Evaluation of Cancer Risk in Epidemiologic Studies with Genetic and Molecular Data

  • Chapter
  • First Online:
Frontiers of Biostatistical Methods and Applications in Clinical Oncology
  • 877 Accesses

Abstract

Epidemiology has made significant contribution to better understanding cancer etiology and improving public health. Recently, with increasingly available genetic and molecular data, methodology in cancer epidemiology has been greatly progressing through incorporation of those data. This chapter focuses on some topics in Genome -Wide Association Studies and also provides some discussion of investigating etiologic heterogeneity among molecular subtypes of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 116.04
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 116.04
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hindorff LA, MacArthur J (European Bioinformatics Institute), Morales J (European Bioinformatics Institute), et al. A catalog of published genome-wide association studies. www.genome.gov/gwastudies (2015).

  2. Michailidou K, Hall P, Gonzalez-Neira A, et al. Large-scale genoty** identifies 41 new loci associated with breast cancer risk. Nat Genet. 2013;45(4):353–61, 361e351–352.

    Google Scholar 

  3. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  Google Scholar 

  4. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.

    Article  Google Scholar 

  5. International HapMap, C. The international HapMap project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  6. International HapMap, C. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  Google Scholar 

  7. International HapMap, C, Frazer KA, Ballinger DG, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature. 2007;449(7164):851–61.

    Google Scholar 

  8. Balding DJ. A tutorial on statistical methods for population association studies. Nat Rev Genet. 2006;7(10):781–91.

    Article  Google Scholar 

  9. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996;273(5281):1516–7.

    Article  Google Scholar 

  10. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39(7):906–13.

    Article  Google Scholar 

  11. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet. 2009;41(9):986–90.

    Article  Google Scholar 

  12. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997–1004.

    Article  MATH  Google Scholar 

  13. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.

    Article  Google Scholar 

  14. Pe’er I, Yelensky R, Altshuler D, Daly MJ. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet Epidemiol. 2008;32(4):381–5.

    Article  Google Scholar 

  15. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995; 289–300.

    Google Scholar 

  16. Efron B, Tibshirani R. Empirical Bayes methods and false discovery rates for microarrays. Genet Epidemiol. 2002;23(1):70–86.

    Article  Google Scholar 

  17. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA. 2003;100(16):9440–5.

    Article  MathSciNet  MATH  Google Scholar 

  18. Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B Stat Methodol. 2002;64(3):479–98.

    Article  MathSciNet  MATH  Google Scholar 

  19. Panagiotou OA, Ioannidis JPA. What should the genome-wide significance threshold be? Empirical replication of borderline genetic associations. Int J Epidemiol. 2012;41(1):273–86.

    Article  Google Scholar 

  20. Wacholder S, Chanock S, Garcia-Closas M, El Ghormli L, Rothman N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst. 2004;96(6):434–42.

    Article  Google Scholar 

  21. Consortium, W.T.C.C. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.

    Article  Google Scholar 

  22. Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. Genet Epidemiol. 2009;33(1):79–86.

    Article  Google Scholar 

  23. Garner C. Upward bias in odds ratio estimates from genome-wide association studies. Genet Epidemiol. 2007;31(4):288–95.

    Article  Google Scholar 

  24. Zollner S, Pritchard JK. Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet. 2007;80(4):605–15.

    Article  Google Scholar 

  25. Higgins JP, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects meta-analysis. J R Stat Soc Ser A. 2009;172(1):137–59.

    Article  MathSciNet  Google Scholar 

  26. Pfeiffer RM, Gail MH, Pee D. On combining data from genome-wide association studies to discover disease-associated SNPs. Stat Sci. 2009;24(4):547–60.

    Article  MathSciNet  MATH  Google Scholar 

  27. He Q, Cai T, Liu Y, et al. Prioritizing individual genetic variants after kernel machine testing using variable selection. Genet Epidemiol. 2016;40(8):722–31.

    Article  Google Scholar 

  28. Yu K, Li Q, Bergen AW, et al. Pathway analysis by adaptive combination of P-values. Genet Epidemiol. 2009;33(8):700–9.

    Article  Google Scholar 

  29. Schork AJ, Thompson WK, Pham P, et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet. 2013;9(4):e1003449.

    Article  Google Scholar 

  30. Lewinger JP, Conti DV, Baurley JW, Triche TJ, Thomas DC. Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genet Epidemiol. 2007;31(8):871–82.

    Article  Google Scholar 

  31. Pickrell JK. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits. Am J Hum Genet. 2014;94(4):559–73.

    Article  Google Scholar 

  32. Mechanic LE, Chen HS, Amos CI, et al. Next generation analytic tools for large scale genetic epidemiology studies of complex diseases. Genet Epidemiol. 2012;36(1):22–35.

    Article  Google Scholar 

  33. Khoury MJ, Wacholder S. Invited commentary: from genome-wide association studies to gene-environment-wide interaction studies–challenges and opportunities. Am J Epidemiol. 2009;169(2):227–30 discussion 234–225.

    Article  Google Scholar 

  34. Aschard H, Chen J, Cornelis MC, Chibnik LB, Karlson EW, Kraft P. Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases. Am J Hum Genet. 2012;90(6):962–72.

    Article  Google Scholar 

  35. Hein R, Flesch-Janys D, Dahmen N, et al. A genome-wide association study to identify genetic susceptibility loci that modify ductal and lobular postmenopausal breast cancer risk associated with menopausal hormone therapy use: a two-stage design with replication. Breast Cancer Res Treat. 2013;138(2):529–42.

    Article  Google Scholar 

  36. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ. Exploiting gene-environment interaction to detect genetic associations. Hum Hered. 2007;63(2):111–9.

    Article  Google Scholar 

  37. Cornelis MC, Tchetgen EJ, Liang L, et al. Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol. 2012;175(3):191–202.

    Article  Google Scholar 

  38. Aschard H, Lutz S, Maus B, et al. Challenges and opportunities in genome-wide environmental interaction (GWEI) studies. Hum Genet. 2012;131(10):1591–613.

    Article  Google Scholar 

  39. Aschard H. A perspective on interaction effects in genetic association studies. Genet Epidemiol. 2016;40(8):678–88.

    Article  Google Scholar 

  40. Chen S, Parmigiani G. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol (Off J Am Soc Clin Oncol). 2007;25(11):1329–33.

    Article  Google Scholar 

  41. Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of develo** breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81(24):1879–86.

    Article  Google Scholar 

  42. Fisher B, Costantino JP, Wickerham DL, et al. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst. 1998;90(18):1371–88.

    Article  Google Scholar 

  43. Wacholder S, Hartge P, Prentice R, et al. Performance of common genetic variants in breast-cancer risk models. N Engl J Med. 2010;362(11):986–93.

    Article  Google Scholar 

  44. Chatterjee N, Shi J, Garcia-Closas M. Develo** and evaluating polygenic risk prediction models for stratified disease prevention. Nat Rev Genet. 2016;17(7):392–406.

    Article  Google Scholar 

  45. Sampson JN, Wheeler WA, Yeager M, et al. Analysis of heritability and shared heritability based on genome-wide association studies for thirteen cancer types. J Natl Cancer Inst. 2015;107(12):djv279.

    Google Scholar 

  46. Lee SH, Wray NR, Goddard ME, Visscher PM. Estimating missing heritability for disease from genome-wide association studies. Am J Hum Genet. 2011;88(3):294–305.

    Article  Google Scholar 

  47. Mavaddat N, Pharoah PD, Michailidou K, et al. Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst. 2015;107(5).

    Google Scholar 

  48. Machiela MJ, Chen CY, Chen C, Chanock SJ, Hunter DJ, Kraft P. Evaluation of polygenic risk scores for predicting breast and prostate cancer risk. Genet Epidemiol. 2011;35(6):506–14.

    Google Scholar 

  49. Gail MH. Personalized estimates of breast cancer risk in clinical practice and public health. Stat Med. 2011;30(10):1090–104.

    Article  MathSciNet  Google Scholar 

  50. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004;159(9):882–90.

    Article  Google Scholar 

  51. Kuchiba A, Morikawa T, Yamauchi M, et al. Body mass index and risk of colorectal cancer according to fatty acid synthase expression in the nurses’ health study. J Natl Cancer Inst. 2012;104(5):415–20.

    Article  Google Scholar 

  52. Kalbfleisch JD, Prentice RL. The statistical analysis of failure time data, vol. 360. New York: Wiley; 2011.

    MATH  Google Scholar 

  53. Lunn M, McNeil D. Applying Cox regression to competing risks. Biometrics. 1995;51(2):524–32.

    Article  Google Scholar 

  54. Begg CB, Zhang ZF: Statistical analysis of molecular epidemiology studies employing case-series. Cancer Epidemiol Biomark Prev: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 1994;3(2):173–5.

    Google Scholar 

  55. Wang M, Spiegelman D, Kuchiba A, et al. Statistical methods for studying disease subtype heterogeneity. Stat Med. 2016;35(5):782–800.

    Article  MathSciNet  Google Scholar 

  56. Hughes LA, Khalid-de Bakker CA, Smits KM, et al. The CpG island methylator phenotype in colorectal cancer: progress and problems. Biochim Biophys Acta. 2012;1825(1):77–85.

    Google Scholar 

  57. Tanaka N, Huttenhower C, Nosho K, et al. Novel application of structural equation modeling to correlation structure analysis of CpG island methylation in colorectal cancer. Am J Pathol. 2010;177(6):2731–40.

    Article  Google Scholar 

  58. Chia VM, Newcomb PA, Bigler J, Morimoto LM, Thibodeau SN, Potter JD. Risk of microsatellite-unstable colorectal cancer is associated jointly with smoking and nonsteroidal anti-inflammatory drug use. Cancer Res. 2006;66(13):6877–83.

    Article  Google Scholar 

  59. Limsui D, Vierkant RA, Tillmans LS, et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 2010;102(14):1012–22.

    Article  Google Scholar 

  60. Samowitz WS, Albertsen H, Sweeney C, et al. Association of smoking, CpG island methylator phenotype, and V600E BRAF mutations in colon cancer. J Natl Cancer Inst. 2006;98(23):1731–8.

    Article  Google Scholar 

  61. Poynter JN, Haile RW, Siegmund KD, et al. Associations between smoking, alcohol consumption, and colorectal cancer, overall and by tumor microsatellite instability status. Cancer Epidemiol Biomark Prev: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 2009;18(10):2745–50.

    Google Scholar 

  62. Rozek LS, Herron CM, Greenson JK, et al. Smoking, gender, and ethnicity predict somatic BRAF mutations in colorectal cancer. Cancer Epidemiol Biomark Prev: A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology. 2010;19(3):838–43.

    Google Scholar 

  63. Wang M, Kuchiba A, Ogino S. A meta-regression method for studying etiological heterogeneity across disease subtypes classified by multiple biomarkers. Am J Epidemiol. 2015;182(3):263–70.

    Article  Google Scholar 

  64. Chatterjee N, Sinha S, Diver WR, Feigelson HS. Analysis of cohort studies with multivariate and partially observed disease classification data. Biometrika. 2010;97(3):683–98.

    Article  MathSciNet  MATH  Google Scholar 

  65. Chatterjee N. A two-stage regression model for epidemiological studies with multivariate disease classification data. J Am Stat Assoc. 2004;99(465):127–38.

    Article  MathSciNet  MATH  Google Scholar 

  66. Rosner B, Glynn RJ, Tamimi RM, et al. Breast cancer risk prediction with heterogeneous risk profiles according to breast cancer tumor markers. Am J Epidemiol. 2013;178(2):296–308.

    Article  Google Scholar 

  67. Begg CB, Zabor EC. Detecting and exploiting etiologic heterogeneity in epidemiologic studies. Am J Epidemiol. 2012;176(6):512–8.

    Article  Google Scholar 

  68. Bhattacharjee S, Rajaraman P, Jacobs KB, et al. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am J Hum Genet. 2012;90(5):821–35.

    Article  Google Scholar 

  69. Begg CB, Zabor EC, Bernstein JL, Bernstein L, Press MF, Seshan VE. A conceptual and methodological framework for investigating etiologic heterogeneity. Stat Med. 2013;32(29):5039–52.

    Article  MathSciNet  Google Scholar 

  70. Schork NJ, Murray SS, Frazer KA, Topol EJ. Common versus rare allele hypotheses for complex diseases. Curr Opin Genet Dev. 2009;19(3):212–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aya Kuchiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kuchiba, A. (2017). Evaluation of Cancer Risk in Epidemiologic Studies with Genetic and Molecular Data. In: Matsui, S., Crowley, J. (eds) Frontiers of Biostatistical Methods and Applications in Clinical Oncology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0126-0_18

Download citation

Publish with us

Policies and ethics

Navigation