PET Radiopharmaceuticals in Oncology Beyond FDG

  • Chapter
  • First Online:
Personalized Pathway-Activated Systems Imaging in Oncology

Abstract

Several imaging modalities to diagnose cancer, which include computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, optical imaging, and gamma scintigraphy, have been previously used. For instance, CT and MRI provide considerable anatomic information about the location and the extent of tumors, but do not adequately differentiate residual or recurrent tumors from edema, radiation necrosis, or gliosis. On the other ultrasound images provide limited information about local and regional morphology with blood flow. Similarly optical imaging showed promising results, but did not demonstrate the ability to detect deep tissue penetration. Notably, radionuclide imaging modalities are diagnostic cross-sectional imaging techniques that map the location and concentration of radionuclide-labeled compounds. Moreover, molecular imaging agents are making it possible to “see” the molecular makeup of the tumor and its metabolic activity beyond tumor location, size, shape, and viability. Other technological limitations include nuclear images, which can provide a very accurate definition of metabolically active areas, but miss anatomic features. As a result, new imaging modalities have combined nuclear images with CT scans for treatment planning. The hybrid scanners combine anatomic and functional images taken during a single procedure, without having to reposition the patient between scans. In this chapter, multiple ligands beyond clinical standard 18F-fluorodexoyglucose are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rubi S, Costes N, Heckemann RA, et al. Positron emission tomography with alpha-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia. 2013;54(12):2143–50.

    Article  CAS  PubMed  Google Scholar 

  2. Park HK, Kim JS, Im KC, Kim MJ, Lee JH, Lee MC, Kim J, Chung SJ. Visual hallucinations and cognitive impairment in Parkinson’s disease. Can J Neurol Sci 2013;40(5):657–662.

    Google Scholar 

  3. Bertelson JA, Ajtai B. Neuroimaging of dementia. Neurol Clin. 2014;32(1):59–93.

    Article  PubMed  Google Scholar 

  4. Chetelat G, La Joie R, Villain N, Perrotin A, de La Sayette V, Eustache F, Vandenberghe R. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage Clin. 2013;2:356–65.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lehner S, Uebleis C, Schussler F, et al. The amount of viable and dyssynchronous myocardium is associated with response to cardiac resynchronization therapy: initial clinical results using multiparametric ECG-gated [18F]FDG PET. Eur J Nucl Med Mol Imaging. 2013;40(12):1876–83.

    Article  CAS  PubMed  Google Scholar 

  6. Friedberg JW, Fischman A, Neuberg D, et al. FDG-PET is superior to gallium scintigraphy in staging and more sensitive in the follow-up of patients with de novo Hodgkin lymphoma: a blinded comparison. Leuk Lymphoma. 2004;45(1):85–92.

    Article  PubMed  Google Scholar 

  7. Bar-Shalom R, Valdivia AY, Blaufox MD. PET imaging in oncology. Semin Nucl Med. 2000;30(3):150–85.

    Article  CAS  PubMed  Google Scholar 

  8. Plowman PN, Saunders CA, Maisey M. On the usefulness of brain PET scanning to the paediatric neuro-oncologist. Br J Neurosurg. 1997;11(6):525–32.

    Article  CAS  PubMed  Google Scholar 

  9. Weber WA, Avril N, Schwaiger M. Relevance of Positron Emission Tomography (PET) in oncology. Strahlenther Onkol. 1999;175(8):356–73.

    Article  CAS  PubMed  Google Scholar 

  10. Lau CL, Jr Harpole DH, Patz E. Staging techniques for lung cancer. Chest Surg Clin N Am. 2000;10(4):781–801.

    CAS  PubMed  Google Scholar 

  11. Schulte M, Brecht-Krauss D, Heymer B, et al. Grading of tumors and tumorlike lesions of bone: evaluation by FDG PET. J Nucl Med. 2000;41(10):1695–701.

    CAS  PubMed  Google Scholar 

  12. Yutani K, Shiba E, Kusuoka H, Tatsumi M, Uehara T, Taguchi T, Takai SI, Nishimura T. Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr. 2000;24(2):274–80.

    Article  CAS  PubMed  Google Scholar 

  13. Franzius C, Sciuk J, Daldrup-Link HE, Jurgens H, Schober O. FDG-PET for detection of osseous metastases from malignant primary bone tumours: comparison with bone scintigraphy. Eur J Nucl Med. 2000;27(9):1305–11.

    Article  CAS  PubMed  Google Scholar 

  14. Folpe AL, Lyles RH, Sprouse JT, Conrad ER, Eary JF. (F-18) fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res. 2000;6(4):1279–87.

    CAS  PubMed  Google Scholar 

  15. Meyer PT, Spetzger U, Mueller HD, Zeggel T, Sabri O, Schreckenberger M. High F-18 FDG uptake in a low-grade supratentorial ganglioma: a positron emission tomography case report. Clin Nucl Med. 2000;25(9):694–7.

    Article  CAS  PubMed  Google Scholar 

  16. Franzius C, Sciuk J, Brinkschmidt C, Jurgens H, Schober O. Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med. 2000;25(11):874–81.

    Article  CAS  PubMed  Google Scholar 

  17. Carretta A, Landoni C, Melloni G, Ceresoli GL, Compierchio A, Fazio F, Zannini P. 18-FDG positron emission tomography in the evaluation of malignant pleural diseases – a pilot study. Eur J Cardiothorac Surg. 2000;17(4):377–83.

    Article  CAS  PubMed  Google Scholar 

  18. Torre W, Garcia-Velloso MJ, Galbis J, Fernandez O, Richter J. FDG-PET detection of primary lung cancer in a patient with an isolated cerebral metastasis. J Cardiovasc Surg. 2000;41(3):503–5.

    CAS  Google Scholar 

  19. Brunelle F. Noninvasive diagnosis of brain tumours in children. Childs Nerv Syst. 2000;16(10–11):731–4.

    Article  CAS  PubMed  Google Scholar 

  20. Mankoff DA, Dehdashti F, Shields AF. Characterizing tumors using metabolic imaging: PET imaging of cellular proliferation and steroid receptors. Neoplasia. 2000;2(1–2):71–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fitzgerald J, Parker JA, Danias PG. F-18 fluoro deoxyglucose SPECT for assessment of myocardial viability. J Nucl Cardiol. 2000;7(4):382–7.

    Article  CAS  PubMed  Google Scholar 

  22. Schwarz A, Kuwert T. Nuclear medicine diagnosis in diseases of the central nervous system. Radiologe. 2000;40(10):858–62.

    Article  CAS  PubMed  Google Scholar 

  23. Roelcke U, Leenders KL. PET in neuro-oncology. J Cancer Res Clin Oncol. 2001;127(1):2–8.

    Article  CAS  PubMed  Google Scholar 

  24. Buerkle A, Weber WA. Imaging of tumor glucose utilization with positron emission tomography. Cancer Metastasis Rev. 2008;27(4):545–54.

    Article  PubMed  Google Scholar 

  25. Delbeke D, Coleman RE, Guiberteau MJ, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47(5):885–95.

    PubMed  Google Scholar 

  26. Rosenbaum SJ, Lind T, Antoch G, Bockisch A. False-positive FDG PET uptake–the role of PET/CT. Eur Radiol. 2006;16(5):1054–65.

    Article  PubMed  Google Scholar 

  27. Brock CS, Meikle SR, Price P. Does fluorine-18 fluorodeoxyglucose metabolic imaging of tumours benefit oncology? Eur J Nucl Med. 1997;24(6):691–705.

    CAS  PubMed  Google Scholar 

  28. Chang JM, Lee HJ, Goo JM, Lee HY, Lee JJ, Chung JK, Im JG. False positive and false negative FDG-PET scans in various thoracic diseases. Korean J Radiol. 2006;7(1):57–69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yang DJ, Kim CG, Schechter NR, et al. Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology. 2003;226(2):465–73.

    Article  PubMed  Google Scholar 

  30. Schechter NR, Erwin WD, Yang DJ, et al. Radiation dosimetry and biodistribution of (99 m)Tc-ethylene dicysteine-deoxyglucose in patients with non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2009;36(10):1583–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang YH, Bryant J, Kong FL, Yu DF, Mendez R, Edmund KE, Yang DJ. Molecular imaging of mesothelioma with (99 m)Tc-ECG and (68)Ga-ECG. J Biomed Biotechnol. 2012;2012:232863.

    PubMed  PubMed Central  Google Scholar 

  32. Yang DJ, Kong FL, Oka T, Bryant JL. Molecular imaging kits for hexosamine biosynthetic pathway in oncology. Curr Med Chem. 2012;19(20):3310–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hanover JA, Krause MW, Love DC. The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim Biophys Acta. 2010;1800(2):80–95.

    Article  CAS  PubMed  Google Scholar 

  34. Hart GW, Slawson C, Ramirez-Correa G, Lagerlof O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 2011;80:825–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ. Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem. 2012;287(14):11070–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krzeslak A, Forma E, Bernaciak M, Romanowicz H, Brys M. Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med. 2012;12(1):61–5.

    Article  CAS  PubMed  Google Scholar 

  37. Ozcan S, Andrali SS, Cantrell JE. Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta. 2010;1799(5–6):353–64.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lewis BA, Hanover JA. O-GlcNAc and the epigenetic regulation of gene expression. J Biol Chem. 2014;289(50):34440–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Golks A, Tran TT, Goetschy JF, Guerini D. Requirement for O-linked N-acetylglucosaminyltransferase in lymphocytes activation. EMBO J. 2007;26(20):4368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee YC, Ford RJ. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood. 2005;106(12):3940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Urakami T, Sakai K, Asai T, Fukumoto D, Tsukada H, Oku N. Evaluation of O-[(18)F]fluoromethyl-D-tyrosine as a radiotracer for tumor imaging with positron emission tomography. Nucl Med Biol. 2009;36(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  42. Langen KJ, Muhlensiepen H, Holschbach M, Hautzel H, Jansen P, Coenen HH. Transport mechanisms of 3-[123I]iodo-alpha-methyl-L-tyrosine in a human glioma cell line: comparison with [3H]methyl]-L-methionine. J Nucl Med. 2000;41(7):1250–5.

    Google Scholar 

  43. Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, Blasberg R. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab. 1998;18(5):500–9.

    Article  CAS  PubMed  Google Scholar 

  44. Syrota A, Comar D, Cerf M, Plummer D, Maziere M, Kellershohn C. [11C]methionine pancreatic scanning with positron emission computed tomography. J Nucl Med. 1979;20(7):778–81.

    CAS  PubMed  Google Scholar 

  45. Lindstrom LH, Gefvert O, Hagberg G, Lundberg T, Bergstrom M, Hartvig P, Langstrom B. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry. 1999;46(5):681–8.

    Article  CAS  PubMed  Google Scholar 

  46. Kersemans K, Bauwens M, Mertens J. Method for stabilizing non carrier added 2-[(18)F]fluoromethyl-l-phenylalanine, a new tumour tracer, during radiosynthesis and radiopharmaceutical formulation. Nucl Med Biol. 2008;35(4):425–32.

    Article  CAS  PubMed  Google Scholar 

  47. Inoue T, Shibasaki T, Oriuchi N, et al. 18F alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40(3):399–405.

    CAS  PubMed  Google Scholar 

  48. Kaira K, Oriuchi N, Otani Y, et al. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin Cancer Res. 2007;13(21):6369–78.

    Article  CAS  PubMed  Google Scholar 

  49. Yamaura G, Yoshioka T, Fukuda H, Yamaguchi K, Suzuki M, Furumoto S, Iwata R, Ishioka C. O-[18F]fluoromethyl-L-tyrosine is a potential tracer for monitoring tumour response to chemotherapy using PET: an initial comparative in vivo study with deoxyglucose and thymidine. Eur J Nucl Med Mol Imaging. 2006;33(10):1134–9.

    Article  CAS  PubMed  Google Scholar 

  50. Langen KJ, Pauleit D, Coenen HH. 3-[(123)I]Iodo-alpha-methyl-L-tyrosine: uptake mechanisms and clinical applications. Nucl Med Biol. 2002;29(6):625–31.

    Article  CAS  PubMed  Google Scholar 

  51. Ali MS, Kong FL, Rollo A, Mendez R, Kohanim S, Smith DL, Yang DJ. Development of (99 m)Tc-N4-NIM for molecular imaging of tumor hypoxia. J Biomed Biotechnol. 2012;2012:828139.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H. Transport of amino acid-related compounds mediated by L-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol. 2002;61(4):729–37.

    Article  CAS  PubMed  Google Scholar 

  53. Yanagida O, Kanai Y, Chairoungdua A, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.

    Article  CAS  PubMed  Google Scholar 

  54. del AE, Urtti A, Yliperttula M. Pharmacokinetic role of L-type amino acid transporters LAT1 and LAT2. Eur J Pharm Sci 2008;35(3):161–174.

    Google Scholar 

  55. Tisljar U, Kloster G, Ritzl F, Stocklin G. Accumulation of radioiodinated L-alpha-methyltyrosine in pancreas of mice: concise communication. J Nucl Med. 1979;20(9):973–6.

    CAS  PubMed  Google Scholar 

  56. Kloss G, Leven M. Accumulation of radioiodinated tyrosine derivatives in the adrenal medulla and in melanomas. Eur J Nucl Med. 1979;4(3):179–86.

    Article  CAS  PubMed  Google Scholar 

  57. Langen KJ, Coenen HH, Roosen N, et al. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med. 1990;31(3):281–6.

    CAS  PubMed  Google Scholar 

  58. Kong FL, Zhang Y, Young DP, Yu DF, Yang DJ. Development of (99 m)Tc-EC-tyrosine for early detection of breast cancer tumor response to the anticancer drug melphalan. Acad Radiol. 2013;20(1):41–51.

    Article  PubMed  Google Scholar 

  59. Kong FL, Zhang Y, Ali MS, et al. Synthesis of (99 m)Tc-EC-AMT as an imaging probe for amino acid transporter systems in breast cancer. Nucl Med Commun. 2010;31(8):699–707.

    Article  CAS  PubMed  Google Scholar 

  60. Kong FL, Ali MS, Zhang Y, Oh CS, Yu DF, Chanda M, Yang DJ. Synthesis and evaluation of amino acid-based radiotracer 99mTc-N4-AMT for breast cancer imaging. J Biomed Biotechnol. 2011;2011:276907.

    PubMed  PubMed Central  Google Scholar 

  61. Yoshida Y, Kurokawa T, Sawamura Y, Shinagawa A, Okazawa H, Fujibayashi Y, Kotsuji F. The positron emission tomography with F18 17beta-estradiol has the potential to benefit diagnosis and treatment of endometrial cancer. Gynecol Oncol. 2007;104(3):764–6.

    Article  CAS  PubMed  Google Scholar 

  62. Takahashi N, Yang DJ, Kurihara H, Borne A, Kohanim S, Oh CS, Mawlawi O, Kim EE. Functional imaging of estrogen receptors with radiolabeled-GAP-EDL in rabbit endometriosis model. Acad Radiol. 2007;14(9):1050–7.

    Article  PubMed  Google Scholar 

  63. Yang DJ, Li C, Kuang LR, et al. Imaging, biodistribution and therapy potential of halogenated tamoxifen analogues. Life Sci. 1994;55(1):53–67.

    Article  CAS  PubMed  Google Scholar 

  64. Brown JM. The hypoxic cell: a target for selective cancer therapy–eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res. 1999;59(23):5863–70.

    CAS  PubMed  Google Scholar 

  65. Chu T, Li R, Hu S, Liu X, Wang X. Preparation and biodistribution of technetium-99 m-labeled 1-(2-nitroimidazole-1-yl)-propanhydroxyiminoamide (N2IPA) as a tumor hypoxia marker. Nucl Med Biol. 2004;31(2):199–203.

    Article  CAS  PubMed  Google Scholar 

  66. Seddon BM, Maxwell RJ, Honess DJ, Grimshaw R, Raynaud F, Tozer GM, Workman P. Validation of the fluorinated 2-nitroimidazole SR-4554 as a noninvasive hypoxia marker detected by magnetic resonance spectroscopy. Clin Cancer Res. 2002;8(7):2323–35.

    CAS  PubMed  Google Scholar 

  67. Horsman MR, Mortensen LS, Petersen JB, Busk M, Overgaard J. Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol. 2012;9(12):674–87.

    Article  CAS  PubMed  Google Scholar 

  68. Hara T, Kosaka N, Kishi H. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43(2):187–99.

    CAS  PubMed  Google Scholar 

  69. DeGrado TR, Baldwin SW, Wang S, et al. Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med. 2001;42(12):1805–14.

    CAS  PubMed  Google Scholar 

  70. Szyszko TA, Yip C, Szlosarek P, Goh V, Cook GJ. The role of new PET tracers for lung cancer. Lung Cancer-J Iaslc. 2016;94:7–14.

    Article  Google Scholar 

  71. Gambhir SS, Barrio JR, Phelps ME, et al. Imaging adenoviral-directed reporter gene expression in living animals with positron emission tomography. Proc Natl Acad Sci U S A. 1999;96(5):2333–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alauddin MM, Shahinian A, Kundu RK, Gordon EM, Conti PS. Evaluation of 9-[(3-18F-fluoro-1-hydroxy-2-propoxy)methyl]guanine ([18F]-FHPG) in vitro and in vivo as a probe for PET imaging of gene incorporation and expression in tumors. Nucl Med Biol. 1999;26(4):371–6.

    Article  CAS  PubMed  Google Scholar 

  73. Yaghoubi S, Barrio JR, Dahlbom M, et al. Human pharmacokinetic and dosimetry studies of [(18)F]FHBG: a reporter probe for imaging herpes simplex virus type-1 thymidine kinase reporter gene expression. J Nucl Med. 2001;42(8):1225–34.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Song, SL., Li, PL., Huang, G. (2017). PET Radiopharmaceuticals in Oncology Beyond FDG. In: Inoue, T., Yang, D., Huang, G. (eds) Personalized Pathway-Activated Systems Imaging in Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-3349-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-3349-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-3348-3

  • Online ISBN: 978-981-10-3349-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation