Production Economics in Spatial Analysis

  • Reference work entry
  • First Online:
Handbook of Production Economics

Abstract

This chapter summarizes the empirical literature that uses a spatial analysis framework in production economics. This literature takes advantage of the spatial dimension of the data to capture the spillover effects of neighboring production units. In the first three sections, we outline standard spatial extensions of the neoclassical production models aiming to measure knowledge spillovers, the effect of network inputs, and economies of agglomeration. The next four sections outline the literature that on one hand examines returns to scale and productivity growth from both internal and external inputs, and on the other hand summarize the spatial econometric techniques used in frontier and non-frontier analyses of firms’ production. The last section includes a set of final remarks regarding the application of spatial econometric techniques in production analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 330.63
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 855.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The “spatial lag” terminology used in spatial econometrics was originally introduced by Anselin [6].

  2. 2.

    If real wages are proportional to labor productivity, this issue can be also examined using wage functions.

  3. 3.

    The content of this section is highly inspired in Orea and Álvarez [97].

  4. 4.

    This subsection is inspired in Kutlu [80].

References

  1. Adetutu M, Glass AJ, Kenjegalieva K, Sickles RC (2015) The effects of efficiency and TFP growth on pollution in Europe: a multistage spatial analysis. J Prod Anal 43:307–326

    Article  Google Scholar 

  2. Álvarez I, Barbero J (2016) The public sector and convergence with spatial interdependence: empirical evidence from Spain. Appl Econ 48(24):2238–2252

    Article  Google Scholar 

  3. Álvarez I, Delgado MJ (2012) High capacity road networks and spatial spillovers in Spanish regions. JTEP 46:281–292

    Google Scholar 

  4. Álvarez I, Condeço-Melhorado AM, Gutiérrez J, Zofío JL (2016a) Integrating network analysis with the production function approach to study the spillover effects of transport infrastructure. Reg Stud 50(6):996–1015

    Article  Google Scholar 

  5. Álvarez I, Barbero J, Zofio JL (2016b) A spatial autoregressive panel model to analyze road network spillovers on production. Transp Res A Policy Pract 93:83–92

    Article  Google Scholar 

  6. Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Dordrecht

    Book  Google Scholar 

  7. Arbia G, Espa G, Giuliani D, Mazzitelli A (2010) Detecting the existence of space-time clustering of firms. In: Arbia G, Kelejian H (eds) Advances in spatial econometrics, pp 311–323

    Google Scholar 

  8. Arbues P, Baños JF, Mayor M (2015) The spatial productivity of transportation infrastructure. Transp Res A Policy Pract 75:166–177

    Article  Google Scholar 

  9. Areal FJ, Balcombe K, Richard T (2012) Integrating spatial dependence into Stochastic Frontier nalysis. Aust J Agric Resour Econ 56:521–541

    Article  Google Scholar 

  10. Aschauer DA (1989) Is public expenditure productive? J Monet Econ 23(2):177–200

    Article  Google Scholar 

  11. Audretsch DB, Feldman MP (1996) R&D spillovers and the geography of innovation and production. Am Econ Rev 86:630–640

    Google Scholar 

  12. Audretsch DB, Feldman MP (2004) Knowledge spillovers and the geography of innovation. In: Henderson JV, Thisse JF (eds) Handbook of regional and urban economics. Elsevier, San Diego, pp 2713–2739

    Google Scholar 

  13. Baltagi BH, Liu L (2011) Instrumental variable estimation of a spatial autoregressive panel model with random effects. Econ Lett 111(2):135–137

    Article  Google Scholar 

  14. Baltagi BH, Egger P, Kesina M (2016) Firm-level productivity spillovers in China’s chemical industry: a spatial Hausman-Taylor approach. J Appl Econ 31:214–248

    Article  Google Scholar 

  15. Black SE, Lynch LM (2000) What’s driving the new economy: the benefits of workplace innovation. NBER Working Paper No. 7479, January

    Google Scholar 

  16. Bloom N, Schankerman M, van Reenen J (2013) Identifying technology spillovers and product market rivalry. Econometrica 81:1347–1393

    Article  Google Scholar 

  17. Bloom N, Lucking B, van Reenen J (2018) Have R&D Spillovers Changed? CEP Discussion Paper No 1548 May 2018

    Google Scholar 

  18. Boarnet MG (1998) Spillovers and the locational effects of public infrastructure. J Reg Sci 38:381–400

    Article  Google Scholar 

  19. Bottazzi L, Peri G (2003) Innovation and spillovers in regions: evidence from European patent data. Eur Econ Rev 47(4):687–710

    Article  Google Scholar 

  20. Bresnahan TF, Brynjolfsson E, Hitt LM (2002) Information technology, workplace organization, and the demand for skilled labor: firm-level evidence. Q J Econ 117:339–376

    Article  Google Scholar 

  21. Burnside C, Eichenbaum M (1996) Factor-hoarding and the propagation of business-cycle shocks. Am Econ Rev 86:1154–1174

    Google Scholar 

  22. Case AC, Rosen HS, Hines JR (1993) Budget spillovers and fiscal-policy interdependence: evidence from the states. J Public Econ 52:285–307

    Article  Google Scholar 

  23. Charlot S, Crescenzi R, Musolesi A (2015) Econometric modelling of the regional knowledge production function in Europe. J Econ Geogr 15(6):1227–1259

    Article  Google Scholar 

  24. Ciccone A, Hall RE (1996) Productivity and the density of economic activity. Am Econ Rev 86(1):54–70

    Google Scholar 

  25. Cohen JP, Morrison PCJ (2004) Public infrastructure investment, interstate spatial spillovers, and manufacturing costs. Rev Econ Stat 86(2):551–560

    Article  Google Scholar 

  26. Combes PP, Gobillon L (2015) The empirics of agglomeration economies. In: Duranton G, Henderson JV, Strange WC (eds) Handbook of urban and regional economics, vol 5. Elsevier, Netherlands

    Google Scholar 

  27. Combes P, Overman H (2004) The spatial distribution of economic activities in the European Union. In: Henderson V, Thisse J-F (eds) Handbook of regional and urban economics: cities and geography. Elsevier, Amsterdam

    Google Scholar 

  28. Combes PP, Mayer T, Thisse JF (2008) Economic geography: the integration of regions and nations. Princeton University Press, Princeton

    Book  Google Scholar 

  29. Combes PP, Duranton G, Gobillon L, Puga D, Roux S (2012) The productivity advantages of large markets: distinguishing agglomeration from firm selection. Econometrica 80(6):2543–2594

    Article  Google Scholar 

  30. Cornwell C, Schmidt P, Sickles RC (1990) Production frontiers with cross-sectional and time-series variation in efficiency levels. J Econ 46:185–200

    Article  Google Scholar 

  31. Corrado L, Fingleton B (2012) Where is the economics in spatial econometrics? J Reg Sci 52(2):210–239

    Article  Google Scholar 

  32. Cunha P, Neves T (2018) Spillovers in the production of knowledge: a meta-regression analysis. Res Policy 47:750–767

    Article  Google Scholar 

  33. Druska V, Horrace WC (2004) Generalized moments estimation for spatial panel data: Indonesian rice farming. Am J Agric Econ 86:185–198

    Article  Google Scholar 

  34. Duggal V, Saltzman C, Klein L (1999) Infrastructure and productivity: a nonlinear approach. J Econ 92(1):47–74

    Article  Google Scholar 

  35. Duranton G, Overman HG (2005) Testing for localization using micro-geographic data. Rev Econ Stud 72(4):1077–1106

    Article  Google Scholar 

  36. Duranton G, Puga D (2000) Diversity and specialization in cities: why, where and when does it matter? Urban Stud 37(3):533–555

    Article  Google Scholar 

  37. Eberhardt M, Helmers C, Strauss H (2013) Do spillovers matter when estimating private returns to R&D? Rev Econ Stat 95(2):436–448

    Article  Google Scholar 

  38. Eberts RW, McMillen DP (1999) Agglomeration economies and urban public infrastructure. In: Cheshire P, Mills ES (eds) Handbook of regional and urban economics. Applied urban economics, vol 3. Elsevier Science, Amsterdam, pp 1455–1495

    Google Scholar 

  39. Elhorst JP (2003) Unconditional maximum likelihood estimation of dynamic models for spatial panels. Research Report 03C27. University of Groningen, Research Institute SOM (Systems, Organizations and Management), Groningen

    Google Scholar 

  40. Elhorst JP (2010) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28

    Article  Google Scholar 

  41. Elhorst JP (2014) Spatial panel models. In: Fischer MM, NijKamp P (eds) Handbook of regional science. Springer, Berlin

    Google Scholar 

  42. Ellison G, Glaeser EL (1999) The geographic concentration of industry: does natural advantage explain agglomeration? Am Econ Rev Pap Proc 89(2):311–316

    Article  Google Scholar 

  43. Ertur C, Koch W (2007) Growth, technological interdependence and spatial externalities: theory and evidence. J Appl Econ 22:1033–1062

    Article  Google Scholar 

  44. Fingleton B, López-Bazo E (2006) Empirical growth models with spatial effects. Pap Reg Sci 85:177–198

    Article  Google Scholar 

  45. Fischer M (2011) A spatial Mankiw-Romer-Weil model: theory and evidence. Ann Reg Sci 47(2):419–436

    Article  Google Scholar 

  46. Fujita M, Krugman PR, Venables AJ (1999) The spatial economy: cities, regions and international trade. MIT Press, Cambridge

    Book  Google Scholar 

  47. Gajanan S, Malhotra D (2007) Measures of capacity utilization and its determinants: a study of Indian manufacturing. Appl Econ 39:765–776

    Article  Google Scholar 

  48. Gibbons S, Overman HG (2012) Mostly pointless spatial econometrics? J Reg Sci 52:172–191

    Article  Google Scholar 

  49. Gibbons S, Overman HG, Patacchini E (2015) Spatial methods. In: Handbook of regional and urban economics, vol 5. Elsevier, Netherlands, pp 115–168

    Google Scholar 

  50. Glass AJ, Kenjegalieva K (2019) A spatial productivity index in the presence of efficiency spillovers: evidence for US banks 1992–2015. Eur J Oper Res 273:1165–1179

    Article  Google Scholar 

  51. Glass AJ, Kenjegalieva K, Paez-Farrell J (2013) Productivity growth decomposition using a spatial autoregressive frontier model. Econ Lett 119(3):291–295

    Article  Google Scholar 

  52. Glass AJ, Kenjegalieva K, Sickles RC (2014) Estimating efficiency spillovers with state level evidence for manufacturing in the US. Econ Lett 123(2):154–159

    Article  Google Scholar 

  53. Glass AJ, Kenjegalieva K, Sickles RC (2016a) Returns to scale and curvature in the presence of spillovers: evidence from European countries. Oxf Econ Pap 68(1):40–63

    Article  Google Scholar 

  54. Glass AJ, Kenjegalieva K, Sickles RC (2016b) A spatial autoregressive stochastic frontier model for panel data with asymmetric efficiency spillovers. J Econ 190(2):289–300

    Article  Google Scholar 

  55. Golgher AB, Voss PR (2016) How to interpret the coefficients of spatial models: spillovers, direct and indirect effects. Spatial Demogr 4(3):175–205

    Article  Google Scholar 

  56. Gordon RJ (2000) Does the ‘New Economy’ measure up to the great inventions of the past? J Econ Perspect 14(4):49–77

    Article  Google Scholar 

  57. Gråsjö U (2006) Spatial spillovers of knowledge production: an accessibility approach (Doctoral dissertation, Internationella Handelshögskolan)

    Google Scholar 

  58. Griliches B (1979) Issues in assessing the contribution of research and development to productivity growth. Bell J Econ 10(1):92–116

    Article  Google Scholar 

  59. Griliches Z (1991) The search for R&D spillovers. Working Paper No. 3768, NBER Working Papers Series

    Google Scholar 

  60. Gude A, Alvarez I, Orea L (2018) Heterogeneous spillovers among Spanish provinces: a generalized spatial stochastic frontier model. J Prod Anal 50(3):155–173

    Article  Google Scholar 

  61. Gumbau-Albert M, Maudos J (2009) Patents, technological inputs and spillovers among regions. Appl Econ 41(12):1473–1486

    Article  Google Scholar 

  62. Hall BH, Mairesse J (1995) Exploring the relationship between R&D and productivity in French manufacturing firms. J Econ 65:263–293

    Article  Google Scholar 

  63. Han F, **e R, Fang J (2018) Urban agglomeration economies and industrial energy efficiency. Energy 162:45–59

    Article  Google Scholar 

  64. Herwartz H, Strumann C (2014) Hospital efficiency under prospective reimbursement schemes: an empirical assessment for the case of Germany. Eur J Health Econ 15(2):175–186

    Article  Google Scholar 

  65. Horrace WC, Jung H (2018) Stochastic frontier models with network selectivity. J Prod Anal 50(3):101–116

    Article  Google Scholar 

  66. Horrace WC, Liu X, Patacchini E (2016) Endogenous network production functions with selectivity. J Econ 190(2):222–232

    Article  Google Scholar 

  67. Hulten CR, Bennathan E, Srinivasan S (2005) Infrastructure, externalities, and economic development: a study of Indian manufacturing industry. World Bank, Mimeo, Washington DC

    Google Scholar 

  68. Jaffe AB (1986) Technological opportunity and spillovers of R&D: evidence from firms’ patents, profits and market value. Am Econ Rev 76(5):984–1001

    Google Scholar 

  69. Jondrow J, Lovell CK, Materov IS, Schmidt P (1982) On the estimation of technical inefficiency in the stochastic frontier production function model. J Econ 19(2–3):233–238

    Article  Google Scholar 

  70. Jorgenson DW, Stiroh KJ (2000) Raising the speed limit: U.S. economic growth in the information age. Brookings Papers on Economic Activity, pp 125–211

    Google Scholar 

  71. Kapoor M, Kelejian HH, Prucha IR (2007) Panel data models with spatially correlated error components. J Econ 140(1):97–130

    Article  Google Scholar 

  72. Kelejian HH, Prucha IR (1998) A generalized spatial two-stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Financ Econ 17(1):99–121

    Article  Google Scholar 

  73. Kelejian HH, Prucha IR (1999) A generalized moments estimator for the autoregressive parameter in a spatial model. Int Econ Rev 40(2):509–533

    Article  Google Scholar 

  74. Kelejian HH, Prucha IR (2004) Estimation of simultaneous systems of spatially interrelated cross-sectional equations. J Econ 118(1–2):27–50

    Article  Google Scholar 

  75. Kelejian HH, Prucha IR (2007) HAC estimation in a spatial framework. J Econ 140(1):131–154

    Article  Google Scholar 

  76. Kelejian HH, Prucha IR (2010) Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J Econ 157(1):53–67

    Article  Google Scholar 

  77. Klette TJ, Kortum S (2004) Innovating firms and aggregate innovation. J Polit Econ 112:986–1018

    Article  Google Scholar 

  78. Krugman P (1998) What’s new about the new economic geography? Oxf Rev Econ Policy 14(2):7–17. Oxford University Press

    Article  Google Scholar 

  79. Kumbhakar SC, Lovell CAK (2000) Stochastic frontier analysis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  80. Kutlu L (2018) Estimating efficiency in a spatial autoregressive stochastic frontier model. Econ Lett 163:155–157

    Article  Google Scholar 

  81. Lee F (2004) Asymptotic distributions of quasi-maximum likelihood estimators of spatial autoregressive models. Econometrica 72:1899–1925

    Article  Google Scholar 

  82. Lee L, Yu J (2010) Estimation of spatial autoregressive panel data models with fixed effects. J Econ 154(2):165–185

    Article  Google Scholar 

  83. LeSage JP (2014) What regional scientists need to know about spatial econometrics. Rev Reg Stud 44:13–32

    Google Scholar 

  84. LeSage JP, Chih YY (2016) Interpreting heterogeneous coefficient spatial autoregressive panel models. Econ Lett 142:1–5

    Article  Google Scholar 

  85. LeSage JP, Chih YY (2017, in press) A Bayesian spatial panel model with heterogeneous coefficients. Reg Sci Urban Econ 72

    Google Scholar 

  86. LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press, Florida, FL

    Google Scholar 

  87. Lesage JP, Pace RK (2010) Spatial economic model. Handbook of applied spatial analysis. Springer, Berlin/Heidelberg, pp 377–407

    Google Scholar 

  88. Lychagin S, Pinkse J, Slade ME, van Reenen J (2010) Spillovers in space: does geography matter? NBER Working Paper No. 16188

    Google Scholar 

  89. Mairesse J, Mohnen P, Kremp E (2005) The importance of R&D and innovation for productivity: a reexamination in the light of the French Innovation Survey. Ann Econ Stat 79(80):486–527

    Google Scholar 

  90. Malikov E, Sun Y (2017) Semiparametric estimation and testing of smooth coefficient spatial autoregressive models. J Econ 199(1):13–34

    Article  Google Scholar 

  91. Maté-Sánchez-Val M, López-Hernandez F, Mur-Lacambra J (2017) How do neighbouring peer companies influence SMEs’ financial behaviour? Econ Model 63:104–114

    Article  Google Scholar 

  92. Melo PC, Graham DJ, Noland RB (2009) A meta-analysis of estimates of urban agglomeration economies. Reg Sci Urban Econ 39:332–342

    Article  Google Scholar 

  93. Munnell AH (1992) Policy watch: infrastructure investment and economic growth. J Econ Perspect 6(4):189–198. American Economic Association

    Article  Google Scholar 

  94. Mutl J, Pfaffermayr M (2011) The Hausman test in a cliff and ord panel model. Econ J 14(1):48–76

    Google Scholar 

  95. Ord JK (1975) Estimation methods for models of spatial interaction. J Am Stat Assoc 70:120–126

    Article  Google Scholar 

  96. Orea L (2002) Parametric decomposition of a Generalized Malmquist productivity index. J Prod Anal 18(1):5–22

    Article  Google Scholar 

  97. Orea L, Álvarez I (2019) A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms. J Econ 213(2):556–577

    Google Scholar 

  98. Orea L, Álvarez I, Jamasb T (2018) A spatial stochastic frontier model with omitted variables: electricity distribution in Norway. Energy J 39(3):93–117

    Google Scholar 

  99. Orea L, Álvarez I, Servén L (2019) A two-level top-down decomposition of aggregate productivity growth: the role of infrastructure. In: Lovell K, Pastor JT, Zhu Z, Aparicio J (eds) Advances in efficiency and productivity II. Springer International Series in Operations Research and Management Sciences, Berlin

    Google Scholar 

  100. Pakes A, Griliches Z (1984) Patents and R&D at the firm level: a first look. In: R&D, patents and productivity. University of Chicago Press, Chicago, IL, pp 55–72

    Google Scholar 

  101. Partridge MD, Boarnet M, Brakman S, Ottaviano G (2012) Introduction: whither spatial econometrics? J Reg Sci 52(2):167–171

    Article  Google Scholar 

  102. Pereira AM, Andraz JM (2004) Public highway spending and State spillovers in the USA. Appl Econ Lett 11:785–788

    Article  Google Scholar 

  103. Pereira AM, Andraz JM (2013) On the economic effects of public infrastructure investment: a survey of the international evidence. J Econ Dev 38(4):1–37

    Article  Google Scholar 

  104. Plümper T, Neumayer E (2010) Model specification in the analysis of spatial dependence. Eur J Polit Res 49(3):418–442

    Article  Google Scholar 

  105. Prenzel P, Ortega-Aviles R, Cozza C, Piva M (2018) Interplay between regional and industrial aspects in the R&D productivity link: evidence from Europe. Reg Stud 52(5):659–672

    Article  Google Scholar 

  106. Qu X, Lee L (2015) Estimating a spatial autoregressive model with an endogenous spatial weight matrix. J Econ 184:209–232

    Article  Google Scholar 

  107. Ramajo J, Hewings GJ (2018) Modeling regional productive performance using a spatial stochastic frontier approach: new evidence for Europe (1995–2007). Reg Stud 52(10):1372–1387

    Article  Google Scholar 

  108. Rogers M (2010) R&D productivity: using UK firm-level data to inform policy. Empirica 37(3):329–359

    Article  Google Scholar 

  109. Romer PM (1986) Increasing returns and long-run growth. J Polit Econ 94(5):1002–1037

    Article  Google Scholar 

  110. Romer PM (1987) Growth based on increasing returns due to specialization. Am Econ Rev 72:56–62

    Google Scholar 

  111. Rosenthal SS, Strange WC (2004) Evidence on the nature and sources of agglomeration economies. In: Henderson V, Thisse J-F (eds) Handbook of regional and urban economics, vol 4. North-Holland, Amsterdam, pp 2119–2171

    Google Scholar 

  112. Rosenthal SS, Strange WC (2008) The attenuation of human capital spillovers. J Urban Econ 64:373–389

    Article  Google Scholar 

  113. Schmidt P, Sickles RC (1984) Production frontiers and panel data. J Bus Econ Stat 2:367–374

    Google Scholar 

  114. Schmidt AM, Moreira AR, Helfand SM, Fonseca TC (2009) Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency. J Prod Anal 31(2):101–112

    Article  Google Scholar 

  115. Stiroh KJ (2002a) Information technology and the US productivity revival: what do the industry data say? Am Econ Rev 92(5):1559–1576

    Article  Google Scholar 

  116. Stiroh KJ (2002b) Are ICT spillovers driving the new economy? Rev Income Wealth 48(1):33–57

    Article  Google Scholar 

  117. Straub S (2011) Infrastructure and development: a critical appraisal of the macro-level literature. J Dev Stud 47(05):683–708

    Article  Google Scholar 

  118. Strobel T (2016) ICT intermediates and productivity spillovers-evidence from German and US manufacturing sectors. Struct Chang Econ Dyn 37:147–163

    Article  Google Scholar 

  119. Sun Y (2016) Functional-coefficient spatial autoregressive models with nonparametric spatial weights. J Econ 195(1):134–153

    Article  Google Scholar 

  120. Sun Y, Malikov E (2018) Estimation and inference in functional-coefficient spatial autoregressive panel data models with fixed effects. J Econ 203(2):359–378

    Article  Google Scholar 

  121. Tiefelsdorf M, Griffith DA, Boots B (1999) A variance-stabilizing coding scheme for spatial link matrices. Environ Plan A 31:165–180

    Article  Google Scholar 

  122. Tsionas EG, Michaelides PG (2016) A spatial stochastic frontier model with spillovers: evidence for Italian regions. Scottish J Polit Econ 63(3):243–257

    Article  Google Scholar 

  123. van Ark B, Inklaar R, McGuckin RH (2003) ICT and productivity in Europe and the United States: where the differences come from, May

    Google Scholar 

  124. van der Wiel HP (2001) Does ICT boost Dutch productivity growth? CPB Document No 016

    Google Scholar 

  125. van Leeuwen G, van der Wiel HP (2003a) Do ICT spillovers matter? CPB Discussion Paper No 26

    Google Scholar 

  126. van Leeuwen G, van der Wiel HP (2003b) Spillover effects of ICT. CPB Report No 3

    Google Scholar 

  127. Vega SH, Elhorst JP (2015) The SLX model. J Reg Sci 55(3):339–363

    Article  Google Scholar 

  128. Vidoli F, Cardillo C, Fusco E, Canello J (2016) Spatial nonstationarity in the stochastic frontier model: an application to the Italian wine industry. Reg Sci Urban Econ 61:153–164

    Article  Google Scholar 

  129. Yu N, de Jong M, Storm S, Mi J (2013) Spatial spillover effects of transport infrastructure: evidence from Chinese regions. J Transp Geogr 28:56–66

    Article  Google Scholar 

  130. Zhang X, Yu J (2018) Spatial weights matrix selection and model averaging for spatial autoregressive models. J Econ 203:1–18

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was supported by the Spanish Ministry of Economics, Industry and Competitiveness (Grant MINECO-18-ECO2017-85788-R). The authors would like to thank the two “Salvador de Madariaga” grants obtained from the Spanish Ministry of Science, Innovation and Universities (Grants PRX19/00596 and PRX19/00589). We also wish to acknowledge helpful suggestions from an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Orea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Orea, L., Álvarez, I.C. (2022). Production Economics in Spatial Analysis. In: Ray, S.C., Chambers, R.G., Kumbhakar, S.C. (eds) Handbook of Production Economics. Springer, Singapore. https://doi.org/10.1007/978-981-10-3455-8_35

Download citation

Publish with us

Policies and ethics

Navigation