The Neuroendocrinology of Anhedonia

  • Chapter
  • First Online:
Anhedonia: A Comprehensive Handbook Volume I

Abstract

One of the more fascinating developments in neuroscience is the recognition of endocrine influences on brain regions unrelated to reproductive and basic homeostatic functions. It is now clear that hormones impact both normal function and dysfunction, including the experience of pleasure and the anhedonia accompanying a number of psychiatric disorders, most notably depression. Brain regions contributing to these functions are rich in receptors for the peptides and steroids of the hypothalamic – pituitary – gonadal (HPG) and hypothalamic – pituitary – adrenal (HPA) axes. Indeed, the brain has evolved new functions for ancient hormones. Examples include the brain adaptive uses of steroid precursors and metabolites for non-reproductive functions and the brain co-opting or “hijacking” peptides of the two axes to serve as neuromodulators and neurotransmitters. The result is that HPA and HPG hormones and their interactions have profound influences on opioids and monoamines, especially dopamine and serotonin. These are the same neurotransmitter pathways underlying activation of the brain reward pathway stretching from midbrain to the prefrontal cortex.

Our ultimate goal is to fulfill the promise of the title, an evaluation of neuroendocrine – anhedonia relations. This requires, first, an overview of the endocrine system, and their steroids and peptides. There, we also provide a brief review of the interaction of the HPA and HPG axes in depression. Before embarking on an evaluation of hormones and anhedonia, we will examine normal neuroendocrine influences on pleasure from natural experiences such as food and sex but also from psychoactive drugs. Logic suggests examining data on pleasure before addressing loss of pleasure. The emphasis throughout will be on animal models with a liberal sprinkling of human findings, mostly psychiatric patients.

This journey will take us through endocrine basics (Sect. 10.1), and the influence of hormones on brain systems underlying the experience of pleasure (Sect. 10.2). In Sect. 10.3, the modest literature on the neuroendocrinology of anhedonia in depression will be reviewed. Finally, future research and directions (Sect. 10.4) will provide ideas on filling in the gaps in our understanding of endocrine – anhedonia relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5HT:

Serotonin

ACTH:

Adrenocorticotropin hormone

ALLO:

Allopregnanolone

AVP:

Arginine vasopressin

BNST:

Bed nucleus of the stria terminalis

BRS:

Brain reward system

CMS:

Chronic mild stress

CORT:

Corticosteroid

CRH:

Corticotropin-releasing hormone

CSF:

Cerebrospinal fluid

DA:

Dopamine

DHEA:

Dehydroepiandrosterone

DOPAC:

3, 4-Dihydroxyphenlacetic acid

E2:

Estradiol

EPI:

Epinephrine

FST:

Forced swim test

GABA:

Gamma-Aminobutyric acid

GnRH:

Gonadotropin releasing hormone

GR:

Glucocorticoid receptor

HPA:

Hypothalamic-pituitary-adrenal

HPG:

Hypothalamic-pituitary-gonadal

HVA:

Homovanillic acid

ICSS:

Intracranial self-stimulation

LH:

Luteinizing hormone

MDD:

Major Depressive Disorder

MFB:

Medial forebrain bundle

MR:

Mineralocorticoid receptor

NAcc:

Nucleus accumbens

NE:

Norepinephrine

OVX:

Ovariectomy

PFC:

Prefrontal cortex

POMC:

Proopiomelanocortin

PROG:

Progesterone

PVN:

Paraventricular nucleus of the hypothalamus

SAM:

Sympathetic adrenal medullary system

SSRI:

Selective serotonin reuptake inhibitors

TH:

Tyrosine hydroxylase

TS:

Testosterone

VTA:

Ventral tegmental area

References

  1. Ruedi-Bettschen D, Zhang W, Russig H, et al. Early deprivation leads to altered behavioural, autonomic and endocrine responses to environmental challenge in adult Fischer rats. Eur J Neurosci. 2006;24:2879–93.

    PubMed  Google Scholar 

  2. Frodl T, Reinhold E, Koutsouleris N, et al. Interaction of childhood stress with hippocampus and prefrontal cortex volume reduction in major depression. J Psychiatr Res. 2010;44:799–807.

    PubMed  Google Scholar 

  3. McEwen BS, Eiland L, Hunter RG, et al. Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology. 2012;62:3–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Heim C, Owens MJ, Plotsky PM, et al. Persistent changes in corticotropin-releasing factor systems due to early life stress: relationship to the pathophysiology of major depression and post-traumatic stress disorder. Psychopharmacol Bull. 1997;33:185–92.

    CAS  PubMed  Google Scholar 

  5. Pohl J, Olmstead MC, Wynne-Edwards KE, et al. Repeated exposure to stress across the childhood–adolescent period alters rats’ anxiety- and depression-like behaviors in adulthood: the importance of stressor type and gender. Behav Neurosci. 2007;121:462–74.

    PubMed  Google Scholar 

  6. de Kloet ER. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–300.

    PubMed  Google Scholar 

  7. Charmandari E, Kino T, Chrousos GP. Glucocorticoids and their actions an introduction. Ann N Y Acad Sci. 2004;1024:1–8.

    CAS  PubMed  Google Scholar 

  8. Brown ES. Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy. Ann N Y Acad Sci. 2009;1179:41–55.

    CAS  PubMed  Google Scholar 

  9. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–76.

    PubMed  Google Scholar 

  10. Rodrigues SM, LeDoux JE, Sapolsky RM. The influence of stress hormones on fear circuitry. Annu Rev Neurosci. 2009;32:289–313.

    CAS  PubMed  Google Scholar 

  11. Stern CM. Corticotropin-releasing factor in the hippocampus: eustress or distress? J Neurosci. 2011;31:1935–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sgoifo A, DeBoer SF, Haller J, et al. Individual differences in plasma catecholamine and corticosterone stress responses of wild-type rats: relationship with aggression. Physiol Behav. 1996;60:1403–7.

    CAS  PubMed  Google Scholar 

  13. Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response. Annu Rev Physiol. 2005;67:259–84.

    CAS  PubMed  Google Scholar 

  14. Sapolsky RM. Stress, the aging brain, and the mechanisms of neuronal death. Cambridge, MA: The M.I.T. Press; 1992.

    Google Scholar 

  15. Taylor G, Bardgett M, Csernansky J, et al. Male rat reproductive systems under chronic fluoxetine or trimipramine treatment. Physiol Behav. 1996;59:479–85.

    CAS  PubMed  Google Scholar 

  16. Taylor GT, Weiss J, Zimmermann F. Animal models of sex differences in nonreproductive brain function. In: Tatlisumak T, Fisher M, editors. Handbook of experimental neurology: methods and techniques in animal research. New York: Cambridge University Press; 2006. p. 239–56.

    Google Scholar 

  17. Conneely OM, Mulac-Jericevic B, DeMayo F, et al. Reproductive functions of progesterone receptors. Recent Prog Horm Res. 2002;57:339–55.

    CAS  PubMed  Google Scholar 

  18. Baulieu EE. Neurosteroids: of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res. 1997;52:1–32.

    CAS  PubMed  Google Scholar 

  19. Engin E, Treit D. The anxiolytic-like effects of allopregnanolone vary as a function of intracerebral microinfusion site: the amygdala, medial prefrontal cortex, or hippocampus. Behav Pharmacol. 2007;18:461–70.

    CAS  PubMed  Google Scholar 

  20. Brunton PJ, Russell JA. Allopregnanolone and suppressed hypothalamo-pituitary-adrenal axis stress responses in late pregnancy in the rat. Stress. 2011;14:6–12.

    CAS  PubMed  Google Scholar 

  21. Kessler RC. Gender differences in major depression: epidemiologlcal findings. In: Frank E, editor. Gender and its effects on psychopathology. Washington, DC: American Psychiatric Press; 2000. p. 61–84.

    Google Scholar 

  22. Taylor GT, Boggiano J, Cabrera O, et al. Steroidal influences on anxiety disorders in childhood and their animal models. Curr Top Steroid Res. 2011;8:47–64.

    CAS  Google Scholar 

  23. Gonda X, Telek T, Juhasz G, et al. Patterns of mood changes throughout the reproductive cycle in healthy women without premenstrual dysphoric disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32:1782–8.

    CAS  Google Scholar 

  24. Bloch M, Daly RC, Rubinov DR. Endocrine factors in the etiology of postpartum depression. Compr Psychiatry. 2003;44:234–46.

    PubMed  Google Scholar 

  25. Meltzer-Brody S. Understanding and treating mood disorders across the reproductive years. Sex Reprod Menopause. 2010;8:12–8.

    Google Scholar 

  26. Holsboer F, Ising M. Stress hormone regulation: biological role and translation into therapy. Annu Rev Psychol. 2010;61:81–109.

    PubMed  Google Scholar 

  27. Chiba S, Numakawa T, Ninomiya M, et al. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuro-Psychopharmacol Biol Psychiatry. 2012;39:112–9.

    CAS  Google Scholar 

  28. Paterson NE, Markou A. Animal models and treatments for addiction and depression co-morbidity. Neurotox Res. 2007;11:1–32.

    CAS  PubMed  Google Scholar 

  29. Post RM, Weiss SR, Li H, et al. Neural plasticity and emotional memory. Dev Psychopathol. 1998;10:829–55.

    CAS  PubMed  Google Scholar 

  30. Wardenaar KJ, Vreeburg SA, van Veen T, et al. Dimensions of depression and anxiety and the hypothalamo-pituitary-adrenal axis. Biol Psychiatry. 2011;69:366–73.

    PubMed  Google Scholar 

  31. Barden N. Implication of the hypothalamic – pituitary – adrenal axis in the physiopathology of depression. J Psychiatry Neurosci. 2004;29:185–93.

    PubMed Central  PubMed  Google Scholar 

  32. Holsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology. 2000;23:477–501.

    CAS  PubMed  Google Scholar 

  33. Romer B, Lewicka S, Kopf D, et al. Cortisol metabolism in depressed patients and healthy controls. Neuroendocrinology. 2009;90:301–6.

    PubMed  Google Scholar 

  34. Wolkowitz OM, Burke H, Epel ES, et al. Mood, memory, and mechanisms. Ann N Y Acad Sci. 2009;1179:19–40.

    CAS  PubMed  Google Scholar 

  35. Hoschl C, Hajek T. Hippocampal damage mediated by corticosteroids–a neuropsychiatric research challenge. Eur Arch Psychiatry Clin Neurosci. 2001;251 Suppl 2:II81–8.

    PubMed  Google Scholar 

  36. DeSouza EB. Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology. 1995;20:789–819.

    CAS  Google Scholar 

  37. Duncko R, Kiss A, Skultetyova I, et al. Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology. 2001;26:77–89.

    CAS  PubMed  Google Scholar 

  38. Muller MB, Keck ME. Genetically engineered mice for studies of stress-related clinical conditions. J Psychiatr Res. 2002;36:53–76.

    PubMed  Google Scholar 

  39. Murphy BE. Steroids and depression. J Steroid Biochem Mol Biol. 1991;38:537–58.

    CAS  PubMed  Google Scholar 

  40. Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav. 2003;43:60–6.

    CAS  PubMed  Google Scholar 

  41. Krugers HJ, Lucassen PJ, Karst H, et al. Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front Synaptic Neurosci. 2010;2:24.

    PubMed Central  PubMed  Google Scholar 

  42. Kubera M, Obuchowicz E, Goehler L, et al. In animal models, psychosocial stress-induced (neuro)inflammation, apoptosis and reduced neurogenesis are associated to the onset of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35:744–59.

    CAS  Google Scholar 

  43. Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry. 2000;48:755–65.

    CAS  PubMed  Google Scholar 

  44. Sheline YI, Sanghav M, Mintun M, et al. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci. 1999;19:5034–43.

    CAS  PubMed  Google Scholar 

  45. Olney JW. Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol. 1990;30:47–71.

    CAS  PubMed  Google Scholar 

  46. Kaminska M, Harris J, Gijsbers K, et al. Dehydroepiandrosterone sulfate (DHEAS) counteracts decremental effects of corticosterone on dentate gyrus LTP: implications for depression. Brain Res Bull. 2000;52:229–34.

    CAS  PubMed  Google Scholar 

  47. Naert G, Maurice T, Tapia-Arancibia L, et al. Neuroactive steroids modulate HPA axis activity and cerebral brain derived neurotrophic factor (BDNF) protein levels in adult male rats. Psychoneuroendocrinology. 2007;32:1062–78.

    CAS  PubMed  Google Scholar 

  48. Maninger N, Wolkowitz OM, Reus VI, et al. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Endocrinol. 2009;30:65–91.

    CAS  Google Scholar 

  49. Herbert J. Neurosteroids, brain damage, and mental illness. Exp Gerontol. 1998;33:713–27.

    CAS  PubMed  Google Scholar 

  50. Kudielka BM, Kirschbaum C. Sex differences in HPA axis responses to stress: a review. Biol Psychol. 2005;69:113–32.

    PubMed  Google Scholar 

  51. Matsumoto AM, Bremner WJ. Serum testosterone assays–accuracy matters. J Clin Endocrinol Metab. 2004;89:520–4.

    CAS  PubMed  Google Scholar 

  52. Becker JB, Monteggia LM, Perrot-Sinal TS, et al. Stress and disease: is being female a predisposing factor? J Neurosci. 2007;27:11851–5.

    CAS  PubMed  Google Scholar 

  53. Viau V, Meaney MJ. The inhibitory effect of testosterone on hypothalamic-pituitary-adrenal responses to stress is mediated by the medial preoptic area. J Neurosci. 1996;16:1866–76.

    CAS  PubMed  Google Scholar 

  54. McCormick CM, Mathews IZ. HPA function in adolescence: role of sex hormones in its regulation and the enduring consequences of exposure to stressors. Pharmacol Biochem Behav. 2007;86:220–33.

    CAS  PubMed  Google Scholar 

  55. Stroud LR, Salovey P, Epel ES. Sex differences in stress responses: social rejection versus achievement stress. Biol Psychiatry. 2002;52:318–27.

    PubMed  Google Scholar 

  56. Altemus M. Sex differences in depression and anxiety disorders: potential biological determinants. Horm Behav. 2006;50:534–8.

    PubMed  Google Scholar 

  57. Atkinson HC, Waddell BJ. Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology. 1997;138:3842–8.

    CAS  PubMed  Google Scholar 

  58. McCormick CM, Linkroum W, Sallinen BJ, et al. Peripheral and central sex steroids have differential effects on the HPA axis of male and female rats. Stress. 2002;5:235–47.

    CAS  PubMed  Google Scholar 

  59. Brummelte S, Galea LA. Depression during pregnancy and postpartum: contribution of stress and ovarian hormones. Prog Neuro-Psychopharmacol Biol Psychiatry. 2010;34:766–76.

    CAS  Google Scholar 

  60. Young EA, Altemus M. Puberty, ovarian steroids, and stress. Ann N Y Acad Sci. 2004;1021:124–33.

    CAS  PubMed  Google Scholar 

  61. Yang S-J, Kim S-Y, Stewart RB, et al. Gender differences in 12-week antidepressant treatment outcomes for a naturalistic secondary care cohort: the CRESCEND study. Psychiatry Res. 2011;189:82–90.

    PubMed  Google Scholar 

  62. Baca E, Garcia-Garcia M, Porras-Chavarinoc A. Gender differences in treatment response to sertraline versus imipramine in patients with nonmelancholic depressive disorders. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:57–65.

    CAS  Google Scholar 

  63. Kornstein SG, Sloan DME, Thase ME. Gender-specific differences in depression and treatment response. Psychopharmacol Bull. 2002;36 Suppl 3:99–112.

    Google Scholar 

  64. Osterlund MK. Underlying mechanisms mediating the antidepressant effects of estrogens. Biochim Biophys Acta. 2010;1800:1136–44.

    PubMed  Google Scholar 

  65. Osterlund MK, Keller E, Hurd YL. The human forebrain has discrete estrogen receptor α messenger RNA expression: high levels in the amygdaloid complex. Neuroscience. 2000;95:333–42.

    CAS  PubMed  Google Scholar 

  66. Young EA, Midgley AR, Carlson NE, et al. Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch Gen Psychiatry. 2000;57:1157–62.

    CAS  PubMed  Google Scholar 

  67. Rocca WA, Grossardt BR, Geda YE, et al. Long-term risk of depressive and anxiety symptoms after early bilateral oophorectomy. Menopause. 2008;15:1050–9.

    PubMed  Google Scholar 

  68. Holsen LM, Spaeth SB, Lee JH, et al. Stress response circuitry hypoactivation related to hormonal dysfunction in women with major depression. J Affect Disord. 2011;131:379–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Solomon MB, Herman JP. Sex differences in psychopathology: of gonads, adrenals and mental illness. Physiol Behav. 2009;97:250–8.

    CAS  PubMed  Google Scholar 

  70. Steiner M, Dunn E, Born L. Hormones and mood: from menarche to menopause and beyond. J Affect Disord. 2003;74:67–83.

    CAS  PubMed  Google Scholar 

  71. Baischer W, Koinig G, Hartmann B, et al. Hypothalamic–pituitary–gonadal axis in depressed premenopausal women: elevated blood testosterone concentrations compared to normal controls. Psychoneuroendocrinology. 1995;20:553–9.

    CAS  PubMed  Google Scholar 

  72. Hardoy MC, Serra M, Carta MG, et al. Increased neuroactive steroid concentrations in women with bipolar disorder or major depressive disorder. J Clin Psychopharmacol. 2006;26:379–84.

    CAS  PubMed  Google Scholar 

  73. Nin MS, Martinez LA, Pibiri F, et al. Neurosteroids reduce social isolation-induced behavioral deficits: a proposed link with neurosteroid-mediated upregulation of BDNF expression. Front Endocrinol. 2011;2:73. doi:10.3389/fendo.2011.00073.

    Google Scholar 

  74. Pinna G, Costa E, Guidotti A. SSRIs act as selective brain steroidogenic stimulants (SBSSs) at low doses that are inactive on 5-HT reuptake. Curr Opin Pharmacol. 2009;9:24–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Martin-Soelch C. Is depression associated with dysfunction of the central reward system? Biochem Soc Trans. 2009;37:313–7.

    CAS  PubMed  Google Scholar 

  76. Nestler EJ, Carlezon JWA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    CAS  PubMed  Google Scholar 

  77. Skinner BF. The behavior of organisms. New York: Appleton; 1938.

    Google Scholar 

  78. Esch T, Stefano GB. The neurobiology of pleasure, reward processes, addiction and their health implications. Neuro Endocrinol Lett. 2004;25:235–51.

    CAS  PubMed  Google Scholar 

  79. Picciotto MR, Corrigall WA. Neuronal systems underlying behaviors related to nicotine addiction: neural circuits and molecular genetics. J Neurosci. 2002;22:3338–41.

    CAS  PubMed  Google Scholar 

  80. Russell VA. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder–the spontaneously hypertensive rat. Neurosci Biobehav Rev. 2003;27:671–82.

    CAS  PubMed  Google Scholar 

  81. Parolaro D, Realini N, Vigano D, et al. The endocannabinoid system and psychiatric disorders. Exp Neurol. 2010;224:3–14.

    CAS  PubMed  Google Scholar 

  82. Kelley AE, Berridge KC. The neuroscience of natural rewards: relevance to addictive drugs. J Neurosci. 2002;22:3306–11.

    CAS  PubMed  Google Scholar 

  83. DiChiara G, Loddo P, Tanda G. Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry. 1999;46:1624–33.

    CAS  Google Scholar 

  84. Pfaus JG, Damsma G, Wenkstern D, et al. Sexual activity increases dopamine transmission in the nucleus accumbens and striatum of female rats. Brain Res. 1995;693:21–30.

    CAS  PubMed  Google Scholar 

  85. Putnam SK, Sato S, Hull EM. Effects of testosterone metabolites on copulation and medial preoptic dopamine release in castrated male rats. Horm Behav. 2003;44:419–28.

    CAS  PubMed  Google Scholar 

  86. Putnam SK, Sato S, Riolo JV, et al. Effects of testosterone metabolites on copulation, medial preoptic dopamine, and NOS-immunoreactivity in castrated male rats. Horm Behav. 2005;47:513–22.

    CAS  PubMed  Google Scholar 

  87. Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:435–51.

    CAS  Google Scholar 

  88. Schultz W. Behavioral theories and the neurophysiology of reward. Annu Rev Psychol. 2006;57:87–115.

    PubMed  Google Scholar 

  89. Andersen ML, Sawyer EK, Howell LL. Contributions of neuroimaging to understanding sex differences in cocaine abuse. Exp Clin Psychopharmacol. 2012;20:2–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Aron A, Fisher HE, Mashek D, et al. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J Neurophysiol. 2005;94:327–37.

    PubMed  Google Scholar 

  91. Levita L, Hare TA, Voss HU, et al. The bivalent side of the nucleus accumbens. Neuroimage. 2009;44:1178–87.

    PubMed Central  PubMed  Google Scholar 

  92. Kornetsky C. Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: implications for abuse. Neurosci Biobehav Rev. 2004;27:777–86.

    CAS  PubMed  Google Scholar 

  93. Schultz W. Behavioral dopamine signals. Trends Neurosci. 2007;30:303–10.

    Google Scholar 

  94. Salamone J, Cousins M, Snyder B. Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev. 1997;21:341–59.

    CAS  PubMed  Google Scholar 

  95. Rademacher L, Krach S, Kohls G, et al. Dissociation of neural networks for anticipation and consumption of monetary and social rewards. Neuroimage. 2010;49:3276–85.

    PubMed  Google Scholar 

  96. Bromberg-Martin ES, Hikosaka O. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron. 2009;63:119–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Becker JB, Rudick CN, Jenkins WJ. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J Neurosci. 2001;21:3236–41.

    CAS  PubMed  Google Scholar 

  98. Becker JB. Sexual differentiation of motivation: a novel mechanism? Horm Behav. 2009;55:646–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Volkow ND, Wang G-J, Fischman MW, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature. 1997;386:827–30.

    Google Scholar 

  100. Everitt BJ. Sexual motivation: a neural and behavioral analysis of the mechanisms underlying appetitive and copulatory responses in male rats. Neurosci Biobehav Rev. 1990;14:217–32.

    CAS  PubMed  Google Scholar 

  101. Berridge KC. Motivation concepts in behavioral neuroscience. Physiol Behav. 2004;81:179–209.

    CAS  PubMed  Google Scholar 

  102. Colasanti A, Searle GE, Long CJ, et al. Endogenous opioid release in the human brain reward system induced by acute amphetamine administration. Biol Psychiatry. 2012;72:371–7.

    CAS  PubMed  Google Scholar 

  103. Nakahara D, Nakamura M, Oki Y, et al. Lack of glucocorticoids attenuates the self-stimulation-induced increase in the in vivo synthesis rate of dopamine but not serotonin in the rat nucleus accumbens. Eur J Neurosci. 2000;12:1495–500.

    CAS  PubMed  Google Scholar 

  104. Barrot M, Marinelli M, Abrous DN, et al. The dopaminergic hyper-responsiveness of the shell of the nucleus accumbens is hormone-dependent. Eur J Neurosci. 2000;12:973–80.

    CAS  PubMed  Google Scholar 

  105. Lindley SE, Tasha G, Bengoechea TG, et al. Glucocorticoid effects on mesotelencephalic dopamine neurotransmission. Neuropsychopharmacology. 1999;21:399–407.

