Classification of Proteins Using Naïve Bayes Classifier and Surface-Invariant Coordinates

  • Chapter
  • First Online:
Integrated Intelligent Computing, Communication and Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 771))

  • 842 Accesses

Abstract

Protein classification is one of the challenging problems in computational biology and bioinformatics. Our aim here is to classify proteins into different families using the surface roughness similarity of proteins as a criterion. Because Protein Data Bank (PDB) (http://www.rcsb.org/pdb/ [1]) coordinates give no indication of the orientation of the protein, we designed an invariant coordinate system (ICS) in which we took as the origin the protein’s center of gravity (CG). From PDB we found the surface residue coordinates. We then divided those coordinates into eight octants based on the sign of x, y and z coordinates. For the residues in each octant, we found the standard deviation of the coordinates and created a parameter called the surface-invariant coordinate (SIC). Thus, for every protein we obtained eight SIC values. We also made use of the Structural Classification of Proteins (SCOP) (http://scop.mrc-lmb.cam.ac.uk/scop/ [2]) database. SCOP classifies proteins on the basis of the surface structure of the protein. As it is a classification problem, we used the naïve Bayes classifier algorithm for the classification to achieve better results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. http://www.rcsb.org/pdb/.

  2. http://scop.mrc-lmb.cam.ac.uk/scop/.

  3. Connolly, M.L. 1986. Measurement of protein surface shape by solid angles. Journal of Molecular Graphics 4: 3–6.

    Article  Google Scholar 

  4. Bandyopadhyay, S. 2005. An efficient technique for superfamilyclassification of amino acid sequences: Feature extraction, fuzzy clustering and prototype selection. ELSEVIER Jounal of FuzzySets and Systems 152: 5–16.

    MATH  Google Scholar 

  5. Vipsita, S., B.K. Shee and S.K. Rath. 2010. An efficient technique for protein classification using feature extraction by artificial neural networks IEEE India conference: Green energy, computing and communication, INDICON.

    Google Scholar 

  6. Wang, D., and G.B. Huang. 2005. Protein sequence classification using extreme learning machine. In Proceedings of international joint conference on neural networks (IJCNN, 2005), Montreal, Canada.

    Google Scholar 

  7. Brink, Henrik, Joseph W. Richards, and Mark Fetherolf. Real-World Machine Learning. ISBN 9781617291920.

    Google Scholar 

  8. Datta, A., V. Talukdar, A. Konar, and L.C. Jain. 2009. A neural network based approach for protein structural class prediction. Journal ofIntelligent and Fuzzy Systems 20: 61–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babasaheb S. Satpute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satpute, B.S., Yadav, R. (2019). Classification of Proteins Using Naïve Bayes Classifier and Surface-Invariant Coordinates. In: Krishna, A., Srikantaiah, K., Naveena, C. (eds) Integrated Intelligent Computing, Communication and Security. Studies in Computational Intelligence, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-10-8797-4_12

Download citation

Publish with us

Policies and ethics

Navigation