Illes P (2010) Electrophysiological classification of P2X7 receptors in rat cultured neocortical astroglia. Br J Pharmacol 160:1941–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML (2016) The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 132:1–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. O’Connor ER, Sontheimer H, Ransom BR (1994) Rat hippocampal astrocytes exhibit electrogenic sodium-bicarbonate co-transport. J Neurophysiol 72:2580–2589

    Article  PubMed  Google Scholar 

  271. Oikawa H, Nakamichi N, Kambe Y, Ogura M, Yoneda Y (2005) An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. J Neurosci Res 79:535–544

    Article  CAS  PubMed  Google Scholar 

  272. Oliveira JF, Riedel T, Leichsenring A, Heine C, Franke H, Krugel U, Norenberg W, Illes P (2011) Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 21:806–820

    Article  PubMed  Google Scholar 

  273. Olsen ML, Campbell SL, Sontheimer H (2007) Differential distribution of Kir4.1 in spinal cord astrocytes suggests regional differences in K+ homeostasis. J Neurophysiol 98:786–793

    Article  CAS  PubMed  Google Scholar 

  274. Orellana JA, Saez PJ, Cortes-Campos C, Elizondo RJ, Shoji KF, Contreras-Duarte S, Figueroa V, Velarde V, Jiang JX, Nualart F, Saez JC, Garcia MA (2012) Glucose increases intracellular free Ca2+ in tanycytes via ATP released through connexin 43 hemichannels. Glia 60:53–68

    Article  PubMed  Google Scholar 

  275. Orellana JA, Saez PJ, Shoji KF, Schalper KA, Palacios-Prado N, Velarde V, Giaume C, Bennett MV, Saez JC (2009) Modulation of brain hemichannels and gap junction channels by pro-inflammatory agents and their possible role in neurodegeneration. Antioxid Redox Signal 11:369–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272:22373–22376

    Article  CAS  PubMed  Google Scholar 

  277. Orthmann-Murphy JL, Freidin M, Fischer E, Scherer SS, Abrams CK (2007) Two distinct heterotypic channels mediate gap junction coupling between astrocyte and oligodendrocyte connexins. J Neurosci 27:13949–13957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Owe SG, Marcaggi P, Attwell D (2006) The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia. J Physiol 577:591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Pakhotin P, Verkhratsky A (2005) Electrical synapses between Bergmann glial cells and Purkinje neurones in rat cerebellar slices. Mol Cell Neurosci 28:79–84

    Article  PubMed  Google Scholar 

  280. Palygin O, Lalo U, Pankratov Y (2011) Distinct pharmacological and functional properties of NMDA receptors in mouse cortical astrocytes. Br J Pharmacol 163:1755–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Palygin O, Lalo U, Verkhratsky A, Pankratov Y (2010) Ionotropic NMDA and P2X1/5 receptors mediate synaptically induced Ca2+ signalling in cortical astrocytes. Cell Calcium 48:225–231

    Article  CAS  PubMed  Google Scholar 

  282. Panenka W, Jijon H, Herx LM, Armstrong JN, Feighan D, Wei T, Yong VW, Ransohoff RM, MacVicar BA (2001) P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. J Neurosci 21:7135–7142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Pangrsic T, Potokar M, Haydon PG, Zorec R, Kreft M (2006) Astrocyte swelling leads to membrane unfolding, not membrane insertion. J Neurochem 99:514–523

    Article  CAS  PubMed  Google Scholar 

  284. Pankratov Y, Lalo U (2015) Role for astroglial α1-adrenoreceptors in gliotransmission and control of synaptic plasticity in the neocortex. Front Cell Neurosci 9:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. Pappalardo LW, Black JA, Waxman SG (2016) Sodium channels in astroglia and microglia. Glia

    Google Scholar 

  286. Pappalardo LW, Liu S, Black JA, Waxman SG (2014) Dynamics of sodium channel Nav1.5 expression in astrocytes in mouse models of multiple sclerosis. NeuroReport 25:1208–1215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Pappalardo LW, Samad OA, Black JA, Waxman SG (2014) Voltage-gated sodium channel Nav 1.5 contributes to astrogliosis in an in vitro model of glial injury via reverse Na+/Ca2+ exchange. Glia 62:1162–1175

    Article  PubMed  PubMed Central  Google Scholar 

  288. Pappas CA, Ransom BR (1993) A depolarization-stimulated, bafilomycin-inhibitable H+ pump in hippocampal astrocytes. Glia 9:280–291

    Article  CAS  PubMed  Google Scholar 

  289. Parekh AB, Putney JW Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    Article  CAS  PubMed  Google Scholar 

  290. Park H, Han KS, Oh SJ, Jo S, Woo J, Yoon BE, Lee CJ (2013) High glutamate permeability and distal localization of Best1 channel in CA1 hippocampal astrocyte. Mol Brain 6:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Parkerson KA, Sontheimer H (2004) Biophysical and pharmacological characterization of hypotonically activated chloride currents in cortical astrocytes. Glia 46:419–436

    Article  PubMed  PubMed Central  Google Scholar 

  292. Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747

    Article  CAS  PubMed  Google Scholar 

  293. Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels”, purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Article  CAS  PubMed  Google Scholar 

  294. Parri HR, Gould TM, Crunelli V (2001) Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat Neurosci 4:803–812

    Article  CAS  PubMed  Google Scholar 

  295. Pastor A, Chvatal A, Sykova E, Kettenmann H (1995) Glycine- and GABA-activated currents in identified glial cells of the develo** rat spinal cord slice. Eur J Neurosci 7:1188–1198

    Article  CAS  PubMed  Google Scholar 

  296. Pastor A, Kremer M, Moller T, Kettenmann H, Dermietzel R (1998) Dye coupling between spinal cord oligodendrocytes: differences in coupling efficiency between gray and white matter. Glia 24:108–120

    Article  CAS  PubMed  Google Scholar 

  297. Peakman MC, Hill SJ (1995) Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes. Br J Pharmacol 115:801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Pearce B, Langley D (1994) Purine- and pyrimidine-stimulated phosphoinositide breakdown and intracellular calcium mobilisation in astrocytes. Brain Res 660:329–332

    Article  CAS  PubMed  Google Scholar 

  299. Pearce B, Murphy S, Jeremy J, Morrow C, Dandona P (1989) ATP-evoked Ca2+ mobilisation and prostanoid release from astrocytes: P2-purinergic receptors linked to phosphoinositide hydrolysis. J Neurochem 52:971–977

    Article  CAS  PubMed  Google Scholar 

  300. Peng L, Huang R, Yu AC, Fung KY, Rathbone MP, Hertz L (2005) Nucleoside transporter expression and function in cultured mouse astrocytes. Glia 52:25–35

    Article  PubMed  Google Scholar 

  301. Pereira GJ, Hirata H, Fimia GM, do Carmo LG, Bincoletto C, Han SW, Stilhano RS, Ureshino RP, Bloor-Young D, Churchill G, Piacentini M, Patel S, Smaili SS (2011) Nicotinic acid adenine dinucleotide phosphate (NAADP) regulates autophagy in cultured astrocytes. J Biol Chem 286:27875–27881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Petravicz J, Boyt KM, McCarthy KD (2014) Astrocyte IP3R2-dependent Ca2+ signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci 8:384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Petravicz J, Fiacco TA, McCarthy KD (2008) Loss of IP3 receptor-dependent Ca2+ increases in hippocampal astrocytes does not affect baseline CA1 pyramidal neuron synaptic activity. J Neurosci 28:4967–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Petroni A, Salami M, Blasevich M, Papini N, Galella G, Colombo C, Galli C (1994) Eicosanoid and inositol phosphate response to platelet-activating factor (PAF) and to a PAF antagonist in rat astroglial cells. Brain Res Dev Brain Res 78:169–174

    Article  CAS  PubMed  Google Scholar 

  305. Philippe JM, Dubois JM, Rouzaire-Dubois B, Cartron PF, Vallette F, Morel N (2002) Functional expression of V-ATPases in the plasma membrane of glial cells. Glia 37:365–373

    Article  PubMed  Google Scholar 

  306. Pilitsis JG, Kimelberg HK (1998) Adenosine receptor mediated stimulation of intracellular calcium in acutely isolated astrocytes. Brain Res 798:294–303

    Article  CAS  PubMed  Google Scholar 

  307. Pines G, Danbolt NC, Bjoras M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BI (1992) Cloning and expression of a rat brain L-glutamate transporter. Nature 360:464–467

    Article  CAS  PubMed  Google Scholar 

  308. Pizzo P, Burgo A, Pozzan T, Fasolato C (2001) Role of capacitative calcium entry on glutamate-induced calcium influx in type-I rat cortical astrocytes. J Neurochem 79:98–109

    Article  CAS  PubMed  Google Scholar 

  309. Poopalasundaram S, Knott C, Shamotienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP (2000) Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. Glia. 30:362–372

    Article  CAS  PubMed  Google Scholar 

  310. Porter JT, McCarthy KD (1995) Adenosine receptors modulate [Ca2+]i in hippocampal astrocytes in situ. J Neurochem 65:1515–1523

    Article  CAS  PubMed  Google Scholar 

  311. Porter JT, McCarthy KD (1995) GFAP-positive hippocampal astrocytes in situ respond to glutamatergic neuroligands with increases in [Ca2+]i. Glia. 13:101–112

    Article  CAS  PubMed  Google Scholar 

  312. Porter JT, McCarthy KD (1996) Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J Neurosci 16:5073–5081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  313. Potokar M, Stenovec M, Jorgacevski J, Holen T, Kreft M, Ottersen OP, Zorec R (2013) Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 61:917–928

    Article  PubMed  Google Scholar 

  314. Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72

    Article  CAS  PubMed  Google Scholar 

  315. Price DL, Ludwig JW, Mi H, Schwarz TL, Ellisman MH (2002) Distribution of rSlo Ca2+-activated K+ channels in rat astrocyte perivascular endfeet. Brain Res 956:183–193

    Article  CAS  PubMed  Google Scholar 

  316. Price TJ, Hargreaves KM, Cervero F (2006) Protein expression and mRNA cellular distribution of the NKCC1 cotransporter in the dorsal root and trigeminal ganglia of the rat. Brain Res 1112:146–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Raap M, Biedermann B, Braun P, Milenkovic I, Skatchkov SN, Bringmann A, Reichenbach A (2002) Diversity of Kir channel subunit mRNA expressed by retinal glial cells of the guinea-pig. NeuroReport 13:1037–1040

    Article  CAS  PubMed  Google Scholar 

  318. Radian R, Kanner BI (1983) Stoichiometry of sodium- and chloride-coupled gamma-aminobutyric acid transport by synaptic plasma membrane vesicles isolated from rat brain. Biochemistry 22:1236–1241

    Article  CAS  PubMed  Google Scholar 

  319. Rauen T, Rothstein JD, Wassle H (1996) Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res 286:325–336

    Article  CAS  PubMed  Google Scholar 

  320. Ray A, Zoidl G, Weickert S, Wahle P, Dermietzel R (2005) Site-specific and developmental expression of pannexin1 in the mouse nervous system. Eur J Neurosci 21:3277–3290

    Article  PubMed  Google Scholar 

  321. Reese KA, Caldwell JH (1999) Immunocytochemical localization of NaCh6 in cultured spinal cord astrocytes. Glia 26:92–96

    Article  CAS  PubMed  Google Scholar 

  322. Requardt RP, Hirrlinger PG, Wilhelm F, Winkler U, Besser S, Hirrlinger J (2012) Ca2+ signals of astrocytes are modulated by the NAD+/NADH redox state. J Neurochem 120:1014–1025

    CAS  PubMed  Google Scholar 

  323. Reyes RC, Verkhratsky A, Parpura V (2012) Plasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes. ASN Neuro 4

    Article  CAS  Google Scholar 

  324. Reyes RC, Verkhratsky A, Parpura V (2013) TRPC1-mediated Ca2+ and Na+ signalling in astroglia: differential filtering of extracellular cations. Cell Calcium (in press)

    Google Scholar 

  325. Ribak CE, Tong WM, Brecha NC (1996) GABA plasma membrane transporters, GAT-1 and GAT-3, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606

    Article  CAS  PubMed  Google Scholar 

  326. Riquelme R, Miralles CP, De Blas AL (2002) Bergmann glia GABAA receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22:10720–10730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Ronco V, Grolla AA, Glasnov TN, Canonico PL, Verkhratsky A, Genazzani AA, Lim D (2014) Differential deregulation of astrocytic calcium signalling by amyloid-β, TNFα, IL-1β and LPS. Cell Calcium 55:219–229

    Article  CAS  PubMed  Google Scholar 

  328. Rose CR, Karus C (2013) Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 61:1191–1205

    Article  PubMed  Google Scholar 

  329. Rose CR, Ransom BR (1996) Intracellular sodium homeostasis in rat hippocampal astrocytes. J Physiol 491(Pt 2):291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Rose CR, Ransom BR (1997) Regulation of intracellular sodium in cultured rat hippocampal neurones. J Physiol 499(Pt 3):573–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  331. Rose CR, Verkhratsky A (2016) Principles of sodium homeostasis and sodium signalling in astroglia. Glia 64:1611–1627

    Article  PubMed  Google Scholar 

  332. Roux L, Benchenane K, Rothstein JD, Bonvento G, Giaume C (2011) Plasticity of astroglial networks in olfactory glomeruli. Proc Natl Acad Sci USA 108:18442–18446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Roux MJ, Supplisson S (2000) Neuronal and glial glycine transporters have different stoichiometries. Neuron 25:373–383

    Article  CAS  PubMed  Google Scholar 

  334. Roy ML, Saal D, Perney T, Sontheimer H, Waxman SG, Kaczmarek LK (1996) Manipulation of the delayed rectifier Kv1.5 potassium channel in glial cells by antisense oligodeoxynucleotides. Glia 18:177–184

    Article  CAS  PubMed  Google Scholar 

  335. Rubini P, Pagel G, Mehri S, Marquardt P, Riedel T, Illes P (2014) Functional P2X7 receptors at cultured hippocampal astrocytes but not neurons. Naunyn Schmiedebergs Arch Pharmacol 387:943–954

    Article  CAS  PubMed  Google Scholar 

  336. Rungta RL, Bernier LP, Dissing-Olesen L, Groten CJ, LeDue JM, Ko R, Drissler S, MacVicar BA (2016) Ca2+ transients in astrocyte fine processes occur via Ca2+ influx in the adult mouse hippocampus. Glia 64:2093–2103

    Article  PubMed  Google Scholar 

  337. Rusnakova V, Honsa P, Dzamba D, Stahlberg A, Kubista M, Anderova M (2013) Heterogeneity of astrocytes: from development to injury—single cell gene expression. PLoS ONE 8:e69734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Saab AS, Neumeyer A, Jahn HM, Cupido A, Simek AA, Boele HJ, Scheller A, Le Meur K, Gotz M, Monyer H, Sprengel R, Rubio ME, Deitmer JW, De Zeeuw CI, Kirchhoff F (2012) Bergmann glial AMPA receptors are required for fine motor coordination. Science 337:749–753

    Article  CAS  PubMed  Google Scholar 

  339. Salm AK, McCarthy KD (1990) Norepinephrine-evoked calcium transients in cultured cerebral type 1 astroglia. Glia 3:529–538

    Article  CAS  PubMed  Google Scholar 

  340. Sanchez C, Galve-Roperh I, Rueda D, Guzman M (1998) Involvement of sphingomyelin hydrolysis and the mitogen-activated protein kinase cascade in the Delta9-tetrahydrocannabinol-induced stimulation of glucose metabolism in primary astrocytes. Mol Pharmacol 54:834–843

    Article  CAS  PubMed  Google Scholar 

  341. Sanden N, Thorlin T, Blomstrand F, Persson PA, Hansson E (2000) 5-Hydroxytryptamine2B receptors stimulate Ca2+ increases in cultured astrocytes from three different brain regions. Neurochem Int 36:427–434

    Article  CAS  PubMed  Google Scholar 

  342. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H (2007) Human astrocytes express aquaporin-1 and aquaporin-4 in vitro and in vivo. Neuropathology 27:245–256

    Article  PubMed  Google Scholar 

  343. Scalise M, Pochini L, Galluccio M, Indiveri C (2016) Glutamine transport. From energy supply to sensing and beyond. Biochim Biophys Acta

    Google Scholar 

  344. Scemes E, Giaume C (2006) Astrocyte calcium waves: what they are and what they do. Glia 54:716–725

    Article  PubMed  PubMed Central  Google Scholar 

  345. Schaller KL, Krzemien DM, Yarowsky PJ, Krueger BK, Caldwell JH (1995) A novel, abundant sodium channel expressed in neurons and glia. J Neurosci 15:3231–3242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  346. Scharfman HE, Binder DK (2013) Aquaporin-4 water channels and synaptic plasticity in the hippocampus. Neurochem Int 63:702–711

    Article  CAS  PubMed  Google Scholar 

  347. Schipke CG, Heuser I, Peters O (2011) Antidepressants act on glial cells: SSRIs and serotonin elicit astrocyte calcium signaling in the mouse prefrontal cortex. J Psychiatr Res 45:242–248

    Article  PubMed  Google Scholar 

  348. Schipke CG, Ohlemeyer C, Matyash M, Nolte C, Kettenmann H, Kirchhoff F (2001) Astrocytes of the mouse neocortex express functional N-methyl-D-aspartate receptors. FASEB J. 15:1270–1272

    Article  CAS  PubMed  Google Scholar 

  349. Schroeter S, Apparsundaram S, Wiley RG, Miner LH, Sesack SR, Blakely RD (2000) Immunolocalization of the cocaine- and antidepressant-sensitive l-norepinephrine transporter. J Comp Neurol 420:211–232

    Article  CAS  PubMed  Google Scholar 

  350. Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhauser C (2009) Analysis of astroglial K+ channel expression in the develo** hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29:7474–7488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Seifert G, Steinhauser C (1995) Glial cells in the mouse hippocampus express AMPA receptors with an intermediate Ca2+ permeability. Eur J Neurosci 7:1872–1881

    Article  CAS  PubMed  Google Scholar 

  352. Shao Y, Sutin J (1992) Expression of adrenergic receptors in individual astrocytes and motor neurons isolated from the adult rat brain. Glia 6:108–117

    Article  CAS  PubMed  Google Scholar 

  353. Sharma G, Vijayaraghavan S (2001) Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc Natl Acad Sci USA 98:4148–4153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Sharp AH, Nucifora FC Jr, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugo DK, Ross CA (1999) Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 406:207–220

    Article  CAS  PubMed  Google Scholar 

  355. Shelton MK, McCarthy KD (2000) Hippocampal astrocytes exhibit Ca2+-elevating muscarinic cholinergic and histaminergic receptors in situ. J Neurochem 74:555–563

    Article  CAS  PubMed  Google Scholar 

  356. Sheppard CA, Simpson PB, Sharp AH, Nucifora FC, Ross CA, Lange GD, Russell JT (1997) Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. J Neurochem 68:2317–2327

    Article  CAS  PubMed  Google Scholar 

  357. Sherwood MW, Arizono M, Hisatsune C, Bannai H, Ebisui E, Sherwood JL, Panatier A, Oliet SH, Mikoshiba K (2017) Astrocytic IP3 Rs: contribution to Ca2+ signalling and hippocampal LTP. Glia 65:502–513

    Article  PubMed  Google Scholar 

  358. Shibasaki K, Hosoi N, Kaneko R, Tominaga M, Yamada K (2016) Glycine release from astrocytes via functional reversal of GlyT1. J Neurochem

    Google Scholar 

  359. Shigetomi E, Bowser DN, Sofroniew MV, Khakh BS (2008) Two forms of astrocyte calcium excitability have distinct effects on NMDA receptor-mediated slow inward currents in pyramidal neurons. J Neurosci 28:6659–6663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  360. Shigetomi E, Jackson-Weaver O, Huckstepp RT, O’Dell TJ, Khakh BS (2013) TRPA1 channels are regulators of astrocyte basal calcium levels and long-term potentiation via constitutive D-serine release. J Neurosci 33:10143–10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Shigetomi E, Patel S, Khakh BS (2016) Probing the complexities of astrocyte calcium signaling. Trends Cell Biol 26:300–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS (2012) TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat Neurosci 15:70–80

    Article  CAS  Google Scholar 

  363. Sik A, Smith RL, Freund TF (2000) Distribution of chloride channel-2-immunoreactive neuronal and astrocytic processes in the hippocampus. Neuroscience 101:51–65

    Article  CAS  PubMed  Google Scholar 

  364. Simpson PB, Holtzclaw LA, Langley DB, Russell JT (1998) Characterization of ryanodine receptors in oligodendrocytes, type 2 astrocytes, and O-2A progenitors. J Neurosci Res 52:468–482

    Article  CAS  PubMed  Google Scholar 

  365. Skatchkov SN, Rojas L, Eaton MJ, Orkand RK, Biedermann B, Bringmann A, Pannicke T, Veh RW, Reichenbach A (2002) Functional expression of Kir 6.1/SUR1-KATP channels in frog retinal Muller glial cells. Glia 38:256–267

    Article  PubMed  Google Scholar 

  366. Skowronska M, Zielinska M, Albrecht J (2010) Stimulation of natriuretic peptide receptor C attenuates accumulation of reactive oxygen species and nitric oxide synthesis in ammonia-treated astrocytes. J Neurochem 115:1068–1076

    Article  CAS  PubMed  Google Scholar 

  367. Skucas VA, Mathews IB, Yang J, Cheng Q, Treister A, Duffy AM, Verkman AS, Hempstead BL, Wood MA, Binder DK, Scharfman HE (2011) Impairment of select forms of spatial memory and neurotrophin-dependent synaptic plasticity by deletion of glial aquaporin-4. J Neurosci 31:6392–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    Article  CAS  PubMed  Google Scholar 

  369. Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K (2004) New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res Brain Res Rev 47:245–259

    Article  CAS  PubMed  Google Scholar 

  370. Solenov E, Watanabe H, Manley GT, Verkman AS (2004) Sevenfold-reduced osmotic water permeability in primary astrocyte cultures from AQP-4-deficient mice, measured by a fluorescence quenching method. Am J Physiol Cell Physiol 286:C426–C432

    Article  CAS  PubMed  Google Scholar 

  371. Sontheimer H, Black JA, Ransom BR, Waxman SG (1992) Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels. J Neurophysiol 68:985–1000

    Article  CAS  PubMed  Google Scholar 

  372. Sontheimer H, Fernandez-Marques E, Ullrich N, Pappas CA, Waxman SG (1994) Astrocyte Na+ channels are required for maintenance of Na+/K+-ATPase activity. J Neurosci 14:2464–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  373. Sontheimer H, Minturn JE, Black JA, Ransom BR, Waxman SG (1991) Two types of Na+-currents in cultured rat optic nerve astrocytes: changes with time in culture and with age of culture derivation. J Neurosci Res 30:275–287

    Article  CAS  PubMed  Google Scholar 

  374. Sontheimer H, Waxman SG (1992) Ion channels in spinal cord astrocytes in vitro. II. Biophysical and pharmacological analysis of two Na+ current types. J Neurophysiol 68:1001–1011

    Article  CAS  PubMed  Google Scholar 

  375. Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, Golshani P, Khakh BS (2015) Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat Neurosci 18:708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  376. Steinhauser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35

    Article  CAS  PubMed  Google Scholar 

  377. Stenovec M, Kreft M, Grilc S, Pangrsic T, Zorec R (2008) EAAT2 density at the astrocyte plasma membrane and Ca(2+)-regulated exocytosis. Mol Membr Biol 25:203–215

    Article  CAS  PubMed  Google Scholar 

  378. Stephens GJ, Cholewinski AJ, Wilkin GP, Djamgoz MB (1993) Calcium-mobilizing and electrophysiological effects of bradykinin on cortical astrocyte subtypes in culture. Glia 9:269–279

    Article  CAS  PubMed  Google Scholar 

  379. Stiene-Martin A, Gurwell JA, Hauser KF (1991) Morphine alters astrocyte growth in primary cultures of mouse glial cells: evidence for a direct effect of opiates on neural maturation. Brain Res Dev Brain Res 60:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  380. Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999) Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochem Cell Biol 112:457–465

    Article  CAS  PubMed  Google Scholar 

  381. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Sumners C, Tang W, Paulding W, Raizada MK (1994) Peptide receptors in astroglia: focus on angiotensin II and atrial natriuretic peptide. Glia 11:110–116

    Article  CAS  PubMed  Google Scholar 

  384. Sun L, Kosugi Y, Kawakami E, Piao YS, Hashimoto T, Oyanagi K (2009) Magnesium concentration in the cerebrospinal fluid of mice and its response to changes in serum magnesium concentration. Magnes Res 22:266–272

    CAS  PubMed  Google Scholar 

  385. Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W, Lovatt D, Han X, Smith Y, Nedergaard M (2013) Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  386. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E, Mikoshiba K, Hirase H (2011) Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J Neurosci 31:18155–18165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  387. Takeda H, Inazu M, Matsumiya T (2002) Astroglial dopamine transport is mediated by norepinephrine transporter. Naunyn Schmiedebergs Arch Pharmacol. 366:620–623

    Article  CAS  PubMed  Google Scholar 

  388. Takuma K, Matsuda T, Hashimoto H, Kitanaka J, Asano S, Kishida Y, Baba A (1996) Role of Na+-Ca2+ exchanger in agonist-induced Ca2+ signaling in cultured rat astrocytes. J Neurochem 67:1840–1845

    Article  CAS  PubMed  Google Scholar 

  389. Talantova M, Sanz-Blasco S, Zhang X, **a P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, Kang YJ, Tu S, Molokanova E, McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solomon JP, Michael S, Powers ET, Kelly JW, Roberts A, Tong G, Fang-Newmeyer T, Parker J, Holland EA, Zhang D, Nakanishi N, Chen HS, Wolosker H, Wang Y, Parsons LH, Ambasudhan R, Masliah E, Heinemann SF, Pina-Crespo JC, Lipton SA (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci USA 110:E2518–E2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  390. Teaktong T, Graham A, Court J, Perry R, Jaros E, Johnson M, Hall R, Perry E (2003) Alzheimer’s disease is associated with a selective increase in α7 nicotinic acetylcholine receptor immunoreactivity in astrocytes. Glia. 41:207–211

    Article  PubMed  Google Scholar 

  391. Teather LA, Lee RK, Wurtman RJ (2002) Platelet-activating factor increases prostaglandin E2 release from astrocyte-enriched cortical cell cultures. Brain Res 946:87–95

    Article  CAS  PubMed  Google Scholar 

  392. Tence M, Ezan P, Amigou E, Giaume C (2012) Increased interaction of connexin43 with zonula occludens-1 during inhibition of gap junctions by G protein-coupled receptor agonists. Cell Signal 24:86–98

    Article  CAS  PubMed  Google Scholar 

  393. Teoh R, Kum W, Cockram CS, Young JD, Nicholls MG (1989) Mouse astrocytes possess specific ANP receptors which are linked to cGMP production. Clin Exp Pharmacol Physiol 16:323–327

    Article  CAS  PubMed  Google Scholar 

  394. Theparambil SM, Naoshin Z, Thyssen A, Deitmer JW (2015) Reversed electrogenic sodium bicarbonate cotransporter 1 is the major acid loader during recovery from cytosolic alkalosis in mouse cortical astrocytes. J Physiol 593:3533–3547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  395. Thomzig A, Wenzel M, Karschin C, Eaton MJ, Skatchkov SN, Karschin A, Veh RW (2001) Kir6.1 is the principal pore-forming subunit of astrocyte but not neuronal plasma membrane K-ATP channels. Mol Cell Neurosci 18:671–690

    Article  CAS  PubMed  Google Scholar 

  396. Thorlin T, Eriksson PS, Persson PA, Aberg ND, Hansson E, Ronnback L (1998) δ-opioid receptors on astroglial cells in primary culture: mobilization of intracellular free calcium via a pertussis sensitive G protein. Neuropharmacology 37:299–311

    Article  CAS  PubMed  Google Scholar 

  397. Todd AC, Marx MC, Hulme SR, Broer S, Billups B (2017) SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium. Glia

    Google Scholar 

  398. Toth A, Boczan J, Kedei N, Lizanecz E, Bagi Z, Papp Z, Edes I, Csiba L, Blumberg PM (2005) Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 135:162–168

    Article  CAS  PubMed  Google Scholar 

  399. Tuschick S, Kirischuk S, Kirchhoff F, Liefeldt L, Paul M, Verkhratsky A, Kettenmann H (1997) Bergmann glial cells in situ express endothelinB receptors linked to cytoplasmic calcium signals. Cell Calcium 21:409–419

    Article  CAS  PubMed  Google Scholar 

  400. Ubl JJ, Reiser G (1997) Characteristics of thrombin-induced calcium signals in rat astrocytes. Glia. 21:361–369

    Article  CAS  PubMed  Google Scholar 

  401. Ubl JJ, Vohringer C, Reiser G (1998) Co-existence of two types of [Ca2+]i-inducing protease-activated receptors (PAR-1 and PAR-2) in rat astrocytes and C6 glioma cells. Neuroscience 86:597–609

    Article  CAS  PubMed  Google Scholar 

  402. Unichenko P, Myakhar O, Kirischuk S (2012) Intracellular Na+ concentration influences short-term plasticity of glutamate transporter-mediated currents in neocortical astrocytes. Glia 60:605–614

    Article  PubMed  Google Scholar 

  403. Untiet V, Kovermann P, Gerkau NJ, Gensch T, Rose CR, Fahlke C (2017) Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation. Glia 65:388–400

    Article  PubMed  Google Scholar 

  404. Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657

    Article  CAS  PubMed  Google Scholar 

  405. Venance L, Premont J, Glowinski J, Giaume C (1998) Gap junctional communication and pharmacological heterogeneity in astrocytes cultured from the rat striatum. J Physiol 510(Pt 2):429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  406. Verkhratsky A, Butt AM (2013) Glial physiology and pathophysiology. Wiley-Blackwell, Chichester, p 560

    Book  Google Scholar 

  407. Verkhratsky A, Kettenmann H (1996) Calcium signalling in glial cells. Trends Neurosci 19:346–352

    Article  CAS  PubMed  Google Scholar 

  408. Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond B Biol Sci 369:20130595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  409. Verkhratsky A, Nedergaard M (2016). The homeostatic astroglia emerges from evolutionary specialization of neural cells. Philos Trans R Soc Lond B Biol Sci 371

    Article  Google Scholar 

  410. Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98:239–389

    Article  CAS  PubMed  Google Scholar 

  411. Verkhratsky A, Orkand RK, Kettenmann H (1998) Glial calcium: homeostasis and signaling function. Physiol Rev 78:99–141

    Article  CAS  PubMed  Google Scholar 

  412. Verkhratsky A, Parpura V (2014) Store-operated calcium entry in neuroglia. Neurosci Bull 30:125–133

    Article  CAS  PubMed  Google Scholar 

  413. Verkhratsky A, Parpura V (2015) Physiology of astroglia: channels, receptors, transporters, ion signaling and gliotransmission. Morgan & Claypool Publishers, 172 pp

    Google Scholar 

  414. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  CAS  PubMed  Google Scholar 

  415. Verkhratsky A, Trebak M, Perocchi F, Khananshvili D, Sekler I (2018) Crosslink between calcium and sodium signalling. Exp Physiol 103:157–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M (1995) Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J Biol Chem 270:27411–27414

    Article  CAS  PubMed  Google Scholar 

  417. Wang CM, Chang YY, Sun SH (2003) Activation of P2X7 purinoceptor-stimulated TGF-β 1 mRNA expression involves PKC/MAPK signalling pathway in a rat brain-derived type-2 astrocyte cell line, RBA-2. Cell Signal 15:1129–1137

    Article  CAS  PubMed  Google Scholar 

  418. Wang D, Yan B, Rajapaksha WR, Fisher TE (2009) The expression of voltage-gated ca2+ channels in pituicytes and the up-regulation of L-type ca2+ channels during water deprivation. J Neuroendocrinol 21:858–866

    Article  CAS  PubMed  Google Scholar 

  419. Wang F, Du T, Liang C, Verkhratsky A, Peng L (2015) Ammonium increases Ca2+ signalling and upregulates expression of Cav1.2 gene in astrocytes in primary cultures and in the in vivo brain. Acta Physiol (Oxf) 214:261–274

    Article  CAS  Google Scholar 

  420. Watanabe E, Hiyama TY, Shimizu H, Kodama R, Hayashi N, Miyata S, Yanagawa Y, Obata K, Noda M (2006) Sodium-level-sensitive sodium channel Nax is expressed in glial laminate processes in the sensory circumventricular organs. Am J Physiol Regul Integr Comp Physiol 290:R568–R576

    Article  CAS  PubMed  Google Scholar 

  421. Westenbroek RE, Bausch SB, Lin RC, Franck JE, Noebels JL, Catterall WA (1998) Upregulation of L-type Ca2+ channels in reactive astrocytes after brain injury, hypomyelination, and ischemia. J Neurosci 18:2321–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Woo DH, Han KS, Shim JW, Yoon BE, Kim E, Bae JY, Oh SJ, Hwang EM, Marmorstein AD, Bae YC, Park JY, Lee CJ (2012) TREK-1 and Best1 channels mediate fast and slow glutamate release in astrocytes upon GPCR activation. Cell 151:25–40

    Article  CAS  PubMed  Google Scholar 

  423. Yang F, Sun X, Ding Y, Ma H, Yang TO, Ma Y, Wei D, Li W, Xu T, Jiang W (2016) Astrocytic acid-sensing ion channel 1a contributes to the development of chronic epileptogenesis. Sci Rep 6:31581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Zafra F, Aragon C, Olivares L, Danbolt NC, Gimenez C, Storm-Mathisen J (1995) Glycine transporters are differentially expressed among CNS cells. J Neurosci 15:3952–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  425. Zanassi P, Paolillo M, Montecucco A, Avvedimento EV, Schinelli S (1999) Pharmacological and molecular evidence for dopamine D1 receptor expression by striatal astrocytes in culture. J Neurosci Res 58:544–552

    Article  CAS  PubMed  Google Scholar 

  426. Zerangue N, Kavanaugh MP (1996) Flux coupling in a neuronal glutamate transporter. Nature 383:634–637

    Article  CAS  PubMed  Google Scholar 

  427. Zhang J, Li Y, Chen ZG, Dang H, Ding JH, Fan Y, Hu G (2013) Glia protein aquaporin-4 regulates aversive motivation of spatial memory in Morris water maze. CNS Neurosci Ther 19:937–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  428. Zhang S, Li B, Lovatt D, Xu J, Song D, Goldman SA, Nedergaard M, Hertz L, Peng L (2010) 5-HT2B receptors are expressed on astrocytes from brain and in culture and are a chronic target for all five conventional ‘serotonin-specific reuptake inhibitors’. Neuron Glia Biol 6:113–125

    Article  PubMed  Google Scholar 

  429. Zhang XD, Morishima S, Ando-Akatsuka Y, Takahashi N, Nabekura T, Inoue H, Shimizu T, Okada Y (2004) Expression of novel isoforms of the CIC-1 chloride channel in astrocytic glial cells in vitro. Glia. 47:46–57

    Article  PubMed  Google Scholar 

  430. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  431. Zhou M, Tanaka O, Suzuki M, Sekiguchi M, Takata K, Kawahara K, Abe H (2002) Localization of pore-forming subunit of the ATP-sensitive K+-channel, Kir6.2, in rat brain neurons and glial cells. Brain Res Mol Brain Res 101:23–32

    Article  CAS  PubMed  Google Scholar 

  432. Zhou M, Xu G, **e M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29:8551–8564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  433. Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4:165

    Article  Google Scholar 

  434. Zhu H, Zhao Y, Wu H, Jiang N, Wang Z, Lin W, ** J, Ji Y (2016) Remarkable alterations of Nav1.6 in reactive astrogliosis during epileptogenesis. Sci Rep 6:38108

    Google Scholar 

  435. Zhu SQ, Kum W, Ho SK, Young JD, Cockram CS (1990) Structure-function relationships of insulin receptor interactions in cultured mouse astrocytes. Brain Res 529:329–332

    Article  CAS  PubMed  Google Scholar 

  436. Zhu Z, Reiser G (2014) Signaling mechanism of protease activated receptor 1-induced proliferation of astrocytes: stabilization of hypoxia inducible factor-1alpha triggers glucose metabolism and accumulation of cyclin D1. Neurochem Int 79:20–32

    Article  CAS  PubMed  Google Scholar 

  437. Ziak D, Chvatal A, Sykova E (1998) Glutamate-, kainate- and NMDA-evoked membrane currents in identified glial cells in rat spinal cord slice. Physiol Res 47:365–375

    CAS  PubMed  Google Scholar 

  438. Zielinska M, Fresko I, Konopacka A, Felipo V, Albrecht J (2007) Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28:1260–1263

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

VP’s work is supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123971). VP is an Honorary Professor at University of Rijeka, Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexei Verkhratsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Verkhratsky, A., Parpura, V., Vardjan, N., Zorec, R. (2019). Physiology of Astroglia. In: Verkhratsky, A., Ho, M., Zorec, R., Parpura, V. (eds) Neuroglia in Neurodegenerative Diseases. Advances in Experimental Medicine and Biology, vol 1175. Springer, Singapore. https://doi.org/10.1007/978-981-13-9913-8_3

Download citation

Publish with us

Policies and ethics

Navigation