Detection of Vehicles and Pedestrians

  • Chapter
  • First Online:
Algorithm & SoC Design for Automotive Vision Systems

Abstract

Vehicle and pedestrian detection has gained the attention of researchers in the past decade because of the increasing number of on road vehicles and traffic accidents. Vehicle and pedestrian detection system is of utmost importance since it can be used to take instantaneous and calculated decisions where human failure might occur resulting in reduction of road mishaps. But designing a detection system which is robust to various shapes of vehicles, different human postures/clothing, and weather/environment conditions is a challenging problem. In the following sections, the state of the art methods in vehicle and pedestrian detection are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Dollar, C. Wojek, B. Schiele, P. Perona, Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743, 761 (2012)

    Google Scholar 

  2. H. Shin, T. Yu, Y. Ismail, B. Saeed, Rendering high dynamic range images by using integrated global and local processing. Opt. Eng. 50(11), 117002 (2011)

    Google Scholar 

  3. R.S. Choras, Feature extraction for CBIR and biometrics applications, in 7th WSEAS International Conference on Applied Computer Science, vol. 7 (ACS’07) (2007)

    Google Scholar 

  4. T. Ojala, M. Pietikäinen, D. Harwood, Performance evaluation of texture measures with classification based on Kullback discrimination of distributions, in Proceedings of the 12th IAPR International Conference on Pattern Recognition (ICPR) (1994)

    Google Scholar 

  5. S.J.H. Pirzada, E.U. Haq, H. Shin, in Single Camera Vehicle Detection Using Edges and Bag-of-Features. Computer Science and Convergence Springer (Netherlands, 2012)

    Google Scholar 

  6. D.G. Lowe, Object recognition from local scale-invariant features, in Proceedings of the International Conference on Computer Vision 2 (1999)

    Google Scholar 

  7. C. Cortes, V.N. Vapnik, Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Google Scholar 

  8. M.-F. Balcan, A. Beygelzimer, J. Langford, Agnostic active learning. in Proceedings of the 23rd international conference on Machine learning (ICML ‘06), New York (2006)

    Google Scholar 

  9. L. Breiman, Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  10. E.M Van Gool, L. Williams, J.C.K.I. Winn, A. Zisserman, The PASCAL Visual Object Classes Challenge 2012 (VOC 2012). Available at http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  11. W. Von Seelen, C. Curio, J. Gayko, U. Handmann, T. Kalinke, Scene analysis and organization of behavior in driver assistance systems, in Proceedings International Conference on Image Processing, vol. 3 (2000), pp. 524, 527

    Google Scholar 

  12. J. Crisman, C. Thorpe, Color vision for road following, in Proceedings of SPIE Conference on Mobile Robots, pp. 246–249 (1988)

    Google Scholar 

  13. C. Tzomakas, W. Seelen, Vehicle detection in traffic scenes using shadows, Technical report 98-06, Institut fu¨ r Neuroinfor-matik, Ruht-Universitat, Bochum, (1998)

    Google Scholar 

  14. M. Betke, E. Haritaglu, L. Davis, Real-time multiple vehicle detection and tracking from a moving vehicle. Mach. Vis. Appl. 12(2), 69–83 (2000)

    Google Scholar 

  15. N. Srinivasa, “A Vision-Based Vehicle Detection and Tracking Method for Forward Collision Warning,” in Proc. IEEE Intelligent Vehicle Symp, pp. 626–631, 2002

    Google Scholar 

  16. U. Handmann, T. Kalinke, C. Tzomakas, M. Werner, W. Seelen, An image processing system for driver assistance. Image Vis. Comput. 18(5), 367–376 (2000)

    Google Scholar 

  17. Z. Sun, G. Bebis, R. Miller, On-road vehicle detection using gabor filters and support vector machines, in Proceedings of IEEE International Conference on Digital Signal Processing (2002)

    Google Scholar 

  18. W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centers of circular features, in Proceedings of the ISPRS Intercommission Workshop on Fast Processing of Photogrammetric Data (1987)

    Google Scholar 

  19. S. Agarwal, D. Roth, Learning a sparse representation for object detection, in Proceedings of European Conference on Computer Vision (2002)

    Google Scholar 

  20. S. Sivaraman, M.M. Trivedi, Real-time vehicle detection using parts at intersections, in Proceedings of 15th International IEEE Conference on Intelligent Transportation Systems Anchorage (2012)

    Google Scholar 

  21. S. Sivaraman, M. Trivedi, A general active-learning framework for on-road vehicle recognition and tracking. IEEE Trans. Intell. Transp. Syst. 11(2), 267–276 (2010)

    Google Scholar 

  22. H. Niknejad, A. Takeuchi, S. Mita, D. McAllester, On-road multivehicle tracking using deformable object model and particle filter with improved likelihood estimation. IEEE Trans. Intell. Transp. Syst. 13(2), 748, 758 (2012)

    Google Scholar 

  23. P. Felzenszwalb, D. McAllester, Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1267–1645 (2010)

    Article  Google Scholar 

  24. N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, in Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  25. M. Andriluka, S. Roth, B. Schiele, TUD-crossing sequence dataset (2008). Available at http://www.d2.mpi-inf.mpg.de/sites/default/files/people/andriluka/tud-crossing-sequence.tgz

  26. N. Dalal, INRIA person dataset (2005). Available at http://pascal.inrialpes.fr/data/human/

  27. Z. Qiang, Y. Mei-Chen, Fast human detection using a cascade of histograms of oriented gradients, in IEEE International Conference on Computer Vision and Pattern Recognition (2006)

    Google Scholar 

  28. S. Mittal, T.Prasad, H. Shin, Pedestrian detection and tracking using deformable part models and Kalman filtering, in International SoC Design Conference (2012)

    Google Scholar 

  29. P. Dollár, Z. Tu, P. Perona, S. Belongie, Integral channel features, in British Machine Vision Conference (2009)

    Google Scholar 

  30. Y. Teng, F. Xue, H. Shin, An efficient pedestrian detection method by using coarse-to-fine deection and color histogram similarity, in Proceedings of International Conference on I Hybrid Information Technology (2012)

    Google Scholar 

  31. R. Benenson, M. Mathias, Pedestrian detection at 100 frames per second, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  32. D. Piotr, S.B, The fastest pedestrian detector in the west, in Proceedings of British Machine Vision Conference (2009)

    Google Scholar 

  33. R. Benenson, R. Timofte, L. Van Gool, Stixels estimation without depth map computation, in Proceedings of IEEE Conference on Computer Vision Workshops (2011)

    Google Scholar 

  34. IRTAD Road Safety Annual Report 2013, International traffic safety data and analysis group (2013). Available at http://internationaltransportforum.org/irtadpublic/pdf/13IrtadReport.pdf

  35. W.D. Jones, Safer driving in the dead of night (2006). Available at http://spectrum.ieee.org/green-tech/advanced-cars/safer-driving-in-the-dead-of-night

  36. I. Riaz, J. Piao, H. Shin, Human detection by using CENTRIST features for thermal images, in International Conference Computer Graphics, Visualization, Computer Vision and Image Processing (2013)

    Google Scholar 

  37. BMW Night-Vision System. Available at https://www.bmw.co.uk/bmw/marketEV/bmw_next/en_DE/footer/q-and-a/technology-guide/bmw-night-vision.html

  38. F. Xu, X. Liu, K. Fujimura, Pedestrian detection and tracking with night vision, in IEEE Transactions on Intelligent Transportation Systems (2005)

    Google Scholar 

  39. K. Jungling, M. Arens, Pedestrian tracking in infrared from moving vehicles, in IEEE Intelligent Vehicles Symposium (IV) (2010)

    Google Scholar 

  40. Y. Cheng, Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 17(8), 790–799 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunchul Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shin, H., Riaz, I. (2014). Detection of Vehicles and Pedestrians. In: Kim, J., Shin, H. (eds) Algorithm & SoC Design for Automotive Vision Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9075-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-9075-8_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-9074-1

  • Online ISBN: 978-94-017-9075-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation