Relevance of Wavelength in Laser Treatment of Varicose Veins

  • Chapter
  • First Online:
Venous Disorders

Abstract

Endovenous laser therapy (EVLT) or endovenous laser ablation (EVLA) was introduced as a minimally invasive treatment for varicose veins. Lasers work by producing endovenous thermal damage and hence obliteration of the diseased vein. The short- and long-term efficacy and extent of ablative damage and also the complications of pain, phlebitis, etc. are dependent to some extent on the wavelength of the laser. There are continuous modifications in the wavelength used with the aim of minimizing side effects and improving efficiency. Different laser systems as well as varying application strategies are under study. Investigational research and close analysis have helped in a better understanding of the relationship between the clinical efficacy and the physical aspects of the laser with a continuous refinement of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Brazil)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Navarro L, Min RJ, Bone C. Endovenous laser: a new minimally invasive method of treatment for varicose veins--preliminary observations using an 810 nm diode laser. Dermatol Surg. 2001;27(2):117–22.

    CAS  PubMed  Google Scholar 

  2. De Felice E. Shedding light: laser physics and mechanism of action. Phlebology. 2010;25:11–28.

    Article  Google Scholar 

  3. Sroka R, Weick K, Sadeghi-Azandaryani M, Steckmeier B, Schmedt CG. Endovenous laser therapy – application studies and latest investigations. J Biophotonics. 2010;3:269–76.

    Article  Google Scholar 

  4. Neimz MH. Laser tissue interactions. Fundamentals and applications. 3rd ed. Berlin: Springer; 2003.

    Google Scholar 

  5. Welch AJ, Torres JH, Cheong W-F. Laser physics and laser tissue interaction. Tex Heart Inst J. 1989;16:141–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Carruth JAS, McKenzie AL. Medical lasers. Science and clinical practice. Bristol: Adam Hilger; 1986.

    Google Scholar 

  7. Proebstle TM, Moehler T, Gül D, Herdemann S. Endovenous treatment of the great saphenous vein using a 1,320 nm nd: Yag laser causes fewer side effects than using a 940 nm d: Yag laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg. 2005;31:1678–84.

    CAS  PubMed  Google Scholar 

  8. Proebstle TM, Krummenauer F, Gu¨l D, Knop J. Nonocclusion and early reopening of the great saphenous vein after endovenous laser treatment is fluence dependent. Dermatol Surg. 2004;30:174–8.

    PubMed  Google Scholar 

  9. Timperman TE, Sichlau M, Ryu RK. Greater energy delivery improves treatment success of endovenous laser treatment of incompetent saphenous veins. J Vasc Interv Radiol. 2004;15(10):1061–3.

    Article  Google Scholar 

  10. Proebstle TM, Moehler T, Herdemann SJ. Reduced recanalization rates of the great saphenous vein after endovenous laser treatment with increased energy dosing: definition of a threshold for the endovenous fluence equivalent. J Vasc Surg. 2006;44(4):834–9.

    Article  Google Scholar 

  11. Kim HS, Nwankwo IJ, Hong K, McElgunn PS. Lower energy endovenous laser ablation of the great saphenous vein with 980 nm diode laser in continuous mode. Cardiovasc Intervent Radiol. 2006;29(1):64–9.

    Article  Google Scholar 

  12. Desmyttère J, Grard C, Wassmer B, Mordon S. Endovenous 980-nm laser treatment of saphenous veins in a series of 500 patients. J Vasc Surg. 2007;46(6):1242–7.

    Article  Google Scholar 

  13. Kontothanassis D, Di Mitri R, Ruffino SF, Ugliola M, Labropoulos N. Endovenous thermal ablation. Standardization of laser energy: literature review and personal experience. Int Angiol. 2007;26(2):183–8.

    CAS  PubMed  Google Scholar 

  14. Vuylsteke M, Liekens K, Moons P, Mordon S. Endovenous laser treatment of saphenous vein reflux: how much energy do we need to prevent recanalizations? Vasc Endovasc Surg. 2008;42:141–9.

    Article  Google Scholar 

  15. Elmore FA, Lackey D. Effectiveness of endovenous laser treatment in eliminating superficial venous reflux. Phlebology. 2008;23:21–31.

    Article  CAS  Google Scholar 

  16. Chang CJ, Chua JJ. Endovenous laser photocoagulation (EVLP) for varicose veins. Lasers Surg Med. 2002;31(4):257–62.

    Article  Google Scholar 

  17. Schmedt CG, Sroka R, Steckmeier S, Meissner OA, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier BM. Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. Eur J VascEndovasc Surg. 2006;32(3):318–25.

    Article  Google Scholar 

  18. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation science. Science. 1983;220:524–7.

    Article  CAS  Google Scholar 

  19. Proebstle TM, Sandhofer M, Kargl A, et al. Thermal damage of the inner vein wall during endovenous laser treatment: key role of energy absorption by intravascular blood. Dermatol Surg. 2002;28:596–600.

    CAS  PubMed  Google Scholar 

  20. Proebstle TM, Lehr HA, Kargl A, Espinola-Klein C, Rother W, Bethge S, Knop J. Endovenous treatment of the greater saphenous vein with a 940-nm diode laser: thrombotic occlusion after endoluminal thermal damage by laser-generated steam bubbles. J Vasc Surg. 2002;35:729–36.

    Article  CAS  Google Scholar 

  21. Fan C-M, Rox-Anderson R. Endovenous laser ablation: mechanism of action. Phlebology. 2008;23:206–13.

    Article  Google Scholar 

  22. Corcos L, Dini S, De A, et al. The immediate effects of endovenous diode 808-nm laser in the greater saphenous vein: morphologic study and clinical implications. J Vasc Surg. 2005;41:1018–24.

    Article  Google Scholar 

  23. Min RJ, Khilnani NM. Endovenous laser ablation of varicose veins. J Cardiovasc Surg. 2005;46(4):395–405.

    CAS  Google Scholar 

  24. Manfrini S, Gasbarro V, Danielsson G, Norgren L, Chandler JG, Lennox AF, et al. Endovenous management of saphenous vein reflux. Endovenous Reflux Management Study Group. J Vasc Surg. 2000;32:330–42.

    Article  CAS  Google Scholar 

  25. Diessehf BC, Rem AI, Verdaasdonk RM, Kinderen DJ, Moll FL. Endovenous laser ablation: an experimental study on the mechanism of action. Phlebology. 2008;23:69–76.

    Article  Google Scholar 

  26. Pannier F, Rabe E, Maurins U. First results with a new 1470-nm diode laser for endovenous ablation of incompetent saphenous veins. Phlebology. 2009;24:26–30.

    Article  CAS  Google Scholar 

  27. Goldman MP, Mauricio M, Rao J. Intravascular 1320-nm laser closure of the great saphenous vein: a six to 12-month follow-up study. Dermatol Surg. 2004;30:1380–5.

    Article  Google Scholar 

  28. Theivacumar N, Beale R, Mavor A, Gough M. Factors influencing the effectiveness of endovenous laser treatment (EVLT) for varicose veins due to sapheno-femoral (SF) and long saphenous (LSV) reflux. Eur J Vasc Endovasc Surg. 2008;35:119–23.

    Article  CAS  Google Scholar 

  29. Bedi HS, Calton N, Kwatra KS, Tewarson V. Histopathological findings of the human great saphenous vein treated with endoluminal radio frequency ablation. Int Surg J. 2014;1(1):3–5.

    Article  Google Scholar 

  30. Proebstle T, Moehler T, Gul D, et al. Endovenous treatment of the great saphenous vein using a 1,320 nm Nd:YAG laser causes fewer side effects than using a 940 nm diode laser. Dermatol Surg. 2005;31:1678–83.

    CAS  PubMed  Google Scholar 

  31. Kuenstner JT, Norris KH. Spectrophotometry of human hemoglobin in the near infrared region from 1000 to 2500 nm. J Near Infrared Spectrosc. 1994;2:59–65.

    Article  CAS  Google Scholar 

  32. Vuylsteke ME, Vandekerckhove PJ, De Bo T. Use of a new endovenous laser device: results of the 1,500 nm laser. Ann Vasc Surg. 2010;24:205–11.

    Article  CAS  Google Scholar 

  33. Vuylsteke ME, Mordon SR. Endovenous laser ablation: a review of mechanism of action. Ann Vasc Surg. 2012;26(3):424–33.

    Article  Google Scholar 

  34. Vuylsteke ME, Martinelli TH, VanDorpe J, et al. Endovenous laser ablation: the role of the intraluminal blood. Eur J Vasc Endovasc Surg. 2011;42:120–6.

    Article  CAS  Google Scholar 

  35. Pannier F, Rabe E, Rits J, Kadiss A, Maurins U. Endovenous laser ablation of great saphenous veins using a 1470 nm diode laser and the radial fibre-follow-up after 6 months. Phlebology. 2011;26:35–9.

    Article  CAS  Google Scholar 

  36. Schwartz T, von Hodenberg E, Furtwangler C, Rastan A, Zeller T, Neumann FJ. Endovenous laser ablation of varicose veins with the 1470 nm diode laser. J Vasc Surg. 2010;51:1474–8.

    Article  Google Scholar 

  37. Doganci S, Demirkilic U. Comparison 0f 980 nm laser and bare tip fibre with 1470 nm laser and radial fibre in the treatment of great saphenous vein varicosities: a prospective randomized clinical trial. Eur J Vasc Endovasc Surg. 2010;40:254–9.

    Article  CAS  Google Scholar 

  38. Kabnick L. Outcome of different endovenous laser wavelengths for great saphenous vein ablation. J Vasc Surg. 2006;43:88–93.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bedi, H.S., Bedi, Y.S. (2018). Relevance of Wavelength in Laser Treatment of Varicose Veins. In: Khanna, A., **dal, R. (eds) Venous Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-13-1108-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1108-6_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1107-9

  • Online ISBN: 978-981-13-1108-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation