Systematic Methods for Defining Coarse-Grained Maps in Large Biomolecules

  • Chapter
  • First Online:
Advance in Structural Bioinformatics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 827))

Abstract

Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dror RO, Dirks RM, Grossman JP, Xu HF, Shaw DE (2012) Biomolecular simulation: a computational microscope for molecular biology. Annu Rev Biophys 41:429–452

    Article  CAS  PubMed  Google Scholar 

  2. Tozzini V (2005) Coarse-grained models of proteins. Curr Opin Struct Biol 15:144–150

    Article  CAS  PubMed  Google Scholar 

  3. Ayton GS, Noid WG, Voth GA (2007) Multiscale modeling of biomolecular systems: in serial and in parallel. Curr Opin Struct Biol 17:192–198

    Article  CAS  PubMed  Google Scholar 

  4. Murtola T, Bunker A, Vattulainen I, Deserno M, Karttunen M (2009) Multiscale modeling of emergent materials: biological and soft matter. Phys Chem Chem Phys 11:1869–1892

    Article  CAS  PubMed  Google Scholar 

  5. Saunders MG, Voth GA (2012) Coarse-graining of multiprotein assemblies. Curr Opin Struct Biol 22:144–150

    Article  CAS  PubMed  Google Scholar 

  6. Voth GA (2009) Coarse-graining of condensed phase and biomolecular systems. CRC Press-Taylor & Francis Group, Boca Raton 2009

    Google Scholar 

  7. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH (2007) The MARTINI force field: Coarse grained model for biomolecular simulations. J Phys Chem B 111:7812–7824

    Article  CAS  PubMed  Google Scholar 

  8. Monticelli L, Kandasamy SK, Periole X, Larson RG, Tieleman DP, Marrink SJ (2008) The MARTINI coarse-grained force field: extension to proteins. J Chem Theory Comput 4:819–834

    Article  CAS  Google Scholar 

  9. Liwo A, He Y, Scheraga HA (2011) Coarse-grained force field: general folding theory. Phys Chem Chem Phys 13:16890–16901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Bahar I, Rader AJ (2005) Coarse-grained normal mode analysis in structural biology. Curr Opin Struct Biol 15:586–592

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39:23–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Arkhipov A, Freddolino PL, Schulten K (2006) Stability and dynamics of virus capsids described by coarse-grained modeling. Structure 14:1767–1777

    Article  CAS  PubMed  Google Scholar 

  14. Murtola T, Kupiainen M, Falck E, Vattulainen I (2007) Conformational analysis of lipid molecules by self-organizing maps. J Chem Phys 126:17

    Google Scholar 

  15. Gohlke H, Thorpey MF (2006) A natural coarse graining for simulating large biomolecular motion. Biophys J 91:2115–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Stepanova M (2007) Dynamics of essential collective motions in proteins: theory. Phys Rev E 76:16

    Article  Google Scholar 

  17. Gfeller D, De Los Rios P (2008) Spectral coarse graining and synchronization in oscillator networks. Phys Rev Lett 100:4

    Article  Google Scholar 

  18. Zhang Z, Lu L, Noid WG, Krishna V, Pfaendtner J, Voth GA (2008) A systematic methodology for defining coarse-grained sites in large biomolecules. Biophys J 95:5073–5083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Zhang Z, Wriggers W (2008) Coarse-graining protein structures with local multivariate features from molecular dynamics. J Phys Chem B 112:14026–14035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Jang H, Na S, Eom K (2009) Multiscale network model for large protein dynamics. J Chem Phys 131:10

    Google Scholar 

  21. Potestio R, Pontiggia F, Micheletti C (2009) Coarse-grained description of protein internal dynamics: an optimal strategy for decomposing proteins in rigid subunits. Biophys J 96:4993–5002

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhang Z, Pfaendtner J, Grafmüller A, Voth GA (2009) Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Biophys J 97:2327–2337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Zhang Z, Voth GA (2010) Coarse-grained representations of large biomolecular complexes from low-resolution structural data. J Chem Theory Comput 6:2990–3002

    Article  CAS  Google Scholar 

  24. Amadei A, Linnsen ABM, Berendsen HJC (1993) Essential dynamics of proteins. Proteins 17:412–425

    Article  CAS  PubMed  Google Scholar 

  25. Kitao A, Go N (1999) Investigating protein dynamics in collective coordinate space. Curr Opin Struct Biol 9:164–169

    Article  CAS  PubMed  Google Scholar 

  26. Berendsen HJC, Hayward S (2000) Collective protein dynamics in relation to function. Curr Opin Struct Biol 10:165–169

    Article  CAS  PubMed  Google Scholar 

  27. de Groot BL, van Aalten DMF, Scheek RM, Amadei A, Vriend G, Berendsen HJC (1997) Prediction of protein conformational freedom from distance constraints. Proteins 29:240–251

    Article  PubMed  Google Scholar 

  28. Brooks B, Karplus M (1983) Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc Natl Acad Sci USA 80:6571–6575

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Cui Q, Bahar I (eds) (2006) Normal mode analysis: theory and applications to biological and chemical systems. Chapman & Hall/CRC, London

    Google Scholar 

  30. Hinsen K (2009) Physical arguments for distance-weighted interactions in elastic network models for proteins. Proc Natl Acad Sci USA 106:E128–E128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Yang L, Song G, Jernigan RL (2009) Protein elastic network models and the ranges of cooperativity. Proc Natl Acad Sci USA 106:12347–12352

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Yesylevskyy SO, Kharkyanen VN, Demchenko AP (2006) Dynamic protein domains: Identification, interdependence, and stability. Biophys J 91:670–685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Flory PJ, Gordon M, McCrum NG (1976) Statistical thermodynamics of random networks [and discussion]. Proc R Soc Lond A Math Phys Sci 351:351–380

    Article  CAS  Google Scholar 

  34. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Google Scholar 

  35. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  36. Krishna V, Ayton GS, Voth GA (2010) Role of protein interactions in defining HIV-1 viral capsid shape and stability: a coarse-grained analysis. Biophys J 98:18–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Chu JW, Voth GA (2005) Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc Natl Acad Sci USA 102:13111–13116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chu JW, Voth GA (2006) Coarse-grained modeling of the actin filament derived from atomistic-scale simulations. Biophys J 90:1572–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Fan J, Saunders MG, Voth GA (2012) Coarse-graining provides insights on the essential nature of heterogeneity in Actin filaments. Biophys J 103:1334–1342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  41. Graceffa P, Dominguez R (2003) Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics. J Biol Chem 278:34172–34180

    Article  CAS  PubMed  Google Scholar 

  42. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9:242–253

    Article  CAS  PubMed  Google Scholar 

  43. Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461:1234–1242

    Article  CAS  PubMed  Google Scholar 

  44. Yonath A (2009) Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. J R Soc Interface 6:S575–S585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gabashvili IS, Agrawal RK, Spahn CMT, Grassucci RA, Svergun DI, Frank J, Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100:537–549

    Article  CAS  PubMed  Google Scholar 

  46. Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  CAS  PubMed  Google Scholar 

  47. Sanbonmatsu KY, Tung CS (2007) High performance computing in biology: multimillion atom simulations of nanoscale systems. J Struct Biol 157:470–480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Sanbonmatsu KY (2012) Computational studies of molecular machines: the ribosome. Curr Opin Struct Biol 22:168–174

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Zhang Z, Sanbonmatsu KY, Voth GA (2011) Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. J Am Chem Soc 133:16828–16838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lyman E, Pfaendtner J, Voth GA (2008) Systematic multiscale parameterization of heterogeneous elastic network models of proteins. Biophys J 95:4183–4192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322

    Article  CAS  PubMed  Google Scholar 

  52. Poornam GP, Matsumoto A, Ishida H, Hayward S (2009) A method for the analysis of domain movements in large biomolecular complexes. Proteins 76:201–212

    Article  CAS  PubMed  Google Scholar 

  53. Amadei A, Ceruso MA, Di Nola A (1999) On the convergence of the conformational coordinates basis set obtained by the essential dynamics analysis of prtoeins’ molecular dynamics simulations. Proteins Struc Func Genet 36:419–424

    Article  CAS  Google Scholar 

  54. Sinitskiy AV, Saunders MG, Voth GA (2012) Optimal number of coarse-grained sites in different components of large biomolecular complexes. J Phys Chem B 116:8363–8374

    Article  CAS  PubMed  Google Scholar 

  55. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graphics 14:33–38

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Shanghai Jiaotong University Press, Shanghai and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, Z. (2015). Systematic Methods for Defining Coarse-Grained Maps in Large Biomolecules. In: Wei, D., Xu, Q., Zhao, T., Dai, H. (eds) Advance in Structural Bioinformatics. Advances in Experimental Medicine and Biology, vol 827. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9245-5_4

Download citation

Publish with us

Policies and ethics

Navigation