Structure, Thermodynamics and Energetics of Drug-DNA Interactions: Computer Modeling and Experiment

  • Chapter
  • First Online:
Application of Computational Techniques in Pharmacy and Medicine

Abstract

In this chapter we demonstrate the large usefulness of using complex approach for understanding the mechanism of binding of biologically active compounds (antitumour antibiotics, mutagens etc.) with nucleic acids (NA). The applications of various biophysical methods and computer modeling to determination of structural (Infra-red and Raman vibrational spectroscopies, computer modeling by means of Monte-Carlo, molecular docking and molecular dynamics methods) and thermodynamic (UV-VIS spectrophotometry, microcalorimetry, molecular dynamics simulation) parameters of NA-ligand complexation with estimation of the role of water environment in this process, are discussed. The strategy of energy analysis of the NA-ligand binding reactions in solution is described, which is based on decomposition of experimentally measured net Gibbs free energy of binding in terms of separate energetic contributions from particular physical factors. The main outcome of such analysis is to answer the questions “What physical factors and to what extent stabilize/destabilize NA-ligand complexes?” and “What physical factors most strongly affect the bioreceptor binding affinity?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramos MJ, Fernandes PA (2006) Atomic-level rational drug design Curr Comp-Aided Drug Des 2:57–81

    CAS  Google Scholar 

  2. Nelson SM, Ferguson LR, Denny WA (2004) DNA and the chromosome—varied targets for chemotherapy. Cell Chromosome 3(1):1–26

    Google Scholar 

  3. Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2(3):188–199

    CAS  Google Scholar 

  4. Au JL, Panchal N, Li D, Gan Y (1997) Apoptosis: a new pharmacodynamic endpoint. Pharm Res 14(12):1659–1671

    CAS  Google Scholar 

  5. Selwood DL (2013) Beyond the hundred dollar genome—drug discovery futures. Chem Biol Drug Des. 81(1):1–4

    CAS  Google Scholar 

  6. Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38(49):16067–16075

    CAS  Google Scholar 

  7. Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9(9):2215–2235

    CAS  Google Scholar 

  8. Veselkov AN, Maleev VYa, Glibin EN, Karawajew L, Davies DB (2003) Structure–activity relation for synthetic phenoxazone drugs. Evidence for a direct correlation between DNA binding and pro-apoptotic activity. Eur J Biochem 270(20):4200–4207

    CAS  Google Scholar 

  9. Murthy VR, Raghuram DV, Murthy PN (2007) Drug, dosage, activity, studies of antimalarials by physical methods—II. Bioinformation 2(1):12–16.

    Google Scholar 

  10. Sobell HM, Jain SC (1972) Stereochemistry of actinomycin binding to DNA. II. Detailed molecular model of actinomycin-DNA complex and its implications. J Mol Biol 68(1):21–34.

    CAS  Google Scholar 

  11. Porumb H (1978) The solution spectroscopy of drugs and the drug-nucleic acid interactions. Prog Biophys Mol Biol 34(3):175–195

    CAS  Google Scholar 

  12. Yielding LW, Yielding KL (1984) Ethidium binding to deoxyribonucleic acid: spectrophotometric analysis of analogs with amino, azido, and hydrogen substituents. Biopolymers 23(1):83–110

    CAS  Google Scholar 

  13. Barcelo F, Ortiz-Lombardia M, Portugal J (2001) Heterogenous DNA binding modes of berenil. Biochim Biophys Acta 1519(3):175–184

    CAS  Google Scholar 

  14. Barcelo F, Capo D, Portugal J (2002) Thermodynamic characterization of the multiplay binding of chartreusin to DNA. Nucleic Acids Res 30(20):4567–4573

    CAS  Google Scholar 

  15. Sovenyhazy K, Bolderon J, Petty J (2003) Spectroscopic studies of the multiple binding modes of trimetine-bridget cyanine dye with DNA. Nucleic Acids Res 31(10):2561–2569

    CAS  Google Scholar 

  16. Ghosh R, Bhowmik S, Bagchi A, Das D, Ghosh S (2010) Chemotherapeutic potential of 9-phenyl acridine: biophysical studies on its binding to DNA. Eur Biophys J 39(8):1243–1249

    CAS  Google Scholar 

  17. Kumar S, Pandya P, Pandav K, Gupta SP, Chopra AN (2012) Structural studies on ligand–DNA systems: a robust approach in drug design. J Biosci 37(3): 553–561

    CAS  Google Scholar 

  18. Kruglova EB, Gladkovskaya NA, Maleev VY (2005) The use of the spectrophotometry analysis for the calculation of the thermodynamic parameters in actinocin derivative-DNA systems. Biophysics 50(2):253–264

    CAS  Google Scholar 

  19. McGhee JD, von Hippel PH (1974) Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a onedimensional homogeneous lattice. J Mol Biol 86(2):469–489

    CAS  Google Scholar 

  20. Nechipurenko YuD (1984) Cooperative effects on binding of large ligands to DNA. II. Contact cooperative interactions between bound ligand molecules. Mol Biol 18(6):1066–1079

    CAS  Google Scholar 

  21. Kruglova EB, Gladkovskaya NA (2002) Comparison of the binding of the therapeutically active nucleotides to DNA molecules with different level of lesions. Proceedings of SPIE 4938:241–245 and Iermak Ie (2011). Light-absorption spectroscopy of mutagen—DNA complex: binding model selection and binding parameters calculation J Appl Electromagn 13(1):15–22

    Google Scholar 

  22. Hajan R, Guan HT (2013) Spectrophotometric studies on the thermodynamics of the ds-DNA interaction with irinotecan for a better understanding of anticancer drug-DNA interactions. J Spectrosc. ID 380352. http://dx.doi.org/10.1155/2013/380352

  23. Neault JF, Tajmir-Rihi HA. (1996) Diethylstilbestrol-DNA interaction studied by Fourier transform infrared and Raman spectroscopy. J Biol Chem 271(14):8140–8143

    CAS  Google Scholar 

  24. Neault, J.-F. & Tajmir-Riahi, H. A. (1998). DNA-chlorophyllin interaction. J Phys Chem B 102(4):1610–1614

    CAS  Google Scholar 

  25. Deng H, Bloomfield VA, Benevides JM, Thomas GJ (1999) Dependence of the Raman signature of genomic B-DNA on nucleotide base sequence. Biopolymers 50(6):656–666

    CAS  Google Scholar 

  26. Quameur AA, Tajmir-Riahi H-A (2004) Structural analysis of DNA interactions with biogenic polyamines and cobalt(III)hexamine studied by Fourier transform infrared and capillary electrophoresis. J Biol Chem 279(40):42041–42054

    Google Scholar 

  27. Deng H, Bloomfield VA, Benevides JM (2000) Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Res 28(17):3379–3385

    CAS  Google Scholar 

  28. Benevides JM, Thomas GJ (2005) Local conformational changes induced in B-DNA by ethidium intercalation. Biochemistry 44(8):2993–2999

    CAS  Google Scholar 

  29. Kyogoku Y, Lord RC, Rich A (1967) The effect of substituents on the hydrogen bonding of adenine and uracil derivatives. J Am Chem Soc 89(3):496–504

    CAS  Google Scholar 

  30. Starikov EB, Semenov MA, Maleev VYa, Gasan AI (1991) Evidental study of correlated events in biochemistry: physico-chemical mechanisms of nucleic acids hydration as revealed by factor analysis. Biopolymers 31(2):255–273

    CAS  Google Scholar 

  31. Hartman KA, Lord RC, Thomas GJ (1973) Structural studies of nucleic acids and polynucleotides by infrared and Raman Spectroscopy In: J. Duchesne (ed) Physio–chemical properties of nucleic acids. Academic, New York, pp. 1–89

    Google Scholar 

  32. Semenov MA, Blyzniuk IuN, Bolbukh TV, Shestopalova AV, Evstigneev MP, Maleev VY (2012) Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy. Spectrochimica Acta Part A: Mol Biomol Spectrosc 95(2):224–229

    CAS  Google Scholar 

  33. Martin JC, Wartell RM, O’Shea I (1978) Conformational features of distamycin-DNA and netropsin-DNA complexes by Raman spectroscopy. Proc Natl Acad Sci USA 75(12):5483–5487

    CAS  Google Scholar 

  34. Smulevich G, Angeloni L, Marzocchi MP (1980) Raman exitation profiles of actinomycin D. Biochim Biophys Acta 610(2):384–391

    CAS  Google Scholar 

  35. Ruiz-Chica J, Medina MA, Sanchez F (2001) Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophys J 80(2):449–454

    Google Scholar 

  36. Kruglova EB, Bolbukh TV, Gladkovskaya NA, Bliznyuk JuN (2005) The binding of actinocin antibiotics to polyphosphate matrix. Biopolym Cell 21(2):358–364

    CAS  Google Scholar 

  37. Bliznyuk YuN, Kruglova EB, Bolbukh TV, Ovchinnikov DV (2009) Influence of solution acidity on structure of actinocin derivatives and their affinity to DNA studies as a function of pH by Raman spectroscopy. Spectrosc Lett 42(3):498–505

    CAS  Google Scholar 

  38. Tsuboi M, Benevides JM, Thomas GJ (2009) Raman tensors and their application in structural studies of biological systems. Proc Jpn Acad Ser B Phys Biol Sci 85(1):83–97

    Google Scholar 

  39. Blyzniuk IuN, Bolbukh TV, Kruglova OB, Semenov MA, Maleev VYa (2009) Investigation of complexation of ethidium bromide with DNA by the method of Raman spectroscopy. Biopolym Cell 25(1):126–132

    Google Scholar 

  40. Lane AN, Jenkins TC (2000) Thermodynamics of nucleic acids and their interactions with ligands. Q Rev Biophysics 33(3):255–306

    CAS  Google Scholar 

  41. Qu X, Chaires JB (2001) Hydration changes for DNA intercalation reactions. J Am Chem Soc 123(1):1–7

    CAS  Google Scholar 

  42. Pal SK, Zhao L, Zewail AH (2003) Water at DNA surfaces: ultrafast dynamics in minor groove recognition. Proc Natl Acad Sci USA 100(14):8113–8118

    CAS  Google Scholar 

  43. Parsegian VA, Rand RP, Rau DC (2000) Osmotic stress, crowding, preferential hydration, and binding: a comparison of perspectives. Proc Natl Acad Sci USA 97(8):3987–3992

    CAS  Google Scholar 

  44. Schneider B, Ginell SL, Berman HM (1992) Low temperature structures of dCpG-proflavine conformational and hydration effects. Biophys J 63(6):1572–1578

    CAS  Google Scholar 

  45. Shimizu S (2004) Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Nat Acad Sci USA 101(5):1195–1199

    Google Scholar 

  46. Marky LA, Kupke DW, Kankia BI (2001) Volume changes accompanying interaction of ligands with nucleic acids. Methods Enzymol 340:149–165

    CAS  Google Scholar 

  47. Han F, Chalikian TV (2003) Hydration changes accompanying nucleic acid intercalation reactions: volumetric characterizations. J Am Chem Soc 125(24):7219–7229

    CAS  Google Scholar 

  48. Auffinger P, Westhof R (1999) Role of hydration on the structure and dynamics of nucleic acids In: Ross YH (ed) Water management in the design and distribution of quality foods. Technomic Publishing Co, Basel, pp 165–198

    Google Scholar 

  49. Korolev N, Lyubartsev AP, Laaksonen A (2002) On the competition between water, sodium ions, and spermine in binding to DNA: a molecular dynamics computer simulation study. Biophys J 82(6):2860–2875

    CAS  Google Scholar 

  50. Korolev N., Lyubartsev AP, Laaksonen A (2003) A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: diffusion and averaged binding of water and cations. Nucleic Acids Res 3(20):5971–5981

    Google Scholar 

  51. Maleev VYa, Semenov MA, Gasan AI, Kashpur VA (1993) Physical properties of the system DNA-water. Biophysics 38(3):768–790

    CAS  Google Scholar 

  52. Semenov MA, Bolbukh TV, Maleev VYa (1997) Infrared study of the influence of water on DNA stability in the dependence on AT/GC composition. J Mol Struct 408/409(2):213–217

    Google Scholar 

  53. Semenov MA, Bereznyak EG (2000) Hydration and stability of nucleic acids in the condensed state. Comments Mol Cell Biophys 10(1):1–23

    CAS  Google Scholar 

  54. Maleev V, Semenov M, Kashpur V, Bolbukh T, Shestopalova A, Anishchenko D (2002) Structure and hydration of polycytidylic acid from the data of infrared spectroscopy, EHF dielectrometry and computer modeling. J Mol Struct 605(1):51–61

    CAS  Google Scholar 

  55. Bereznyak EG, Semenov MA, Bol’bukh TV, Dukhopel’nikov EV, Shestopalova AV, Maleev VYa (2002) A study of the effect of water on the interaction of DNA with actinoxcin derivatives having different lengths of aminoalkyl chains by the methods of IR spectroscopy and computer simulation. Biophysics 47(6):1019–1026

    Google Scholar 

  56. Marky LA, Blumenfeld KS, Breslauer KJ (1983) Calorimetric and spectroscopic investigation of drug-DNA interactions. I. The binding of netropsin to poly d(AT). Nucleic Acids Res 11(9):2857–2870

    CAS  Google Scholar 

  57. Marky LA, Snyder JG, Breslauer KJ (1983) Calorimetric and spectroscopic investigation of drug-DNA interactions: II. Dipyrandium binding to poly d(AT). Nucleic Acids Res 11(16):5701–5715

    CAS  Google Scholar 

  58. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12(1):3–18

    CAS  Google Scholar 

  59. Cooper A (1999) Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol 3(5):557–563

    CAS  Google Scholar 

  60. O’Brien R, Haq I (2004) Applications of biocalorimetry: binding, stability and enzyme kinetics. In: Ladbury JE, Doyle M (eds) Biocalorimetry 2. Wiley.

    Google Scholar 

  61. Bruylants G, Wouters J, Michaux C (2005) Diï¬erential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem 12(17):2011–2020

    CAS  Google Scholar 

  62. Celej S, Fidelio G, Dassie S (2005) Protein unfolding coupled to ligand binding: differential scanning calorimetry simulation approach. J Chem Educ 82(1):85–92

    CAS  Google Scholar 

  63. Celej S, Dassie S, Gonzalez M, Bianconi M, Fidelio G (2006) Differential scanning calorimetry as a tool to estimate binding parameters in multiligand binding proteins. Anal Biochem 350(2):277–284

    CAS  Google Scholar 

  64. Dukhopelnikov EV, Bereznyak EG, Khrebtova AS, Lantushenko AO, Zinchenko AV (2012) Determination of ligand to DNA binding parameters from two-dimensional DSC curves. J Therm Anal Calorim. doi:10.1007/s10973–012-2561–6

    Google Scholar 

  65. Orozco M, Luque FJ (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem Rev 100(11):4187–4225

    CAS  Google Scholar 

  66. Lazaridis T (2002) Binding affinity and specificity from computational studies. Cur Organ Chem 6(14):1319–1332

    CAS  Google Scholar 

  67. Schlick T (2010) Molecular modelling and simulation: an interdisciplinary guide, 2nd edn. Springer, New York

    Google Scholar 

  68. Cheatham TE III (2004) Simulation and modeling of nucleic acid structure, dynamics and interactions. Curr Opin Struct Biol 14(3):360–367

    CAS  Google Scholar 

  69. Dolenc J, Oostenbrink Ch, Koller J, van Gunsteren WF (2005) Molecular dynamics simulation and free energy calculations of netropsin and distamycin binding to AAAAA DNA binding site. Nucleic Acids Res 33(2):725–733

    CAS  Google Scholar 

  70. Ruiz R, García B, Ruisi G, Silvestri A, Barone G (2009) Computational study of the interaction of proflavine with d(ATATATATAT)2 and d(GCGCGCGCGC)2. J Mol Struct: THEOCHEM 915(1):86–92

    CAS  Google Scholar 

  71. Sasikala WD, Mukherjee A (2012) Molecular mechanism of direct proflavine–DNA Intercalation: evidence for drug-induced minimum base-stacking penalty pathway. J Phys Chem B 116(40):12208–12212

    CAS  Google Scholar 

  72. Schneider G, Bohm H-J (2002) Virtual screening and fast automated docking methods. Drug Discov Today 7(1):64–70

    CAS  Google Scholar 

  73. Halperin I, Ma B, Wolfson H, Nussinov R (2002) Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins 47 (4):409–415

    CAS  Google Scholar 

  74. Smith GR, Sternberg MJE (2002) Prediction of protein–protein interactions by docking methods. Curr Opin Struct Biol 12(1):28–35

    Google Scholar 

  75. Lauria A, Diana P, Barraja P, Montalbano A, Dattolo G, Cirrincione G (2004) Docking of indolo- and pyrrolo-pyrimidines to DNA. New DNA-interactive polycycles from amino-indoles/pyrroles and BMMA. ARKIVOC 5(2):263–271

    Google Scholar 

  76. Miroshnychenko KV, Shestopalova AV (2010) The effect of drug-DNA interactions on the intercalation site formation. Int J Quant Chem 110(1):161–176

    CAS  Google Scholar 

  77. Danilov VI, Tolokh IS (1990) Hydration of uracil and thymine methylderivatives: a Monte Carlo simulation. J Biomol Struct Dyn 7(5):1167–1183

    CAS  Google Scholar 

  78. Danilov VI, Zheltovsky NV, Slyusarchuk ON, Poltev VI, Alderfer JL (1997) The study of the stability of Watson-Crick nucleic acid base pairs in water and dimethyl sulfoxide: computer simulation by the Monte Carlo method. J Biomol Struct Dyn 15(1):69–80

    CAS  Google Scholar 

  79. Teplukhin AV, Malenkov GG, Poltev VI (1998) Monte Carlo simulation of DNA fragment hydration in the presence of alkaline cations using novel atom-atom potential functions. J Biomol Struct Dyn 16(2):289–300

    CAS  Google Scholar 

  80. Alderfer JL, Danilov VI, Poltev VI, Slyusarchuk ON (1999) A study of the hydration of deoxydinucleoside monophosphates containing thymine, uracil and its 5-halogen derivatives: Monte Carlo simulation. J Biomol Struct Dyn 16(5):1107–1117

    CAS  Google Scholar 

  81. Resat H, Mezei M (1996) Grand canonical ensemble Monte Carlo simulation of the dCpG/proflavine crystal hydrate. Biophysical J 71(3):1179–1190

    CAS  Google Scholar 

  82. Alcaro S, Coleman RS (2000) A molecular model for DNA cross-linking by the antitumor agent azinomycin B. J Med Chem 43(15):2783–2788

    CAS  Google Scholar 

  83. Shestopalova AV (2002) Hydration of nucleic acids components in dependence of nucleotide composition and relative humidity: a Monte Carlo simulation. Europ Phys J D 20(1):331–337

    CAS  Google Scholar 

  84. Shestopalova AV (2007) The binding of actinocin derivative with DNA fragments (Monte Carlo simulation). Biopolym Cell 23(1):35–44

    CAS  Google Scholar 

  85. Auffinger P, Westhof E (1997) Molecular dynamics: simulations of nucleic acids. Rev Comp Chem 11(2):317–328

    Google Scholar 

  86. Chen H, Liu X, Patel DJ (1996) DNA binding and unwinding associated with Actinomycin D antibiotics bound to partially overlap** sites in DNA. J Mol Biol 258(3):457–479

    CAS  Google Scholar 

  87. Takusagawa F, Carlson RG, Weaver RF (2001) Anti-Leukemia selectivity in Actinomycin Analogues. Bioorg Med Chem 9(3):719–725

    CAS  Google Scholar 

  88. Karawajew L, Ruppert V, Wutcher C, Kosser A, Schappe M, Dorken B, Ludwing WD (2000) Inhibition in vitro spontaneous apoptosis by IL-7 correlates with upregulation of Bcl-2, cortical/mature immunophenotype, and bettercytoreduction in childhood T-ALL. Blood 98(1):297–306

    Google Scholar 

  89. Maleev VYa, Semenov MA, Kruglova EB, Bolbukh TV, Gasan AI, Bereznyak EG, Shestopalova AV (2003) Spectroscopic and calorimetric study of DNA interaction with a new series of actinocin derivatives. J Mol Struct 645(1):145–158

    CAS  Google Scholar 

  90. Shestopalova AV (2006) The investigation of the association of caffeine and actinocin derivatives in aqueous solution: a molecular dynamics simulation. J Mol Liquids 127 (1):113–117

    CAS  Google Scholar 

  91. Shestopalova AV (2006) Computer simulation of the association of caffeine and actinocin derivatives in aqueous solution. Biophysics 51(3):389–401

    CAS  Google Scholar 

  92. Miroshnychenko KV, Shestopalova AV (2005) Flexible docking of DNA fragments and actinocin derivatives. Mol Simulation 31(8):567–574

    CAS  Google Scholar 

  93. Demeunynck M, Bailly C, Wilson WD (eds) (2003) Small molecule DNA and RNA binders: from synthesis to nucleic acid complexes, vol 2. Wiley-VCH, Weinheim, p 483

    Google Scholar 

  94. Ihmels H, Otto D (2005) Intercalation of organic dye molecules into double-stranded DNA—general principles and recent developments. Top Curr Chem 258:161–204

    CAS  Google Scholar 

  95. Armitage OJ (2002) The role of mitoxantrone in non-Hodgkin’s lymphoma. Oncology 16(4):490–512

    Google Scholar 

  96. Portugal J, Cashman DJ, Trent JO, Ferrer-Miralles N, Przewloka T, Fokt I, Priebe W, Chaires JB (2005) A new bisintercalating anthracycline with picomolar DNA binding affinity. J Med Chem 48(26):8209–8219

    CAS  Google Scholar 

  97. Haq I (2002) Thermodynamics of drug–DNA interactions Arch. Biochem Biophys 403(1):1–15

    CAS  Google Scholar 

  98. Gilli P, Ferretti V, Gilli G, Borea PA (1994) Enthalpy-entropy compensation in drug-receptor binding. J Phys Chem 98(5):1515–1518

    CAS  Google Scholar 

  99. Dill KA (1997) Additivity principles in biochemistry. J Biol Chem 272(2):701–704

    CAS  Google Scholar 

  100. McKay SL, Haptonstall B, Gellman SH (2001) Beyond the hydrophobic effect: attractions involving heteroaromatic rings in aqueous solution. J Am Chem Soc 123(6):1244–1245

    CAS  Google Scholar 

  101. Luo R, Gilson HSR., Potter MJ, Gilson MK (2001) The physical basis of nucleic acid base stacking in water. Biophys J 80(1):140–148

    CAS  Google Scholar 

  102. Ren J, Jenkins TC, Chaires JB (2000) Energetics of DNA intercalation reactions. Biochemistry 39(29):8439–8447

    CAS  Google Scholar 

  103. Mukherjee A, Lavery R, Bagchi B, Hynes JT (2008) On the molecular mechanism of drug intercalation into DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes. J Am Chem Soc 130(30):9747–9755

    CAS  Google Scholar 

  104. Treesuwan W, Wittayanaraku K, Anthony NG, Huchet G, Alniss G, Hannongbua S, Khalaf AI, Suckling CJ, Parkinson JA, Mackay SP (2009) A detailed binding free energy study of 2:1 ligand–DNA complex formation by experiment and simulation. Phys Chem Chem Phys 11(45):10682–10693

    CAS  Google Scholar 

  105. Chow CS, Bogdan FM (1997) A structural basis for RNA-ligand interactions. Chem Rev 97(5):1489–1513

    CAS  Google Scholar 

  106. Gilson MK, Given JA, Bush BL, McCammon JA (1997) The statistical-thermodynamical basis for computation of binding affinities: a critical review. Biophys J 72(3):1047–1069

    CAS  Google Scholar 

  107. Kostjukov VV, Khomytova NM, Evstigneev MP (2009) Partition of thermodynamic energies of drug–DNA complexation. Biopolymers 91(9):773–790

    CAS  Google Scholar 

  108. Kostjukov VV, Hernandez Santiago AA, Rodriguez FR, Castilla SR, Parkinson JA, Evstigneev MP (2012) Energetics of ligand binding to the DNA minor groove. Phys Chem Chem Phys 14(16):5588–5600

    CAS  Google Scholar 

  109. Beshnova DA, Lantushenko AO, Evstigneev MP (2010) Does the ligand-biopolymer equilibrium binding constant depend on the number of bound ligands? Biopolymers 93(11):932–935

    CAS  Google Scholar 

  110. Kostjukov VV, Evstigneev MP (2012) Relation between the change in DNA elasticity on ligand binding and the binding energetics. Phys Rev E 86(3 Pt 1):031919

    Google Scholar 

  111. Rocchia W, Alexov E, Honig B (2001) Extending the applicability of the nonlinear Poisson-Boltzmann equation: multiple dielectric constants and multivalent ions. J Phys Chem B 105(28):6507–6514

    CAS  Google Scholar 

  112. Kostjukov VV, Khomytova NM, Hernandez Santiago AA, Licona Ibarra R, Davies DB, Evstigneev MP (2011) Calculation of the electrostatic charges and energies for intercalation of aromatic drug molecules with DNA. Int J Quantum Chem 111(3):711–721

    CAS  Google Scholar 

  113. Kostjukov VV, Khomutova NM, Lantushenko AO, Evstigneev MP (2009) Hydrophobic contribution to the free energy of complexation of aromatic ligands with DNA. Biopolym Cell 25(2):133–141

    Google Scholar 

  114. Kostyukov VV, Khomutova NM, Evstigneev MP (2009) Contribution of changes in translational, rotational, and vibrational degrees of freedom to the energy of complex formation of aromatic ligands with DNA. Biophysics 54(4):606–615

    CAS  Google Scholar 

  115. Kostjukov VV, Khomytova NM, Evstigneev MP (2010) Hydration change on complexation of aromatic ligands with DNA: molecular dynamics simulations. Biopolym Cell 26(1):36–44

    CAS  Google Scholar 

  116. Kostjukov VV, Khomytova NM, Hernandez Santiago AA, Tavera A-M C, Alvarado JS, Evstigneev MP (2011) Parsing of the free energy of aromatic–aromatic stacking interactions in solution. J Chem Thermodyn 43(10):1424–1434

    CAS  Google Scholar 

  117. Kostyukov VV (2011) Energy of intercalation of aromatic heterocyclic ligands into DNA and its partition into additive components. Biopolym Cell 27(4):264–272

    CAS  Google Scholar 

  118. Kostyukov VV (2011) Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands. Biophysics 56(1):28–39

    Google Scholar 

  119. Neidle S, Pearl LH, Herzyk P, Berman HM (1988) A molecular model for proflavine-DNA intercalation. Nucleic Acids Res 16(18):8999–9016

    CAS  Google Scholar 

  120. Brana MF, Cacho M, Gradillas A, de Pascual-Teresa B, Ramos A (2001) Intercalators as anticancer drugs. Curr Pharm Des 7(17):1745–1780

    CAS  Google Scholar 

  121. Pullman B (1989) Molecular mechanism of specificity in DNA-antitumor drug interactions. Adv Drug Res 18(1):2–112

    Google Scholar 

  122. Kostjukov VV, Khomytova NM, Davies DB, Evstigneev MP (2008) Electrostatic contribution to the energy of binding of aromatic ligands with DNA. Biopolymers 89(8):680–690

    CAS  Google Scholar 

  123. Kostjukov VV, Evstigneev MP (2014) Energy analysis of the reactions of noncovalent ligand binding with nucleic acids: present and future. Biophysics 59(4):673–677

    Google Scholar 

  124. Chaires JB (1997) Energetics of Drug-DNA interactions. Biopolymers 44(3):201–215

    CAS  Google Scholar 

  125. Kubar T, Hanus M, Ryjacek F, Hobza P (2005) Binding of cationic and neutral phenanthridine intercalators to a DNA oligomer is controlled by dispersion energy: quantum chemical calculations and molecular mechanics simulations. Chem Eur J 12(1):280–290

    Google Scholar 

  126. Buisine E, de Villiers K, Egan TG, Biot C (2006) Solvent-induced effects: self-association of positively charged π systems. J Am Chem Soc 128(37):12122–12128

    CAS  Google Scholar 

  127. Nelson SM, Ferguson LR, Denny WA (2007) Non-covalent ligand/DNA interactions: minor groove binding agents. Mutation Res 623(1):24–40

    CAS  Google Scholar 

  128. Cai X, Gray PJ, Von Hoff DD (2009) DNA minor groove binders: back in the groove. Cancer Treatment Rev 35(5):437–450

    CAS  Google Scholar 

  129. Kostjukov VV, Rogova OV, Evstigneev MP (2014) of complex formation between ligand and nucleic acids. Biophysics 59(4):666–672

    Google Scholar 

  130. Shaikh SA, Ahmed SR, Jayaram B (2004) A molecular thermodynamic view of DNA–drug interactions: a case study of 25 minor-groove binders. Arch Biochem Biophys 429(1):81–99

    CAS  Google Scholar 

  131. Dolenc J, Borstnik U, Hodoscek M, Koller J, Janezic D (2005) An ab initio QM/MM study of the conformational stability of complexes formed by netropsin and DNA. The importance of van der Waals interactions and hydrogen bonding. J Mol Struct 718(1):77–85

    CAS  Google Scholar 

  132. Kostjukov VV, Evstigneev MP (2012) Energy of ligand-RNA complex formation. Biophysics 57(4):450–463

    Google Scholar 

  133. Latham MP, Zimmermann GR, Pardi A (2009) NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer. J Am Chem Soc 131(14):5052–5053

    CAS  Google Scholar 

  134. Lee SW, Zhao L, Pardi A, **a T (2010) Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands. Biochemistry 49(13):2943–2951

    CAS  Google Scholar 

Download references

Acknowledgments

The authors express their special thanks to the following people which, in part, created the background, contributed and stimulated further the results reviewed in this chapter: Professor Vladimir Ya. Maleev (IRE NASU), Professor Mikhail A. Semenov (IRE NASU), Dr. Elena B. Kruglova (IRE NASU), Dr. Ekaterina G. Bereznyak (IRE NASU), Dr. Viktor V. Kostjukov (SevNTU). Support from the Ministry of Education and National Academy of Sciences of Ukraine via the grants 0103U002268 (2002–2006), 0107U001331 (2007–2009), 0107U001079 (2007–2011), 0110U001683 (2010–2012), F27/60-2010 is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim P. Evstigneev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Evstigneev, M., Shestopalova, A. (2014). Structure, Thermodynamics and Energetics of Drug-DNA Interactions: Computer Modeling and Experiment. In: Gorb, L., Kuz'min, V., Muratov, E. (eds) Application of Computational Techniques in Pharmacy and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9257-8_2

Download citation

Publish with us

Policies and ethics

Navigation