Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization

  • Chapter
  • First Online:
Ecological Wisdom Inspired Restoration Engineering

Part of the book series: EcoWISE ((EcoWISE))

  • 1675 Accesses

Abstract

Bio-cementation is a recently developed technique for soil stabilization in geotechnical engineering applications, as it employs microbiological activity that improves the engineering properties of soils . One of the most commonly adopted processes to achieve soil stabilization by biocementation is through microbially induced calcite precipitation (MICP), which is commonly known as “biogrout” . This technique utilizes the metabolic pathways of bacteria to form calcite (CaCO3) that binds the soil particles together, leading to increased soil strength and stiffness. Biogrout is environmental-friendly and has the potential to be a better alternate to chemically based grouting materials such as lime or cement . However, there are still many challenges that lay ahead for future research prior to real practical application of this promising technique. In this chapter, some salient chemical and physical factors governing soil treatment by biogrout are described and explained, and possible applications of biogrout in geotechnical engineering are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  Google Scholar 

  • Al Qabany A, Soga K (2013) Effect of chemical treatment used in micp on engineering properties of cemented soils. Géotechnique 63(4):331–339

    Article  Google Scholar 

  • Altermann W, Kazmierczak J, Oren A, Wright DT (2006) Cyanobacterial calcification and its rock-building potential during 3.5 billion years of earth history. Geobiology 4:147–166

    Article  Google Scholar 

  • Al-Thawadi S (2008) High strength in situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Ph.D. thesis. Mudroch University, Perth, Western Australia

    Google Scholar 

  • Al-Thawadi S, Cord-Ruwisch R (2012) Calcium carbonate crystals formation by ureolytic bacterial isolated from Australian soli and sludge. J Adv Sci Eng Res (JASER) 2:12–26

    Google Scholar 

  • Al-Thawadi S, Cord-Ruwisch R, Bouodina M (2012) Consolidation of sand particles by nanoparticles of calcite after concentrating ureolytic bacteria in situ. Int J Green Nanotechnol 4:28–36

    Article  Google Scholar 

  • Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microbial Technol 28:404–409

    Article  Google Scholar 

  • Bekheet IA, Syrett PJ (1977) Urea-degrading enzymes in algae. Brit Phycol J 12:137–143

    Article  Google Scholar 

  • Booth JL, Vishniac HS (1987) Urease testing and yeast taxonomy. Can J Microbiol 33(5):396–404

    Article  Google Scholar 

  • Burbank MB, Weaver TJ, Green TL, Williams BC, Crawford RL (2011) Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol J 28:301–312

    Article  Google Scholar 

  • Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbialgeologist point of view. Sediment Geol 126:9–23

    Article  Google Scholar 

  • Castanier S, Le Métayer-Levrel G, Orial G, Loubière JF, Perthuisot JP (2000) Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. The role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic/Plenum Publisher, New York, pp 203–218

    Google Scholar 

  • Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2013) Selective enrichment and production of highly urease active bacteria by non-sterile (open) chemostat culture. J Ind Microbiol Biotechnol 40:1095–1104

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R (2014) Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation. Geomicrobiol J 31:396–406

    Article  Google Scholar 

  • Cheng L, Shahin MA (2016) Urease active bio-slurry: a novel soil improvement approach based on microbially induced carbonate precipitation. Can Geotech J 53:1–10

    Article  Google Scholar 

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:1–10

    Article  Google Scholar 

  • Cheng L, Shahin MA, Mujah D (2016) Influence of key environmental conditions on microbially induced cementation for soil stabilisation. J Geotech Geoenviron Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586

    Article  Google Scholar 

  • Cheng L, Shahin MA, Cord-Ruwisch R (2017) Surface percolation for soil improvement by bio-cementation utilising in situ enriched indigenous aerobic and anaerobic ureolytic soil microorganisms. Geomicrobiol J 34(6):546–556

    Article  Google Scholar 

  • Chou CW, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189

    Article  Google Scholar 

  • Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9:277–285

    Article  Google Scholar 

  • Cunningham AB, Gerlach R, Spangler L, Mitchell AC, Parks S, Phillips A (2009) Reducing the risk of well bore leakage of co2 using engineered biomineralization barriers. Energy Procedia 4:5178–5185

    Article  Google Scholar 

  • Cuthbert MO, McMillan LA, Handley-SidhuS Riley MS, Tobler DJ, Phoenix VR (2013) A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. Environ Sci Technol 47:13637–13643

    Article  Google Scholar 

  • Daskalakis MI, Rigas F, Bakolas A, Magoulas A, Kotoulas G, Katsikis I, Karageorgis AP, Mavridou A (2015) Vaterite bio-precipitation induced by Bacillus pumilus isolated from a solutional cave in Paiania, Athens, Greece. Int Biodeterior Biodegrad 99:73–84

    Article  Google Scholar 

  • De Groot MB, Meijers P (1992) Liquefaction of trench fill around a pipeline in the seabed. BOSS 92: behaviour of offshore structures. BPP Technical Services, London, pp 1333–1344

    Google Scholar 

  • De Muynck W, Cox K, Verstraete W, De Belie N (2008) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22:875–885

    Article  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Article  Google Scholar 

  • DeJong J, Fritzges M, Nusstein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 32:1381–1392

    Article  Google Scholar 

  • DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36:197–210

    Article  Google Scholar 

  • DeJong JT, Soga K, Kavazanjian E, Burns S, van Paassen LA, Al Qabany A et al (2013) Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique 63:287–301

    Article  Google Scholar 

  • Dittrich M, Kurz P, Wehrli B (2004) The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake. Geomicrobiol J 21:45–53

    Article  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26(2):79–88

    Article  Google Scholar 

  • Duraisamy Y, Airey DW (2012) Strength and stiffness of bio-cemented liquefiable sand soil. In: Proceedings of international conference on ground improvement and ground control, Singapore, pp 1233–1239

    Google Scholar 

  • Ehrlich HL (1996) How microbes influence mineral growth and dissolution. Chem Geol 132(1–4):5–9

    Article  Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth-Sci Rev 45:45–60

    Article  Google Scholar 

  • Evans J, Wallace C, Dobrowolski N (1993) Interaction of soil type and temperature on the survival of Rhizobium leguminosarum bv.viciae. Soil Biol Biochem 25:1153–1160

    Article  Google Scholar 

  • Falkinham JO III, Hoffman PS (1984) Unique developmental characteristics of the swarm and short cells of Proteus vulgaris and Proteus mirabilis. J Bacteriol 158(3):1037–1040

    Google Scholar 

  • Fujita Y, Ferris FG, Lawson RD, Colwell FS, Smith RW (2000) Subscribed content calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol J 17:305–318

    Article  Google Scholar 

  • Ginn TR, Murphy EM, Chilakapati A, Seeboonruang U (2001) Stochastic-convective transport with nonlinear reaction and mixing: Application to intermediate-scale experiments in aerobic biodegradation in saturated porous media. J Contam Hydrol 48:121–149

    Article  Google Scholar 

  • Gomez MG, Martinez BC, DeJong JT, Hunt CE, deVlaming LA, Major DW, Dworatzek SM (2015) Field-scale bio-cementation tests to improve sands. Ground Improv 168(Gl3):206–216

    Article  Google Scholar 

  • H. John Heinz III Centre for Science Economics and the Environment (2000) Evaluation of erosion hazards—contract EMW-97-CO-0375. Federal Emergency Management Agency (FEMA), USA

    Google Scholar 

  • Hamdan N, Kavazanjian E, Rittman BE, Karatas I (2011) Carbonate mineral precipitation for soil improvement through microbial denitrification. In: Han J, Alzamora DA (eds) Geo-frontiers 2011, Dallas, Texas, pp 3925–3934

    Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  Google Scholar 

  • Hammes F, Seka A, De Knijf S, Verstraete W (2003) A novel approach to calcium removal from calcium-rich industrial wastewater. Water Res 37:699–704

    Article  Google Scholar 

  • Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36:112–117

    Article  Google Scholar 

  • Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:22–42

    Google Scholar 

  • He J, Chu J, Ivanov V (2013) Mitigation of liquefaction of saturated sand using biogas. Geotechnique 63(4):267–275

    Article  Google Scholar 

  • Heath CR, Leadbeater BSC, Callow ME (1995) Effects of inhibitors on calcium carbonate deposition mediated by freshwater algae. J Appl Phycol 7:367–380

    Article  Google Scholar 

  • Ivanov V, Chu J (2008) Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev Environ Sci Biotechnol 7:139–153

    Article  Google Scholar 

  • Jahns T (1996) Ammonium/urea-dependent generation of a proton electrochemical potential and synthesis of ATP in Bacillus pasteurii. J Bacteriol 178:403–409

    Article  Google Scholar 

  • Jiang NJ, Soga K, Kuo M (2017) Microbially induced carbonate precipitation (MICP) for seepage-induced internal erosion control in sand-clay mixtures. J Geotech Geoenviron Eng 143(3):04016100

    Article  Google Scholar 

  • Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36:230–235

    Article  Google Scholar 

  • Kamennaya NA, Ajo-Franklin CM, Northen T, Jansson C (2012) Cyanobacteria as biocatalysts for carbonate mineralization. Mineral 2:338–364

    Google Scholar 

  • Kim HK, Lee HK (2015) A case study: bacterial surface treatment of normal and lightweight concrete. In: Pacheco-Torgal F, Labrincha JA, Diamanti MV, Yu CP, Lee HK (eds) Biotechnologies and biomimetics for civil engineering. Springer, pp 359–372

    Google Scholar 

  • Lee ML, Ng WS, Tanaka Y (2013) Stress-deformation and compressibility responses of bio-mediated residual soils. Ecol Eng 60:142–149

    Google Scholar 

  • Maleki M, Ebrahimi S, Asadzadeh F, Tabrizi ME (2016) Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol 13(3):937–944

    Article  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth-Sci Rev 42:95–117

    Article  Google Scholar 

  • Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation and molecular characterisation. Microbiol Rev 53(1):85–108

    Google Scholar 

  • Mobley HLT, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59(3):451–480

    Google Scholar 

  • Montoya BM, DeJong JT (2015) Stress-strain behavior of sands cemented by microbially induced calcite precipitation. J Geotech Geoenviron Eng 141:04015019

    Article  Google Scholar 

  • Mote IT, Dismuke NJ (2011) Screeing-level liquefaction hazard maps for Australia. In: Australian earthquake engineering society 2011 conference, 18–20 Nov

    Google Scholar 

  • Mujah D, Shahin MA, Cheng L (2017) State-of-the-art review of bio-cementation by microbially induced calcite precipitation (MICP) for soil stabilization. Geomicrobiol J 34(6):524–537

    Article  Google Scholar 

  • Okwadha GD, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148

    Article  Google Scholar 

  • Parmar N, Singh A (2014) Geobiotechnology. In: Parmar N, Singh A (eds) Geomicrobiology and biogeochemistry. Springer, Germany, pp 1–15

    Chapter  Google Scholar 

  • Pham VP, Nakano A, van der Star WRL, Heimovaara TJ, van Paassen LA (2016) Applying MICP by denitrification in soils: a process analysis. Environ Geotech. https://doi.org/10.1680/jenge.15.00078

    Article  Google Scholar 

  • Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using microorganisms. ACI Mater J 98:3–9

    Google Scholar 

  • Reddy S, Rao M, Aparna P, Sasikala C (2010) Performance of standard grade bacterial (Bacillus subtilis) concrete. Asian J Civil Eng (Build Housing) 11:43–55

    Google Scholar 

  • Romano N, Tolone G, Ajello F, La Licata R (1980) Adenosine 5’-triphosphate synthesis induced by urea hydrolysis in ureaplasma urealyticum. J Bacteriol 144:830–832

    Google Scholar 

  • Seifan M, Samani AK, Berenjian A (2016) Bioconcrete: next generation of self-healing concrete. Appl Microbiol Biotechnol 100:2591–2602

    Article  Google Scholar 

  • Seneca H, Peer P, Nally R (1962) Microbial Urease. Nature 193:1106–1107

    Article  Google Scholar 

  • Shirakawa MA, Cincotto MA, Atencio D, Gaylarde CC, John VM (2011) Effect of culture medium on biocalcification by Pseudomonas putida, Lysinibacillus sphaericus and Bacillus subtilis. Braz J Microbiol 42:499–507

    Article  Google Scholar 

  • Sissons CH, Perinpanaygan ER, Hancock EM, Cutress TW (1990) pH regulation of urease level in Streptococus salivarius. J Dent Res 69:1131–1137

    Article  Google Scholar 

  • Stabnikov V, Naeimi M, Ivanov V, Chu J (2011) Formation of water-impermeable crust on sand surface using biocement. Cem Concr Res 41:1143–1149

    Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31:1563–1571

    Article  Google Scholar 

  • Summer JB (1926) The isolation and crystallization of the enzyme urease. J Biol Chem 69:435–441

    Google Scholar 

  • Tobler DJ, Cuthbert MO, Phoenix VR (2014) Transport of Sporosarcina pasteurii in sandstone and its significance for subsurface engineering technologies. Appl Geochem 42:38–44

    Article  Google Scholar 

  • Tyler B (1978) Regulation of the assimilation of nitrogen compounds. Annu Rev Biochem 47:1127–1162

    Article  Google Scholar 

  • van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon WH, van Loosdrecht MCM (2010a) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175

    Article  Google Scholar 

  • van Paassen L, Ghose R, van der Linden T, van der Star W, van Loosdrecht M (2010b) Quantifying biomediated ground improvement by ureolysis: large-scale biogrout experiment. J Geotech Geoenviron Eng 136:1721–1728

    Article  Google Scholar 

  • van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40:157–166

    Article  Google Scholar 

  • Wang JY, De Belie N, Verstraete W (2012) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39:567–577

    Article  Google Scholar 

  • Warren LA, Maurice PA, Parmar N, Ferris FG (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiol J 18:93–115

    Article  Google Scholar 

  • Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24:417–423

    Article  Google Scholar 

  • Yasuhara H, Neupane D, Hayashi K, Okamura M (2012) Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation. Soils Found 52(3):539–549

    Article  Google Scholar 

  • Zhao Q, Li L, Li C, Li MD, Amini F, Zhang HZ (2014) Factors affecting improvement of engineering properties of micp-treated soil catalyzed by bacteria and urease. J Mater Civ Eng 26(12):04014094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, L., Shahin, M.A. (2019). Microbially Induced Calcite Precipitation (MICP) for Soil Stabilization. In: Achal, V., Mukherjee, A. (eds) Ecological Wisdom Inspired Restoration Engineering. EcoWISE. Springer, Singapore. https://doi.org/10.1007/978-981-13-0149-0_3

Download citation

Publish with us

Policies and ethics

Navigation