Role of Molecular Marker in the Genetic Improvement of the Medicinal and Aromatic Plants

  • Chapter
  • First Online:
Biotechnological Approaches for Medicinal and Aromatic Plants

Abstract

Several molecular markers have been developed for breeding major crops owing to their significance, ease, and suitability. Out of these DNA markers are frequently used ones; therefore, in this chapter, we describe the DNA markers to map major genes with regard to their principle, applicability, and methods. The two major classes of DNA markers are based on (i) DNA hybridization, e.g., restriction fragment polymorphism, DNA chips, etc.,. and (ii) polymerase chain reaction (PCR), e.g., SSR, RAPD, AFLP, and SNP. Develo** trait-linked markers involves the segregation of populations demonstrating target traits followed by reliable phenoty** methods. With the help of these techniques, trait-linked markers may be used in two situations: (i) in the absence of any biological information and (ii) with available information about the trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

EST:

Expressed sequence tag

GBS:

Genoty** by sequencing

ISSR:

Inter-simple sequence repeats

PCR:

Polymerase chain reaction

QTL:

Quantitative trait loci

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeats

STR:

Short tandem repeat

STSs:

Sequence-tagged sites

References

  • Abd EI-Twab, M. H., & Zahran, F. A. (2010). RAPD, ISSR and RFLP analysis of phylogenetic relationships among congeneric species (Anthemideae, Asteraceae) in Egypt. International Journal of Botany, 6(1), 1–10.

    Article  Google Scholar 

  • Avise, J. C. (2004). Molecular markers, natural history, and evolution. Sunderland: Sinnauer Kluwer Academic Publishers.

    Google Scholar 

  • Azizi, A., Ardalani, H., & Honermeier, B. (2016). Statistical analysis of the associations between phenolic monoterpenes and molecular markers, AFLPs and SAMPLs in the spice plant Oregano. Herba Polonica, 62(2), 42–56.

    Article  Google Scholar 

  • Balasubramani, S. P., Murugan, R., Ravikumar, K., & Venkatasubramanian, P. (2010). Development of ITS sequence based molecular marker to distinguish, Tribulus terrestris L. (Zygophyllaceae) from its adulterants. Fitoterapia, 81(6), 503e8.

    Article  CAS  Google Scholar 

  • Brahmachari, G., Mondal, S., Gangopadhyay, A., Gorai, D., Mukhopadhyay, B., Saha, S., & Brahmachari, A. K. (2004). Swertia (Gentianaceae): Chemical and pharmacological aspects. Chemistry & Biodiversity, 1(11), 1627–1651.

    Google Scholar 

  • Brown, R. P., Gerbarg, P. L., & Ramazanov, Z. (2002). Rhodiola rosea – A phytomedicinal overview. HerbalGram, 56, 40–52.

    Google Scholar 

  • Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16(1), 138e49.

    Article  CAS  Google Scholar 

  • De Masi, L., Siviero, P., Esposito, C., Castaldo, D., Siano, F., & Laratta, B. (2006). Assessment of agronomic, chemical and genetic variability in common basil (O. basilicum). European Food Research and Technology, 223, 273–281.

    Article  CAS  Google Scholar 

  • Dhakulkar S, Ganapathi, TR, Bhargava, S, .Bapat VA (2005) Induction of hairy roots in Gmelina arborea Roxb. and production of verbascoside in hairy roots. Plant Science, 169 (5) 812–818.

    Article  CAS  Google Scholar 

  • Dudley, J. (1993). Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Science, 33(4), 660–668.

    Article  CAS  Google Scholar 

  • Etminan, A., Omidi, M., Majidi Hervan, E., Naghavi, M. R., Reza zadeh, S., & Pirseyedi, M. (2012). The study of genetic diversity in some Iranian accessions of Hyoscyamus sp. using amplified fragment length polymorphism (AFLP) and retrotransposon/AFLP markers. African Journal of Biotechnology, 11(43), 10070–10078.

    CAS  Google Scholar 

  • Falque, M., & Santoni, S. (2007). Molecular markers and high-throughput genoty** analysis. In J.-F. Morot-Gaudry, P. Lea, & J.-F. Briat (Eds.), Functional plant genomics (p. 50327). Hoboken: Science Publishers.

    Google Scholar 

  • Ganie, S. H., & Sharma, M. P. (2014). Molecular and chemical profiling of different populations of Evolvulus alsinoides (L.) L. International Journal of Agricultural Research and Crop Sciences, 7, 1322–1331.

    Google Scholar 

  • Ganie, S. H., Upadhyay, P., Das, S., & Sharma, M. P. (2015). Authentication of medicinal plants by DNA markers. Plant Gene, 4, 83–99.

    Google Scholar 

  • Ghosh, S., Majumdar, P. B., & Mandi, S. S. (2011). Species-specific AFLP markers for identification of Zingiber officinale, Z. montanum and Z. zerumbet (Zingiberaceae). Genetics and Molecular Research, 10(1), 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan, M., Guruchandar, A., Arunapriya, S., Selvankumar, T., & Selvam, K. (2011). Genetic variability among Coleus sp. studied by RAPD banding pattern analysis. International Journal for Biotechnology and Molecular Biology Research, 2(12), 202–208.

    Article  CAS  Google Scholar 

  • Graham, I. A., Besser, K., Blumer, S., Branigan, C. A., Czechowski, T., et al. (2010). The genetic map of Artemisia annua L. identifies loci affecting yield of the antimalarial drug artemisinin. Science, 327, 328–331.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, D. D., & Mandi, S. S. (2013). Species specific AFLP markers for authentication of Zanthoxylum acanthopodium & Zanthoxylum oxyphyllum. Journal of Medicinal Plants Studies, 1(6), 1–9.

    CAS  Google Scholar 

  • Hammad, I. (2009). Genetic variation among Bougainvillea glabra cultivars (Nyctaginaceae) detected by RAPD markers and isozymes patterns. Research Journal of Agriculture and Biological Sciences, 5(1), 63–71.

    CAS  Google Scholar 

  • Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. In B. AHD, M. T. Clegg, A. L. Kahler, & B. S. Weir (Eds.), Plant population genetics, breeding, and genetic resources (pp. 43–63). Sunderland: Sinauer.

    Google Scholar 

  • Iqbal, S. H., Ghafoor, A., & Ayub, N. (2005). Relationship between SDSPAGE markers and Ascochyta blight in chickpea. Pakistan Journal of Botany, 37, 87–96.

    Google Scholar 

  • Javid, A., Ghafoor, A., & Anwar, R. (2004). Seed storage protein electrophoresis in groundnut for evaluating genetic diversity. Pakistan Journal of Botany, 36, 25–29.

    Google Scholar 

  • **ek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Google Scholar 

  • Johnson, M. (2012). Studies on intra-specific variation in a multipotent medicinal plant Ocimum sanctum Linn. using isozymes. Asian Pacific Journal of Tropical Biomedicine, 2, S21–S26.

    Article  Google Scholar 

  • Jones, N., Ougham, H., Thomas, H., & Pasakinskiene, I. (2009). Markers and map** revisited: Finding your gene. New Phytologist, 183, 935–966.

    Google Scholar 

  • Kartle, M., Kurucu, S., & Altun, L. (2003). Quantitative analysis of 1- hyoscyamine in hyoscyamus reticulates L. by GC-MS. Turkish Journal of Chemistry, 27, 565–569.

    Google Scholar 

  • Kelly, G. S. (2001). Rhodiola rosea: A possible plant adaptogen. Alternative Medicine Review, 6(3), 293–302.

    PubMed  CAS  Google Scholar 

  • Khan, S., Mirza, K. J., & Abdin, M. Z. (2010). Development of RAPD markersfor authentication of medicinal plant Cuscuta reflexa. Eurasian Journal of Biosciences, 4, 1–7.

    Google Scholar 

  • Liu, L. F., Liu, T., Li, G. X., Wang, Q., & Ng, T. (2003). Current awareness in phytochemical analysis. Analytical and Bioanalytical Chemistry, 376, 854.

    Article  CAS  PubMed  Google Scholar 

  • Manokar, J., Balasubramani, S. P., & Venkatasubramanian, P. (2017). Nuclear ribosomal DNA e ITS region based molecular marker to distinguish the medicinal plant Gmelina arborea Roxb. Ex Sm. from its substitutes and adulterants. Journal of Ayurveda and Integrative Medicine, 2017, 1–4.

    Google Scholar 

  • Manzo-Sanchez, G., Buenrostro-Nava, M. T., Guzman-Gonzalez, S., Orozco-Santos, M., Youssef, M., & Escobedo-Gracia, M. R. M. (2015). Genetic diversity in bananas and plantains (Musa spp.). https://doi.org/10.5772/59421.

  • Martínez, R., Añíbarro, C., & Fernández, S. (2005). Genetic variability among Alexandrium tamarense and Alexandrium minutum strains studied by RAPD banding pattern analysis. Harmful Algae, (5), 599–607.

    Google Scholar 

  • Martins, A. R., Abreu, A. G., Bajay, M. M., Villela, P. M. S., Batista, C. E. A., Monteiro, M., Alves-Pereira, A., Figueira, G. M., Pinheiro, J. B., Appezzato-da-gloria, B., & Zucchi, M. I. (2013). Development and characterization of microsatellite markers for the medicinal plant Smilax brasiliensis (Smilacaceae) and related species. Applications in Plant Sciences, 1(6), 1200507.

    Article  Google Scholar 

  • Masoumi, S. M., Kahrizi, D., Rostami-Ahmadvandi, H., Soorni, J., Kiani, S., Mostafaie, A., & Yari, K. (2012). Genetic diversity study of some medicinal plant accessions belong to Apiaceae family based on seed storage proteins patterns. Molecular Biology Reports, 39(12), 10361–10365.

    Google Scholar 

  • Misra, A., Shasany, A. K., Shukla, A. K., & Darokar, M. P. (2010). AFLP markers for identification of Swertia species (Gentianaceae). Genetics and Molecular Research, 9, 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Mohler, V., & Schwarz, G. (2005). Genoty** tools in plant breeding: From restriction fragment length polymorphisms to single nucleotide polymorphisms. Molecular marker systems in plant breeding and crop improvement. Biotechnology in Agriculture and Forestry, 55, 23–38.

    Article  CAS  Google Scholar 

  • Muazu, L., Elangomathavan, R., & Ramesh, S. (2016). DNA fingerprinting and molecular marker development for Baliospermum montanum (Wïlld.) Muell. Arg. International Journal of Pharmacognosy and Phytochemical Research 2016, 8(8), 1425–1431.

    Google Scholar 

  • Palumbi, S. R. (1996). Nucleic acids II: The polymerase chain reaction. In D. M. Hillis, C. Moritz, & B. K. Mable (Eds.), Molecular systematics (2nd ed., pp. 205–247). Sunderland: Sinauer.

    Google Scholar 

  • Passinho-Soares, H., Felix, D., Kaplan, M. A., Margis-Pinheiro, M., & Margis, R. (2006). Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: Inferences from the Plectranthus genus. Planta Medica, 72, 929–931.

    Article  CAS  PubMed  Google Scholar 

  • Percifield, R. J., Hawkins, J. S., McCoy, J. A., & Widrlechner, M. P. (2007). Genetic diversity in Hypericum and AFLP markers for species-specific identification of H. perforatum L. Planta Medica, 73, 1614–1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiao, C., Han, Q., Zhao, Z., Wang, Z., Xu, L., & Xu, H. X. (2009). Sequence analysis based on ITS1 region of nuclear ribosomal DNA of Amomum villosum and ten species of Alpinia. Journal of Food and Drug Analysis, 17(2), 142e5.

    Google Scholar 

  • Rai, P. S., Bellampalli, R., Dobriyal, R. M., Agarwal, A., Satyamoorthy, K., & Narayana, D. A. (2012). DNA barcoding of authentic and substitute samples of herb of the family Asparagaceae and Asclepiadaceae based on the ITS2 region. Journal of Ayurveda and Integrative Medicine, 3(3), 136e40.

    Google Scholar 

  • Reiter, R. (2001). PCR-based marker systems. In R. L. Phillip & I. K. Vasil (Eds.), DNA-based markers in plants (pp. 9–29). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Rogstad, S. H. (1993). Surveying plant genomes for variable number of tandem repeat loci. Methods in Enzymology, 224, 278–294.

    Article  CAS  PubMed  Google Scholar 

  • Satovic, Z., Liber, Z., Karlovic, K., & Kolak, I. (2002). Genetic relatedness among basil (Ocimum spp.) accessions using RAPD markers. Acta Biologica Cracoviensia Series Botanica, 44, 155–160.

    Google Scholar 

  • Saunders, J. A., Pedroni, M. J., Penrose, L., & Fist, A. J. (2001). AFLP DNA analysis of opium poppy. Crop Science, 41, 1596–1601.

    Article  CAS  Google Scholar 

  • Selvaraj, D., Shanmughanandhan, D., Sarma, R. K., Joseph, J. C., Srinivasan, R. V., & Ramalingam, S. (2012). DNA barcode ITS effectively distinguishes the medicinal plant Boerhavia diffusa from its adulterants. Genomics, Proteomics & Bioinformatics, 10(6), 364e7.

    Article  CAS  Google Scholar 

  • Singh, A. P., Dwivedi, S., Bharti, S., Srivastava, A., Singh, V., & Khanuja, S. P. S. (2004). Phylogenetic relationships as in Ocimum revealed by RAPD markers. Euphytica, 136, 11–20.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Sekiya, T., & Hayashi, K. (1991). Allele-specific polymerase chain reaction: A method for amplification and sequence determination of a single component among a mixture of sequence variants. Analytical Biochemistry, 192(1), 82–84.

    Google Scholar 

  • Tanksley, S., Young, N. D., Paterson, A. H., & Bonierbale, M. W. (1989). RFLP map** in plant breeding: New tools for an old science. Nature Biotechnology, 7, 257–264.

    Google Scholar 

  • Tiwari, V. K., Heesacker, A., Riera-Lizarazu, O., Gunn, H., Wang, S., Yi, W., Young, Q. G., Paux, E., Koo, D.-H., Kumar, A., Luo, M.-C., Lazo, G., Zemetra, R., Akhunov, E., Friebe, B., Poland, J., Gill, B. S., Kianian, S., & Leonard, J. M. (2016). A whole-genome, radiation hybrid map** resource of hexaploid wheat. The Plant Journal, 86(2), 195–207.

    Google Scholar 

  • Veress A., Lendvay B., Pedryc A., and György Z., (2015) Development of microsatellite markers for Rhodiola rosea 21 (1–2): 37–42. Agroinform Publishing House, Budapest

    Google Scholar 

  • Vieira, R. F., Goldsbrough, P., & Simon, J. E. (2003). Genetic diversity of basil (Ocimum spp.) based on RAPD markers. Journal of the American Society for Horticultural Science, 128(1), 94–99.

    CAS  Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijan, S. M., Reijans, M., Lee, T., Hornes, M., Fnjters, A., Pot, J., Peleman, J., Kuiper, M., & Zabean, M. (1995). AFLP: A new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. Z., Li, P., Ding, J. Y., Peng, X., & Yuan, C. S. (2007). Simultaneous identification of Bulbus Fritillariae cirrhosae using PCR-RFLP analysis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 14(9), 628–632.

    Article  CAS  Google Scholar 

  • Winter, P., & Kahl, G. (1995). Molecular marker technologies for plant improvement. World Journal of Microbiology and Biotechnology, 11(4), 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Yang, H., Jian, J., Li, X., Renshaw, D., Clements, J., Sweetingham, M. W., Tan, C., & Li, C. (2015). Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius). BMC Genomics, 16(1), 660.

    Google Scholar 

Download references

Conflict of Interest

It is declared that the authors have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Kumar, N., Mishra, I.G. (2018). Role of Molecular Marker in the Genetic Improvement of the Medicinal and Aromatic Plants. In: Kumar, N. (eds) Biotechnological Approaches for Medicinal and Aromatic Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-0535-1_25

Download citation

Publish with us

Policies and ethics

Navigation