A Review of Microalgal Biofuels, Challenges and Future Directions

  • Chapter
  • First Online:
Application of Thermo-fluid Processes in Energy Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Fossil fuels play an absolute dominant role in the global energy mix, followed by biofuels and other energy sources. Fossil fuel dependency is unsustainable due to its finite nature. Moreover, a large amount of greenhouse gas emission is generated by the use of fossil fuels. Biofuels from microalgae have the potential to provide a sustainable and carbon-neutral energy source, complementing the shortfall of fossil fuels and enhancing the mitigation of global warming. One of the notable advantages of biofuels from microalgae is that it does not pose any threat to human or animal food chain and its production can be achieved using barren land, salt water, wastewater and CO2 emitted by thermal power plants. Despite having enormous potential, current production, harvesting and processing techniques of microalgal biomass remain not cost-effective or widely used. Hence, further optimisation of microalgal mass culture, harvesting and processing techniques, and efficient utilisation of by-products are needed to make this carbon-neutral energy source economically viable and sustainable. Coupling microalgae cultivation with wastewater and CO2 from power plants is considered a promising route for the production of bioenergy and bio-based by-products. Significant challenges remain to be addressed to utilise the full potential of third-generation biofuel derived mainly from microalgal biomasses. This chapter presents a brief view of the current progress on microalgal biofuel production, its future directions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.79
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.79
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Scaife, M. A., Merkx-Jacques, A., Woodhall, D. L., & Armenta, R. E. (2015). Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews, 44, 620–642.

    Article  Google Scholar 

  2. Quéré, C. L., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L., Ciais, P., et al. (2009). Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2, 831–836.

    Article  Google Scholar 

  3. Morello, L. (2012). Fuel burning rise into high-risk zone, climatewire, 3 December, Retrieved on April 24,2016 from http://www.scientificamerican.com/article/global-co2-emissions-from/.

  4. Alam, F., Date, A., Rasjidin, R., Mobin, S., Moria, H., & Baqui, A. (2012). Biofuel from algae- is it a viable alternative? Procedia Engineering, 49, 221–222.

    Article  Google Scholar 

  5. Mobin, S., & Alam, F. (2014). Biofuel production from algae utilizing wastewater. In Proceedings of 19 th Australasian Fluid Mechanics Conference, Article No 27.

    Google Scholar 

  6. Alam, F., Mobin, S., & Chowdhury, H. (2015). Third generation biofuel from algae. Procedia Engineering, 105, 763–768.

    Article  Google Scholar 

  7. Li, W. W., & Yu, H. Q. (2011). From waste water to bioenergy and biochemicals via two- stage bioconversion processes: A future paradigm. Biotechnology Advances, 29, 972–982.

    Article  Google Scholar 

  8. Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A review. Applied Energy, 86, S108–S117.

    Article  Google Scholar 

  9. Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources. Progress in Energy and Combustion Science, 37(1), 52–68.

    Article  Google Scholar 

  10. Dragone, G., Fernandes, B., Vicente, A. A. & Teixeira, J. A. (2010). Third generation biofuels from microalgae in current research. In Mendez-Vilas, A. (Ed.) Technology and Education Topics in Applied Microbiology and Microbial Biotechnology (pp. 1355–1366.) Formatex.

    Google Scholar 

  11. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

    Article  Google Scholar 

  12. Singh, A., Nigam, P. S., & Murphy, J. D. (2011). Renewable fuels from algae: An answer to debatable land based fuels. Bioresource Technology, 102, 10–16.

    Article  Google Scholar 

  13. Graham-Rowe, D. (2011). Agriculture: Beyond food versus fuel. Nature, 474, S6–S8.

    Article  Google Scholar 

  14. Dyer, J. A., Vergé, X. P. C., Desjardins, R. L., Worth, D. E., & McConkey, B. G. (2010). The impact of increased biodiesel production on the greenhouse gas emissions from field crops in Canada. Energy for Sustainable Development, 14, 73–82.

    Article  Google Scholar 

  15. Groom, M. J., Gray, E. M., & Townsend, P. A. (2008). Biofuels and biodiversity: Principles for creating better policies for biofuel production. Conservation Biology, 22, 602–609.

    Article  Google Scholar 

  16. Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., et al. (2008). Second generation biofuels: High efficiency microalgae for biodiesel production. BioEnergy Research, 1, 20–43.

    Article  Google Scholar 

  17. Sims, R. E. H., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An over view of second generation biofuel technologies. Bioresources Technology, 101, 1570–1580.

    Article  Google Scholar 

  18. Singh, B., Guldhe, A., Rawat, I., & Bux, F. (2014). Towards a sustainable approach for development of biodiesel from plant and microalgae. Renewable and Sustainable Energy Reviews, 9, 216–245.

    Article  Google Scholar 

  19. Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., et al. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89, S29–S35.

    Article  Google Scholar 

  20. Wyman, C. E. (2003). Potential synergies and challenges in refining cellulosic biomass to fuels, hemicals, and power. Biotechnology Progress, 19, 254–262.

    Article  Google Scholar 

  21. Brennan, L., & Owende, P. (2010). Biofuels from microalgae–A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14, 557–577.

    Article  Google Scholar 

  22. Mabee, W. E., McFarlane, P. N., & Saddler, J. N. (2011). Biomass availability for lignocellulosic ethanol production. Biomass Bioenergy, 35, 4519–4529.

    Google Scholar 

  23. Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W., Paltsev, S., et al. (2009). Indirect emissions from biofuels: How important? Science, 326, 1397–1399.

    Article  Google Scholar 

  24. Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land clearing and the biofuel carbon debt. Science, 319, 1235–1238.

    Article  Google Scholar 

  25. Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J., et al. (2008). Use of U.S. Croplands for biofuels increases greenhouse gases through emissions from land-use change. Science, 319, 1238–1240.

    Article  Google Scholar 

  26. Tilman, D., Socolow, R., Foley, J. A., Hill, J., Larson, E., Lynd, L., et al. (2009). Beneficial biofuels: The food, energy, and environment trilemma. Science, 325, 270–271.

    Article  Google Scholar 

  27. Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24, 815–820.

    Google Scholar 

  28. Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Biodiesel from algae: Challenges and prospects. Current Opinion in Biotechnology, 21, 277–286.

    Article  Google Scholar 

  29. Richmond, A. (2004). Handbook of microalgal culture: Biotechnology and applied phycology. Oxford, UK: Blackwell Science Ltd.

    Google Scholar 

  30. Graham, L. E., Graham, J. M., & Wilcox, L. W. (2009). Algae. California, USA: Benjamin-Cummings publishing Company. ISBN-13: 978-0321559654.

    Google Scholar 

  31. Ozkurt, I. (2009). Qualifying of safflower and algae for energy. Energy Education Science and Technology Part A, 23, 145–151.

    Google Scholar 

  32. Aresta, M., Dibenedetto, A., & Barberio, G. (2005). Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel ProcessingTechnology, 86, 1679–1693.

    Article  Google Scholar 

  33. Zhu, L. D., Hiltunen, E., Antila, E., Zhong, J. J., Yuan, Z. H., & Wang, Z. M. (2014). Microalgal biofuels: Flexible bioenergies for sustainable development. Renewable and Sustainable Energy Reviews, 30, 1035–1046.

    Article  Google Scholar 

  34. Najafi, G., Ghobadiana, B., & Yusaf, T. F. (2011). Algae as a sustainable energy source for biofuel production in Iran: A case study. Renewable and Sustainable Energy Reviews, 2011(15), 3870–3876.

    Article  Google Scholar 

  35. Maity, J. P., Bundschuh, J., Chen, C.-Y., & Bhattachary, A. P. (2014). Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives—a mini review. Energy, 78, 104–113.

    Article  Google Scholar 

  36. Ramaraj, R., & Dussadee, N. (2014). Biological purification process for biogas using algae culture: A review. International Journal of Sustainable and Green Energy, 4, 20–32.

    Google Scholar 

  37. Um, B.-H., & Kim, Y.-S. (2008). Review: A chance for Korea to advance algal-biodiesel technology. Journal of Industrial and Engineering Chemistry, 15, 1–7.

    Article  Google Scholar 

  38. Sydney, E. B., Sturm, W., de Carvalho, J. C., Thomaz-Soccol, V., Larroche, C., Pandey, A., et al. (2010). Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 101, 5892–5896.

    Article  Google Scholar 

  39. Koh, L. P., & Ghazoul, J. (2008). Biofuels, biodiversity, and people: Understanding the conflicts and finding opportunities. Biological Conservation, 141, 2450–2460.

    Article  Google Scholar 

  40. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14, 217–232.

    Article  Google Scholar 

  41. Tredici, M. R., & Materassi, R. (1992). From open ponds to vertical alveolar panels: The Italian experience in the development of reactors for the mass cultivation of phototrophic mircroorganisms. Journal of Applied Phycology, 4, 221–231.

    Article  Google Scholar 

  42. Lundquist, T. J., Woertz, I. C., Quinn, N. W. T., & Benemann, J. R. (2010). A realistic technology and engineering assessment of algae biofuel production. Berkeley, CA: Energy Biosciences Institute.

    Google Scholar 

  43. Carvalho, A. P., Meireles, L. A., & Malcata, F. X. (2006). Microalgal reactors: A review of enclosed system designs and performances. Biotechnology Progress, 22, 1490–1506.

    Article  Google Scholar 

  44. Kunjapur, A. M., & Eldridge, R. B. (2010). Photobioreactor design for commercial biofuelproduction from microalgae. Industrial and Engineering Chemmistry Reserch, 49, 3516–3526.

    Article  Google Scholar 

  45. Darzins, A., Pienkos, P. T., & Edye, L. (2010). Current status and potential for algal biofuels production. IEA Bioenergy Task, 39, 1–131.

    Google Scholar 

  46. Lam, M. K. & Lee, K. T. (2014). Scale-up and commercialisation of algal cultivation and biofuel production. In: Pandey, A., Lee, D-J., Chisti, Y. & Soccol, C. R. (Eds.), Biofuel from algae. Elsevier, (pp 261–285), ISBN: 978-0-444-59558-4.

    Google Scholar 

  47. Zemke, P. E. (2016). Mass cultivation of phototrophic microalgae in recent Advances. In J. Liu, Z. Sun, & H. Gerken (Eds.), Microalgal biotechnology (pp. 1–16). Foster City, USA: OMICS eBooks Group.

    Google Scholar 

  48. Hopman, J. P. (1998). Wastewater treatment with suspended and nonsuspended algae. Journal of Phycology, 34, 757–763.

    Article  Google Scholar 

  49. Molina, G. E., Belarbi, E. H., Acién, F. G., Robles, M. A., & Chisti, Y. (2003). Biotechnology Advances, 20, 491–515.

    Article  Google Scholar 

  50. Christenson, L., & Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29, 686–702.

    Article  Google Scholar 

  51. Kumar, H., Yadava, P., & Gaur, J. (1981). Electrical flocculation of the unicellular green alga Chlorella vulgaris Beijerinck. Aquatic Botany, 11, 187–195.

    Article  Google Scholar 

  52. Roesijadi, G. (2010). Macroalgae as a biomass feedstock: A preliminary analysis. U.S. Department of Energy under contract, Pacific Northwest National Laboratory.

    Google Scholar 

  53. Brown, M. R., Jeffrey, S. W., Volkman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.

    Article  Google Scholar 

  54. Trivedi, J., Aila, M., Bangwal, D. P., Kaul, S., & Garg, M. O. (2015). Algae basedbiorefinery—howtomakesense? Renewable and Sustainable Energy Reviews, 47, 295–307.

    Article  Google Scholar 

  55. Delucchi, M. A. A. (2003). Lifecycle Emissions Model (LEM): Lifecycle emissions from transportation fuels; motor vehicles, transportation modes, electricity use, heating and cooking fuels. Main report UCD-ITS-RR-03-17. University of California, Davis, CA.

    Google Scholar 

  56. Liu, C. H., Chang, C. Y., Cheng, C. L., Lee, D. J., & Chang, J. S. (2012). Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomassas feedstock. International Journal of Hydrogen Energy, 37, 15458–15464.

    Article  Google Scholar 

  57. John, R. P., Anisha, G. S., Nampoothiri, K. M., & Pandey, A. (2011). Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 102, 186–193.

    Article  Google Scholar 

  58. Melis, A., & Happe, T. (2001). Hydrogen production. Green algae as a source of energy. Plant Physiology, 127, 740–748.

    Article  Google Scholar 

  59. Wang, B., Li, Y., Wu, N., & Lan, C. (2008). CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology, 79, 707–718.

    Article  Google Scholar 

  60. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101, 87–96.

    Article  Google Scholar 

  61. Benemann, J. R., Tillett, D. M., & Weissman, J. C. (1987). Microalgae biotechnology. Trends in Biotechnology, 5, 47–53.

    Article  Google Scholar 

  62. Eriksen, N., Poulsen, B., & Lønsmann, I. J. (1998). Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. Journal of Applied Phycology, 10, 377–382.

    Article  Google Scholar 

  63. Tredici, M. R. (1999). Bioreactors, photo. In M. C. Flickinger & S. W. Drew (Eds.), Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis, and Bioseparation (pp. 395–419). New York, NY: Wiley.

    Google Scholar 

  64. Harun, R., Singh, M., Forde, G. M., & Danquah, M. K. (2010). Bioprocess engineering of microalgae to produce a variety of consumer products. Renewable and Sustainable Energy Reviews, 14, 1037–1047.

    Article  Google Scholar 

  65. Mendes-Pinto, M. M., Raposo, M. F. J., Bowen, J., Young, A. J., & Morais, R. (2001). Evaluation of different cell disruption processes on encysted cells of Haematococcus pluvialis: Effects on astaxanthin recovery and implications for bio-availability. Journal of Applied Phycology, 13, 19–24.

    Article  Google Scholar 

  66. Vasudevan, P., & Briggs, M. (2008). Biodiesel production—current state of the art and challenges. Journal of Industrial Microbiology and Biotechnology, 35, 421–430.

    Article  Google Scholar 

  67. Annual Energy Outlook 2010 with Projections to 2035. The Energy Information Administration, National Energy Information Centre, Forrestal Building, Washington, DC (https://www.eia.doe.gov, 2010).

  68. Khan, S. A. & Rashmi. (2008). Algae: An ovelsource of renewable energy and carbon sequestration. Renewable Energy (Akshayurja), 2, 14–8 September–October.

    Google Scholar 

  69. Baral, S. S., Singh, K., & Sharma, P. (2015). The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renewable and Sustainable Energy Reviews, 49, 1061–1074.

    Article  Google Scholar 

  70. Jain, S. K., Prakash, V., & Kapoor, S. (2004). Flue gas treatment alternatives or enhancing ESP collection efficiency: NTPC experience, workshop on ESP performance: Role of fly ash resistivity. IIT-DandNTPC, 23–24, 1–5.

    Google Scholar 

  71. Sudhakar, K., Premlata, M., & Sudarshan, K. (2012). Energy balance and exergy analysis of large scale algal biomass production. In: Indonesia workshop & international symposium on bioenergy from biomass.

    Google Scholar 

  72. Winberg, P. (2011). Scaling up for new opportunities in the practical use of algae (Applied Phycology), An Australian Government Report, RIRDC Publication No. 11/174, ISBN 978-1-74254-350-5, (pp. 1-23).

    Google Scholar 

  73. Mouradov, A. & Stevenson, T. (2012 September). Algae: An essential link between our past and future. Microbiology Australia, pp. 125–127.

    Google Scholar 

  74. Koppelaar, R. (2012). Word energy consumption beyond 500 exajoules. Santa Rosa, CA: Post Carbon Institute. http://www.resilience.org/stories/ 2012-02-16/world-energy-consumption-beyond-500-exajoules.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh M A Mobin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Mobin, S.M.A., Alam, F. (2018). A Review of Microalgal Biofuels, Challenges and Future Directions. In: Khan, M., Chowdhury, A., Hassan, N. (eds) Application of Thermo-fluid Processes in Energy Systems. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0697-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0697-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0695-1

  • Online ISBN: 978-981-10-0697-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation