Valuable Products Recovery from Wastewater in Agrofood by Membrane Processes

  • Chapter
  • First Online:
Sustainable Membrane Technology for Water and Wastewater Treatment

Abstract

Agrofood industry is one of the most important and dynamic industrial sectors worldwide. However, it generates large volumes of wastewaters, which contain great amounts of valuable products. Such products have a wide range of outstanding properties such as antioxidant, anticarcinogenic, or antimicrobial effects. Therefore, significant research has been focused on the development and implementation of different techniques to recover those products from the wastewaters. In the last decades, the utilization of membrane processes has grown in interest since they are considered as ‘green processes’ and have no negative impact on the valuable properties of these products. This chapter reviews the different membrane separation processes used for the separation, purification, and fractionation of valuable compounds from agrofood wastewaters. Among them, this chapter highlights the recovery of polyphenols and proteins from the fruit and vegetables, dairy and fish and meat industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Directive 2000/60/EC of the European parliament and of the council establishing a framework for the community action in the field of water policy (EU Water Framework Directive). Off J OJ L 327

    Google Scholar 

  2. Baldasso C, Barros TC, Tessaro IC (2011) Concentration and purification of whey proteins by ultrafiltration. Desalination 278:381–386

    Article  CAS  Google Scholar 

  3. Goulas A, Grandison AS (2008) Applications of membrane separations. In: Britz TJ, Robinson RK (eds) Advanced dairy science and technology. Blackwell Publishing, United Kingdom

    Google Scholar 

  4. Acevedo Correa D (2010) Gelificación fría de las proteínas del lactosuero. ReCiTeIA 10:1–19

    Google Scholar 

  5. Edwards PB, Creamer LK, Jameson GB (2008) Chapter 6. Structure and stability of whey proteins. In: Thompson A, Boland M, Singh H (eds) Milk proteins: from expression to food. Academic Press Elsevier, USA, pp 163–203

    Chapter  Google Scholar 

  6. Chandan RC, Kilara A (eds) (2011) Dairy ingredients for food processing. Blackwell Publishing, USA

    Google Scholar 

  7. Jawad AH, Alkarkhi AFM, Jason OC, Mat EA, Nik NNA (2013) Production of the lactic acid from mango peel waste—factorial experiment. J King Saud Univ Sci 25:39–45

    Google Scholar 

  8. Ramchandran L, Vasiljevic T (2013) Chapter 9. Whey processing. In: Tamime AY (ed) Membrane processing: dairy and beverage applications. Blackwell Publishing, United Kingdom, pp 193–207

    Google Scholar 

  9. Madrid VA (ed) (1981) Modernas técnicas de aprovechamiento del lactosuero. Almansa, Spain

    Google Scholar 

  10. Corbatón-Báguena MJ (2015) Limpieza de membranas de ultrafiltración aplicadas en la industria alimentaria por medio de técnicas no convencionales y caracterización del ensuciamiento de las membranas. PhD thesis. Universitat Politècnica de València. doi:10.4995/Thesis/10251/54841

  11. Lucena ME, Álvarez S, Menéndez C, Riera FA, Álvarez R (2006) Beta-lactoglobulin removal from whey protein concentrates. Production of milk derivatives as a base for infant formulas. Sep Purif Technol 52:310–316

    Article  CAS  Google Scholar 

  12. Daufin G, Escudier J-P, Carrère H, Bérot S, Fillaudeau L, Decloux M (2001) Recent and emerging applications of membrane processes in the food and dairy industry. Trans IChemE 79:89–102

    CAS  Google Scholar 

  13. Anema SG (2014) The whey protein in milk: thermal denaturation, physical interactions and effects on the functional properties of milk. In: Taylor SL (ed) Milk proteins: from expression to food, 2nd edn. Elsevier, United Kingdom

    Google Scholar 

  14. Steinhauer T, Hanély S, Bogendörfer K, Kulozik U (2015) Temperature dependent membrane fouling during filtration of whey and whey proteins. J Membr Sci 492:364–370

    Article  CAS  Google Scholar 

  15. Bird MR, Bartlett M (2002) Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. J Food Eng 53:143–152

    Article  Google Scholar 

  16. Blanpain-Avet P, Migdal JF, Bénézech T (2009) Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—characterization of hydraulic and chemical cleanliness. J Membr Sci 337:153–174

    Article  CAS  Google Scholar 

  17. Morin P, Pouliot Y, Jiménez-Flores R (2006) A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. J Food Eng 77:521–528

    Article  CAS  Google Scholar 

  18. Kazemimoghadam M, Mohammadi T (2007) Chemical cleaning of ultrafiltration membranes in the milk industry. Desalination 204:213–218

    Article  CAS  Google Scholar 

  19. Arunkumar A, Etzel MR (2014) Fractionation of α-lactalbumin and β-lactoglobulin from bovine milk serum using staged, positively charged, tangential flow ultrafiltration membranes. J Membr Sci 454:488–495

    Article  CAS  Google Scholar 

  20. Metsämuuronen S, Nyström M (2009) Enrichment of α-lactalbumin from diluted whey with polymeric ultrafiltration membranes. J Membr Sci 337:248–256

    Article  Google Scholar 

  21. Konrad G, Kleinschmidt T, Lorenz C (2013) Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. Int Dairy J 30:39–44

    Article  CAS  Google Scholar 

  22. Huisman IH, Prádanos P, Hernández A (2000) The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration. J Membr Sci 179:79–90

    Article  CAS  Google Scholar 

  23. Corbatón-Báguena MJ, Álvarez-Blanco S, Vincent-Vela MC, Lora-García J (2015) Utilization of NaCl solutions to clean ultrafiltration membranes fouled by whey protein concentrates. Sep Purif Technol 150:95–101

    Article  Google Scholar 

  24. Luján-Facundo MJ, Mendoza-Roca JA, Cuartas-Uribe B, Álvarez-Blanco S (2013) Ultrasonic cleaning of ultrafiltration membranes fouled with BSA solution. Sep Purif Technol 120:275–281

    Article  Google Scholar 

  25. Cuartas-Uribe B, Alcaina-Miranda MI, Soriano-Costa E, Mendoza-Roca JA, Iborra-Clar MI, Lora-García J (2009) A study of separation of lactose from whey ultrafiltration permeate using nanofiltration. Desalination 241:244–255

    Article  CAS  Google Scholar 

  26. Pan K, Song Q, Wang L, Cao B (2011) A study of demineralization of whey by nanofiltration membrane. Desalination 267:217–221

    Article  CAS  Google Scholar 

  27. Chandrapala J, Chen GQ, Kezia K, Bowman EG, Vasiljevic T, Kentish SE (2016) Removal of lactate from acid whey using nanofiltration. J Food Eng 177:59–64

    Article  CAS  Google Scholar 

  28. Madaeni SS, Mansourpanah Y (2004) Chemical cleaning of reverse osmosis membranes fouled by whey. Desalination 161:13–24

    Article  CAS  Google Scholar 

  29. González MI, Álvarez S, Riera F, Álvarez R (2007) Economic evaluation of an integrated process for lactic acid production from ultrafiltered whey. J Food Eng 80:553–561

    Article  Google Scholar 

  30. Gernigon G, Schuck P, Jeantet R, Burling H (2011) Whey processing. demineralization. In: Fuquay JW (ed) Encyclopedia of dairy sciences, 2nd edn. Elsevier, USA, pp 738–743

    Chapter  Google Scholar 

  31. Goodall S, Grandison AS, Jauregi PJ, Proce J (2008) Selective separation of the major whey proteins using ion exchange membranes. J Dairy Sci 91:1–10

    Article  CAS  Google Scholar 

  32. Bazinet L, Ippersiel D, Mahdavi B (2004) Fractionation of whey proteins by bipolar membrane electroacidification. Innov Food Sci Emerging Technol 5:17–25

    Article  CAS  Google Scholar 

  33. Korhonen H (2009) Milk-derived bioactive peptides: from science to applications. J Funct Foods 1:177–187

    Article  CAS  Google Scholar 

  34. Korhonen H, Pihlanto A (2007) Technological options for the production of health-promoting proteins and peptides derived from milk and colostrums. Curr Pharm Des 13:829–843

    Article  CAS  Google Scholar 

  35. Gauthier SF, Poulit Y, Maubois JL (2006) Growth factors from bovine milk and colostrums: composition, extraction and biological activities. Lait 86:99–125

    Article  CAS  Google Scholar 

  36. Maubois JL, Fauquant J, Jouan P, Bourtourault M (2003) Method for obtaining a TGF-beta enriched protein fraction in activated form, protein fraction and therapeutic applications, PCT/WO 03/006500

    Google Scholar 

  37. Hossner KL, Yemm RS (2000) Improved recovery of insulin-like growth factors (IGFs) from bovine colostrums using alkaline diafiltration. Biotechnol Appl Biochem 32:161–166

    Article  CAS  Google Scholar 

  38. Simon A, Vandanjon L, Levesque G, Bourseau P (2002) Concentration and desalination of fish gelatine by ultrafiltration and continuous diafiltration processes. Desalination 144:313–318

    Article  CAS  Google Scholar 

  39. Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS (2012) Utilization of byproducts and waste materials from meat, poultry and fish processing industries: a review. J Food Sci Technol 49:278–293

    Article  CAS  Google Scholar 

  40. Saidi S, Deratani A, Belleville M-P, Amar RB (2014) Production and fractionation of tuna by-product protein hydrolysate by ultrafiltration and nanofiltration: Impact on interesting peptides fractions and nutritional properties. Food Res Intern 65:453–461

    Article  CAS  Google Scholar 

  41. Arvanitoyannis IS, Kassaveti A (2008) Fish industry waste: treatments, environmental impacts, current and potential uses. Int J Food Sci Technol 43:726–745

    Article  CAS  Google Scholar 

  42. Bárzana E, García-Garibay M (1994) Chapter 9. Production of fish protein concentrates. In: Martin AM (ed) Fisheries processing. Biotechnological applications. Springer Science, United Kingdom, pp 206–223

    Google Scholar 

  43. Afonso MD, Ferrer J, Bórquez R (2004) An economic assessment of proteins recovery from fish meal effluents by ultrafiltration. Trends Food Sci Technol 15:506–512

    Article  CAS  Google Scholar 

  44. Gómez-Juárez C, Castellanos R, Ponce-Noyola T, Calderón V, Figueroa J (1999) Protein recovery from slaughterhouse wastes. Biores Technol 70:129–133

    Article  Google Scholar 

  45. Afonso MD, Bórquez R (2002) Review of the treatment of seafood processing wastewaters and recovery of proteins therein by membrane separation processes—prospects of the ultrafiltration of wastewaters from the fish meal industry. Desalination 142:29–45

    Article  CAS  Google Scholar 

  46. Bourseau P, Massé A, Cros S, Vandanjon L, Jaouen P (2014) Recovery of aroma compounds from seafood cooking juices by membrane processes. J Food Eng 128:157–166

    Article  CAS  Google Scholar 

  47. Lo YM, Cao D, Argin-Soysal S, Wang J, Hahm T-S (2005) Recovery of protein from poultry processing wastewater using membrane ultrafiltration. Biores Technol 96:687–698

    Article  CAS  Google Scholar 

  48. Pérez-Gálvez R, Guadix EM, Bergé J-P, Guadix A (2011) Operation and cleaning of ceramic membranes for the filtration of fish press liquor. J Membr Sci 384:142–148

    Article  Google Scholar 

  49. Bialas W, Stangierski J, Konieczny P (2015) Protein and water recovery from poultry processing wastewater integrating microfiltration, ultrafiltration and vacuum membrane distillation. Int J Environ Sci Technol 12:1875–1888

    Article  CAS  Google Scholar 

  50. Søtoft LF, Martin Lizarazu J, Parjikolaei BR, Karring H, Christensen KV (2015) Membrane fractionation of herring marinade for separation and recovery of fats, proteins, amino acids, salt, acetic acid and water. J Food Eng 158:39–47

    Article  Google Scholar 

  51. Cros S, Lignot B, Jaouen P, Bourseau P (2006) Technical and economical evaluation of an integrated membrane process capable both to produce an aroma concentrate and to reject clean water from shrimp cooking juices. J Food Eng 77(3):697–707

    Article  CAS  Google Scholar 

  52. Erlund I (2004) Review of the flavonoids quercetin, hesperetin, and naringenin. Dietary sources, bioactivities, bioavailability, and epidemiology. Nut Res 24:851–874

    Article  CAS  Google Scholar 

  53. Odeh RM, Cornish LA (1995) Natural antioxidants for the prevention of atherosclerosis. Pharmacotherapy 15:648–659

    Article  CAS  Google Scholar 

  54. Seifried EH, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18:567–579

    Article  CAS  Google Scholar 

  55. Garrido-Fernández A, Fernández-Díez M, Adams A (1997) Table olives: production and processing. Chapman and Hall, London, UK, p 15

    Book  Google Scholar 

  56. Azbar N, Bayram A, Filibeli A, Muezzinoglu A, Sengul F, Ozer A (2004) A review of waste management options in olive oil production. Crit Rev Environ Sci Technol 34:209–247

    Article  CAS  Google Scholar 

  57. Carrera-González MP, Ramírez-Expósito MJ, Mayas MD, Martínez-Martos JM (2013) Protective role of oleuropein and its metabolite hydroxytyrosol on cancer. Trends Food Sci Technol 31:92–99

    Article  Google Scholar 

  58. Charoenmprasert S, Mitchell A (2012) Factors influencing phenolic compounds in table olives (Olea europaea). J Agric Food Chem 60:7081–7095

    Article  Google Scholar 

  59. El-Abbassi A, Khayet M, Kiai H, Hafidi A, García-Payo MC (2013) Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Sep Purif Technol 104:327–332

    Article  CAS  Google Scholar 

  60. Cassano A, Conidi C, Drioli E (2011) Comparison of the performance of UF membranes in olive mill wastewaters treatment. Water Res 45:3197–3204

    Article  CAS  Google Scholar 

  61. Ferrer-Polonio E, Iborra-Clar A, Mendoza-Roca JA, Pastor-Alcañiz L (2016) Fermentation brines from Spanish style green table olives processing: treatment alternatives before recycling or recovery operations. J Chem Technol Biotechnol 91:131–137

    Article  CAS  Google Scholar 

  62. García-García P, López-López A, Moreno-Baquero JM, Garrido-Fernández A (2011) Treatment of wastewaters from the green table olive packaging industry using electro-coagulation. Chem Eng J 170:59–66

    Article  Google Scholar 

  63. Della Greca M, Previtera L, Temussi F, Zarrelli A (2004) Low-molecular-weight components of olive oil mill waste-waters. Phytochem Anal 15:184–188

    Article  Google Scholar 

  64. Chiavola A, Farabegoli G, Antonetti F (2014) Biological treatment of olive mill wastewater in a sequencing batch reactor. Biochem Eng J 85:81–88

    Article  Google Scholar 

  65. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81:1475–1485

    Article  CAS  Google Scholar 

  66. Turano E, Curcio S, De Paola MG, Calabrò V, Iorio G (2002) An integrated centrifugation–ultrafiltration system in the treatment of olive mill wastewater. J Membr Sci 209:519–531

    Article  CAS  Google Scholar 

  67. Russo C (2007) Anew membrane process for the selective fractionation and total recovery of polyphenols, water and organic substances from vegetation waters (VW). J Membr Sci 288:239–246

    Article  CAS  Google Scholar 

  68. Cassano A, Conidi C, Giorno L, Drioli E (2013) Fractionation of olive mill wastewaters by membrane separation techniques. J Hazard Mat 248–249:185–193

    Article  Google Scholar 

  69. Bazzarelli F, Piacentini E, Poerio T, Mazzei R, Cassano A, Giorno L (2016) Advances in membrane operations for water purification and biophenols recovery/valorization from OMWWs. J Membr Sci 497:402–409

    Article  CAS  Google Scholar 

  70. García-Castelló E, Cassano A, Criscuoli A, Conidi C, Drioli E (2010) Recovery and concentration of polyphenols from olive mil wastewaters by integrated membrane system. Water Res 44:3883–3892

    Article  Google Scholar 

  71. Kopsidas GC (1992) Wastewaters from the preparation of table olives. Water Res 26:629–631

    Article  CAS  Google Scholar 

  72. García-Ivars J, Iborra-Clar MI, Alcaina-Miranda MI, Mendoza-Roca JA, Pastor-Alcañiz L (2015) Treatment of table olive processing wastewaters using novel photomodified ultrafiltration membranes as first step for recovering phenolic compounds. J Hazard Mat. 290:51–59

    Article  Google Scholar 

  73. Ferrer-Polonio E, Mendoza-Roca JA, Iborra-Clar A, Pastor-Alcañiz L (2016) Adsorption of raw and treated by membranes fermentation brines from table olives processing for phenolic compounds separation and recovery. J Chem Technol Biotechnol. 91(7):2094–2102

    Google Scholar 

  74. Giacobbo A, Bernardes AM, de Pinho MN (2013) Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Sep Sci Technol 48:2524–2530

    Article  CAS  Google Scholar 

  75. Giacobbo A, Prado do JM, Meneguzzi A, Bernardes AM, de Pinho MN (2015) Microfiltration for the recovery of polyphenols from winery effluents. Sep Purif Technol 143:12–18

    Google Scholar 

  76. Conidi C, Cassano A, García-Castelló E (2014) Valorization of artichoke wastewaters by integrated membrane process. Water Res 48:363–374

    Article  CAS  Google Scholar 

  77. Conidi C, Rodríguez-López AD, García-Castelló EM, Cassano A (2015) Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep Purif Technol 144:153–161

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Álvarez-Blanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Álvarez-Blanco, S., Mendoza-Roca, JA., Corbatón-Báguena, MJ., Vincent-Vela, MC. (2017). Valuable Products Recovery from Wastewater in Agrofood by Membrane Processes. In: Figoli, A., Criscuoli, A. (eds) Sustainable Membrane Technology for Water and Wastewater Treatment. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-5623-9_11

Download citation

Publish with us

Policies and ethics

Navigation