Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials

  • Reference work entry
  • First Online:
Handbook of Mechanics of Materials

Abstract

Hydrogen embrittlement is an important phenomenon where the mechanical properties of a metallic material are degraded in the presence of hydrogen, sometimes leading to a change in the failure mode of the metallic material. Although mechanical failures due to hydrogen embrittlement have been observed for over a century, the atomic-level mechanisms associated with the hydrogen embrittlement process are still under debate. In this chapter, atomistic simulation efforts focused on hydrogen segregation and hydrogen embrittlement are reviewed. Atomistic simulation methods provide a nanoscale modeling technique capable of studying the role of hydrogen atoms on dislocation nucleation, crack propagation, and grain boundary decohesion. Examples are provided in this chapter of the use of a site-energy selection method to study hydrogen segregation and molecular dynamics simulations to study hydrogen-induced grain boundary decohesion in nickel. Grain boundary strength and work of separation in the presence of segregated hydrogen are computed from the molecular dynamics simulations. Subsequently, this data may be used in higher length scale models and simulations of the hydrogen embrittlement process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 919.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnson WH. On some remarkable changes produced in iron and steels by the action of hydrogen acids. Proc R Soc Lond. 1875;23:168–75.

    Article  Google Scholar 

  2. Carneiro R, Ratnapuli RC, Lins VFC. The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Mater Sci Eng A. 2003;357(1):104–10.

    Article  Google Scholar 

  3. Dingreville R, Karnesky RA, Puel G, Schmitt J-H. Review of the synergies between computational modeling and experimental characterization of materials across length scales. J Mater Sci. 2016;51(3):1178–203.

    Article  Google Scholar 

  4. Louthan MR, Caskey GR, Donovan JA, Rawl DE. Hydrogen embrittlement of metals. Mater Sci Eng. 1972;10:357–68.

    Article  Google Scholar 

  5. Gest RJ, Troiano AR. Stress corrosion and hydrogen embrittlement in an aluminum alloy. Corrosion. 1974;30(8):274–9.

    Article  Google Scholar 

  6. Northwood DO, Kosasih U. Hydrides and delayed hydrogen cracking in zirconium and its alloys. Int Met Rev. 1983;28(1):92–121.

    Article  Google Scholar 

  7. Shih DS, Robertson IM, Birnbaum HK. Hydrogen embrittlement of α titanium: in situ TEM studies. Acta Metall. 1988;36(1):111–24.

    Article  Google Scholar 

  8. Wang M, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corros Sci. 2007;49(11):4081–97.

    Article  Google Scholar 

  9. Wang S, Martin ML, Robertson IM, Sofronis P. Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Mater. 2016;107:279–88.

    Article  Google Scholar 

  10. Robertson IM, Sofronis P, Nagao A, Martin ML, Wang S, Gross DW, Nygren KE. Hydrogen embrittlement understood. Metall Mater Trans B. 2015;46(3):1085–103.

    Article  Google Scholar 

  11. Lynch S. Hydrogen embrittlement phenomena and mechanisms. Corros Rev. 2012;30(3–4):105–23.

    Google Scholar 

  12. Westlake DG. A generalized model for hydrogen embrittlement. Trans Am Soc Met. 1969;62:1000–6.

    Google Scholar 

  13. Birnbaum HK. Mechanisms of hydrogen related fracture of metals; 1989. Technical report, DTIC Document.

    Google Scholar 

  14. Ells CE. Hydride precipitates in zirconium alloys (a review). J Nucl Mater. 1968;28(2):129–51.

    Article  Google Scholar 

  15. Pfeil LB. The effect of occluded hydrogen on the tensile strength of iron. Proc R Soc Lond. Ser A, Containing Papers of a Mathematical and Physical Character. 1926;112(760):182–95.

    Article  Google Scholar 

  16. Troiano AR. The role of hydrogen and other interstitials in the mechanical behavior of metals. Trans Am Soc Met. 1960;52(1):54–80.

    Google Scholar 

  17. Hirth JP, Rice JR. On the thermodynamics of adsorption at interfaces as it influences decohesion. Metall Trans A. 1980;11(9):1501–11.

    Article  Google Scholar 

  18. Kirchheim R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 2007;55(15):5129–38.

    Article  Google Scholar 

  19. Knott JF. Fracture toughness and hydrogen-assisted crack growth in engineering alloys, In Hydrogen effects in materials (eds A. W. Thompson and N. R. Moody), John Wiley & Sons, Inc., Hoboken, NJ, USA, 1994. https://doi.org/10.1002/9781118803363.ch36

    Chapter  Google Scholar 

  20. Sofronis P, Robertson IM. Viable mechanisms of hydrogen embrittlement – A review. In: Hydrogen in matter: a collection from the papers presented at the second International Symposium on Hydrogen in Matter (ISOHIM), vol. 837. Melville: AIP Publishing; 2006. p. 64–70.

    Google Scholar 

  21. Kameda J, McMahon CJ. Solute segregation and hydrogen-induced intergranular fracture in an alloy steel. Metall Trans A. 1983;14(4):903–11.

    Article  Google Scholar 

  22. Dadfarnia M, Schembri PE, Sofronis P, Foulk JW III, Nibur KA, Balch DK, et al. On modeling hydrogen-induced crack propagation under sustained load. JOM. 2014;66(8):1390–8.

    Article  Google Scholar 

  23. Hirth JP. Effects of hydrogen on the properties of iron and steel. Metall Trans A. 1980;11(6):861–90.

    Article  Google Scholar 

  24. Mishin Y, Sofronis P, Bassani JL. Thermodynamic and kinetic aspects of interfacial decohesion. Acta Mater. 2002;50(14):3609–22.

    Article  Google Scholar 

  25. Beachem CD. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall Trans. 1972;3(2):441–55.

    Article  Google Scholar 

  26. Ferreira PJ, Robertson IM, Birnbaum HK. Hydrogen effects on the interaction between dislocations. Acta Mater. 1998;46(5):1749–57.

    Article  Google Scholar 

  27. Abraham DP, Altstetter CJ. Hydrogen-enhanced localization of plasticity in an austenitic stainless steel. Metall Mater Trans A. 1995;26(11):2859–71.

    Article  Google Scholar 

  28. Sofronis P, Robertson IM. Transmission electron microscopy observations and micromechanical/continuum models for the effect of hydrogen on the mechanical behaviour of metals. Philos Mag A. 2002;82(17–18):3405–13.

    Article  Google Scholar 

  29. Lynch SP. Environmentally assisted cracking: overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 1988;36(10):2639–61.

    Article  Google Scholar 

  30. Lynch SP. Metallographic contributions to understanding mechanisms of environmentally assisted cracking. Metallography. 1989;23(2):147–71.

    Article  Google Scholar 

  31. Cox BN, Bauschlicher CW. Surface relaxation and induced stress accompanying the adsorption of H upon Be (0001). Surf Sci. 1981;102(2–3):295–311.

    Article  Google Scholar 

  32. Oriani RA. On the possible role of the surface stress in environmentally induced embrittlement and pitting. Scr Metall. 1984;18(3):265–8.

    Article  Google Scholar 

  33. Allen MP, Tildesley DJ. Computer simulation of liquids. Oxford: Oxford Science Publications; 1987.

    MATH  Google Scholar 

  34. Haile JM. Molecular dynamics simulation: elementary methods. New York: Wiley; 1992.

    Google Scholar 

  35. Daw MS, Baskes MI. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals. Phys Rev Lett. 1983;25(17):1285–8.

    Article  Google Scholar 

  36. Daw MS, Baskes MI. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B. 1984;29(12):6443–53.

    Article  Google Scholar 

  37. Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B. 1986;33(12):7983–91.

    Article  Google Scholar 

  38. Ruda M, Farkas D, Abriata J. Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. Phys Rev B. 1996;54(14):9765–74.

    Article  Google Scholar 

  39. Angelo JM, Moody NR, Baskes MI. Trap** of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1995;3:289–307.

    Article  Google Scholar 

  40. Baskes MI, Sha X, Angelo JM, Moody NR. Trap** of hydrogen to lattice defects in nickel. Model Simul Mater Sci Eng. 1997;5:651–2.

    Article  Google Scholar 

  41. Lee B-J, Jang J-W. A modified embedded-atom method interatomic potential for the Fe-H system. Acta Mater. 2007;55:6779–88.

    Article  Google Scholar 

  42. Baskes MI. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B. 1992;46(2):2727–42.

    Article  Google Scholar 

  43. J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. 1994. https://www.cs.cmu.edu/∼quake-papers/painless-conjugate-gradient.pdf

  44. Anderson HC. Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys. 1980;72:2384–93.

    Article  Google Scholar 

  45. Melchionna S, Ciccotti G, Holian BL, Hoover NPT. Dynamics for systems varying in shape and size. Mol Phys. 1993;78:533–44.

    Article  Google Scholar 

  46. Hoagland RG, Heinisch HL. An atomistic simulation of the influence of hydrogen on the fracture behavior of nickel. J Mater Res. 1992;7(8):2080–8.

    Article  Google Scholar 

  47. Hu Z, Fukuyama S, Yokogawa K, Okamoto S. Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Model Simul Mater Sci Eng. 1999;7:541–51.

    Article  Google Scholar 

  48. Xu X, Wen M, Hu Z, Fukuyama S, Yokogawa K. Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Comput Mater Sci. 2002;23:131–8.

    Article  Google Scholar 

  49. Wen M, Xu X-J, Omura Y, Fukuyama S, Yokogawa K. Modeling of hydrogen embrittlement in single crystal Ni. Comput Mater Sci. 2004;30:202–11.

    Article  Google Scholar 

  50. Solanki KN, Ward DN, Bammann DJ. A nanoscale study of dislocation nucleation at the crack tip in the nickel-hydrogen system. Metall Mater Trans A. 2011;42:340–7.

    Article  Google Scholar 

  51. Song J, Curtin WA. Testing continuum concepts for hydrogen embrittlement in metals using atomistics. Model Simul Mater Sci Eng. 2010;18:045003.

    Article  Google Scholar 

  52. Chandler MQ, Horstemeyer MF, Baskes MI, Wagner GJ, Gullett PM, Jelinek B. Hydrogen effects on nanovoid nucleation at nickel grain boundaries. Acta Mater. 2008;56:619–31.

    Article  Google Scholar 

  53. Kuhr B, Farkas D, Robertson IM. Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni. Comput Mater Sci. 2016;122:92–101.

    Article  Google Scholar 

  54. Song J, Curtin WA. A nanoscale mechanism for hydrogen embrittlement in metals. Acta Mater. 2011;59:1557–69.

    Article  Google Scholar 

  55. Song J, Curtin WA. Atomic mechanism and prediction of hydrogen embrittlement in iron. Nat Mater. 2013;12(2):145–51.

    Article  Google Scholar 

  56. Song J, Curtin WA. Mechanisms of hydrogen-enhanced localized plasticity: an atomistic study using α-Fe as a model system. Acta Mater. 2014;68:61–9.

    Article  Google Scholar 

  57. Alvaro A, Thue Jensen I, Kheradmand N, Løvvik OM, Olden V. Hydrogen embrittlement in nickel, visited by first principles modeling, cohesive zone simulation and nanomechanical testing. Int J Hydrog Energy. 2015;40(47):16892–900.

    Article  Google Scholar 

  58. Di Stefano D, Mrovec M, Elsässer C. First-principles investigation of hydrogen trap** and diffusion at grain boundaries in nickel. Acta Mater. 2015;98:306–12.

    Article  Google Scholar 

  59. Sutton AP, Vitek V. On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci. 1983;309(1506):1–36.

    Article  Google Scholar 

  60. O’Brien CJ, Foiles SM. Hydrogen segregation to inclined twin grain boundaries in nickel. Philos Mag. 2016;96(26):2808–28.

    Article  Google Scholar 

  61. O’Brien CJ, Medlin DL, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part I: thermodynamics & temperature-dependent structure. Philos Mag. 2016;96(13):1285–304.

    Article  Google Scholar 

  62. Tsuzuki H, Branicio PS, Rino JP. Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun. 2007;177(6):518–23.

    Article  Google Scholar 

  63. Faken D, Jónsson H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mater Sci. 1994;2(2):279–86.

    Article  Google Scholar 

  64. Pedersen A, Jónsson H. Simulations of hydrogen diffusion at grain boundaries in aluminum. Acta Mater. 2009;57(14):4036–45.

    Article  Google Scholar 

  65. Oudriss A, Creus J, Bouhattate J, Conforto E, Berziou C, Savall C, Feaugas X. Grain size and grain-boundary effects on diffusion and trap** of hydrogen in pure nickel. Acta Mater. 2012;60(19):6814–28.

    Article  Google Scholar 

  66. Frenkel D, Smit B. Understanding molecular simulation. 2nd ed. Academic Press; London; 2002.

    Chapter  MATH  Google Scholar 

  67. O’Brien CJ, Foiles SM. Misoriented grain boundaries vicinal to the (111) 〈1 -1 0〉 twin in nickel Part II: thermodynamics of hydrogen segregation. Philos Mag. 2016;96(14):1463–84.

    Article  Google Scholar 

  68. Chandler MQ, Horstemeyer MF, Baskes MI, Gullett PM, Wagner GJ, Jelinek B. Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals. Acta Mater. 2008;56:95–104.

    Article  Google Scholar 

  69. Foiles S. Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Phys Rev B. 1985;32(12):7685–93.

    Article  Google Scholar 

  70. Mishin Y, Cahn JW. Thermodynamics of Cottrell atmospheres tested by atomistic simulations. Acta Mater. 2016;117:197–206.

    Article  Google Scholar 

  71. Von Pezold J, Lymperakis L, Neugebeauer J. Hydrogen-enhanced local plasticity at dilute bulk H concentrations: the role of H-H interactions and the formation of local hydrides. Acta Mater. 2011;59(8):2969–80.

    Article  Google Scholar 

  72. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117(1):1–19.

    Article  MATH  Google Scholar 

  73. Sadigh B, Erhart P, Stukowski A, Caro A, Martinez E, Zepeda-Ruiz L. Scalable parallel Monte Carlo algorithm for atomistic simulations of precipitation in alloys. Phys Rev B. 2012;85(18):184203.

    Article  Google Scholar 

  74. Solanki KN, Tschopp MA, Bhatia MA, Rhodes NR. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe. Metall Mater Trans A. 2012;44(3):1365–75.

    Article  Google Scholar 

  75. Vitek V, Wang GJ. Atomic structure of grain boundaries and intergranular segregation. J Phys Colloq. 1982;43(C6):147–61.

    Article  Google Scholar 

  76. Cantwell PR, Tang M, Dillon SJ, Luo J, Rohrer GS, Harmer MP. Grain boundary complexions. Acta Mater. 2013;62(152):1–48.

    Google Scholar 

  77. Straumal B, Baretzky B. Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci. 2004;12(2–3):147–55.

    Article  Google Scholar 

  78. Seita M, Hanson JP, Gradecak S, Demkowicz MJ. The dual role of coherent twin boundaries in hydrogen embrittlement. Nat Commun. 2015;6:6164.

    Article  Google Scholar 

  79. Yamakov V, Saether E, Phillips DR, Glaessgen EH. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum. J Mech Phys Solids. 2006;54:1899–928.

    Article  MATH  Google Scholar 

  80. Yamakov V, Saether E, Glaessgen EH. Molecular modeling of intergranular fracture in aluminum: constitutive relation for interface debonding. J Mater Sci. 2008;43:7488–94.

    Article  Google Scholar 

  81. Barrows W, Dingreville R, Spearot D. Traction-separation relationships for hydrogen induced grain boundary embrittlement in nickel via molecular dynamics simulations. Mater Sci Eng A. 2016;650:354–64.

    Article  Google Scholar 

  82. Dingreville R, Aksoy D, Spearot DE. A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations, Scientific Reports, 2017;7: 8332.

    Article  Google Scholar 

  83. Adlakha I, Tschopp MA, Solanki KN. The role of grain boundary structure and crystal orientation on crack growth asymmetry in aluminum. Mater Sci Eng A. 2014;618:345–54.

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Laboratory Directed Research and Development Program at Sandia National Laboratories, a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy’s National Nuclear Security Administration under contract DE-AC0494AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Spearot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spearot, D.E., Dingreville, R., O’Brien, C.J. (2019). Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials. In: Schmauder, S., Chen, CS., Chawla, K., Chawla, N., Chen, W., Kagawa, Y. (eds) Handbook of Mechanics of Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-6884-3_14

Download citation

Publish with us

Policies and ethics

Navigation