    CAS  PubMed  Google Scholar 

  106. Mizoguchi K, Ishige A, Takeda S, et al. Endogenous glucocorticoids are essential for maintaining prefrontal cortical cognitive function. J Neurosci. 2004;24:5492–9.

    CAS  PubMed  Google Scholar 

  107. Chocyk A, Dudys D, Przyborowska A, et al. Maternal separation affects the number, proliferation and apoptosis of glia cells in the substantia nigra and ventral tegmental area of juvenile rats. Neuroscience. 2011;173:1–18.

    CAS  PubMed  Google Scholar 

  108. Cabib S, Puglisi-Allegra S, Damato F. Effects of postnatal stress on dopamine mesolimbic system responses to aversive experiences in adult life. Brain Res. 1993;604:232–9.

    CAS  PubMed  Google Scholar 

  109. Cabib S, D’Amato FR, Puglisi-Allegra S, et al. Behavioral and mesocorticolimbic dopamine responses to non aggressive social interactions depend on previous social experiences and on the opponent’s sex. Behav Brain Res. 2000;112:13–22.

    CAS  PubMed  Google Scholar 

  110. Finlay JM, Zigmond MJ, Abercrombie ED. Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience. 1995;64:619–28.

    CAS  PubMed  Google Scholar 

  111. Cabib S, Puglisi-Allegra S. Different effects of repeated stress on mesocortical and mesolimbic dopamine metabolism. Neuroscience. 1996;73:375–80.

    CAS  PubMed  Google Scholar 

  112. Dziedzicka-Wasylewska M, Willner P, Papp M. Changes in dopamine receptor mRNA expression following chronic mild stress and chronic antidepressant treatment. Behav Pharmacol. 1997;8:607–18.

    CAS  PubMed  Google Scholar 

  113. Koob GF, Caine SB, Parsons L, et al. Opponent process model and psychostimulant addiction. Pharmacol Biochem Behav. 1997;57:513–21.

    CAS  PubMed  Google Scholar 

  114. Boutrel B. A neuropeptide-centric view of psychostimulant addiction. Br J Pharmacol. 2008;154:343–57.

    CAS  PubMed  Google Scholar 

  115. Elman I, Lukas SE, Karlsgodt KH, et al. Acute cortisol administration triggers craving in individuals with cocaine dependence. Psychopharmacol Bull. 2003;37:84–9.

    PubMed  Google Scholar 

  116. Marinelli M, Piazza PV. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur J Neurosci. 2002;16:387–94.

    PubMed  Google Scholar 

  117. Goodman A. Neurobiology of addition: an integrative review. Biochem Pharmacol. 2008;75:266–322.

    CAS  PubMed  Google Scholar 

  118. Der-Avakian A, Markou A. Neonatal maternal separation exacerbates the reward-enhancing effect of acute amphetamine administration and the anhedonic effect of repeated social defeat in adult rats. Neuroscience. 2010;170:1189–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Tidey JW, Miczek KA. Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacology. 1997;130:203–12.

    CAS  PubMed  Google Scholar 

  120. Dellu F, Mayo W, Vallee M, et al. Behavioral reactivity to novelty during youth as a predictive factor of stress-induced corticosterone secretion in the elderly – a life-span study of rats. Psychoneuroendocrinology. 1996;21:441–53.

    CAS  PubMed  Google Scholar 

  121. Kabbaj M, Devine DP, Savage VR, Akil H. Neurobiological correlates of individual differences in novelty-seeking behavior in the rat: differential expression of stress-related molecules. J Neurosci. 2000;20:6983–8.

    CAS  PubMed  Google Scholar 

  122. Hooks MS, Jones GH, Smith AD, et al. Response to novelty predicts the locomotor and nucleus accumbens dopamine response to cocaine. Synapse. 1991;9:121–8.

    CAS  PubMed  Google Scholar 

  123. Piazza P, Le Moal M. The role of stress in drug self-administration. Trends Pharmacol Sci. 1998;19:67–74.

    CAS  PubMed  Google Scholar 

  124. Dluzen DE, Salvaterra TJ. Sex differences in methamphetamine-evoked striatal dopamine output are abolished following gonadectomy: comparisons with potassium-evoked output and responses in prepubertal mice. Neuroendocrinology. 2005;82:78–86.

    CAS  PubMed  Google Scholar 

  125. **ao L, Becker JB. Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: effects of estrous cycle and gonadectomy. Neurosci Lett. 1994;180:155–8.

    CAS  PubMed  Google Scholar 

  126. Mitchell JB, Stewart J. Effects of castration, steroid replacement, and sexual experience on mesolimbic dopamine and sexual behaviors in the male rat. Brain Res. 1989;491:116–27.

    CAS  PubMed  Google Scholar 

  127. Frye CA. Some rewarding effects of androgens may be mediated by actions of its 5alpha-reduced metabolite 3alpha-androstanediol. Pharmacol Biochem Behav. 2007;86:354–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Yague JG, Wang AC, Janssen WG, et al. Aromatase distribution in the monkey temporal neocortex and hippocampus. Brain Res. 2008;1209:115–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Shieh KR, Yang SC. Effects of estradiol on the stimulation of dopamine turnover in mesolimbic and nigrostriatal systems by cocaine- and amphetamine-regulated transcript peptide in female rats. Neuroscience. 2008;154:1589–97.

    CAS  PubMed  Google Scholar 

  130. McEwen BS, Alves SE. Estrogen actions in the central nervous system. Endocr Rev. 1999;20:279–307.

    CAS  PubMed  Google Scholar 

  131. Russo SJ, Festa ED, Fabian SJ, et al. Gonadal hormones differentially modulate cocaine-induced conditioned place preference in male and female rats. Neuroscience. 2003;120:523–33.

    CAS  PubMed  Google Scholar 

  132. Becker JB, Molenda H, Hummer DL. Gender differences in the behavioral responses to cocaine and amphetamine: implications for mechanisms mediating gender differences in drug abuse. Ann N Y Acad Sci. 2001;937:173–87.

    Google Scholar 

  133. Izumo N, Ishibashi Y, Ohba M, et al. Decreased voluntary activity and amygdala levels of serotonin and dopamine in ovariectomized rats. Behav Brain Res. 2012;227:1–6.

    CAS  PubMed  Google Scholar 

  134. DiPaolo T, Rouillard C, Bedard P. 17B-Estradiol at a physiological dose acutely increases dopamine turnover in rat brain. Eur J Pharmacol. 1985;117:197–203.

    CAS  Google Scholar 

  135. Andersen SL, Teicher MH. Sex differences in dopamine receptors and their relevance to ADHD. Neurosci Biobehav Rev. 2000;24:137–41.

    CAS  PubMed  Google Scholar 

  136. Morris ME, Lee HJ, Predko LM. Gender differences in the membrane transport of endogenous and exogenous compounds. Pharmacol Rev. 2003;55:220–40.

    Google Scholar 

  137. Shansky RM, Glavis-Bloom C, Lerman D, et al. Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Mol Psychiatry. 2004;9:531–8.

    CAS  PubMed  Google Scholar 

  138. Dazzi L, Seu E, Cherchi G, et al. Estrous cycle-dependent changes in basal and ethanol-induced activity of cortical dopaminergic neurons in the rat. Neuropsychopharmacology. 2007;32:892–901.

    CAS  PubMed  Google Scholar 

  139. Jacome LF, Gautreaux C, Inagaki T, et al. Estradiol and ERbeta agonists enhance recognition memory, and DPN, an ERbeta agonist, alters brain monoamines. Neurobiol Learn Mem. 2010;94:488–98.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Kritzer MF. Long-term gonadectomy affects the density of tyrosine hydroxylase- but not dopamine-ß-hydroxylase-, choline acetyltransferase- or serotonin-immunoreactive axons in the medial prefrontal cortices of adult male rats. Cereb Cortex. 2003;13:282–96.

    CAS  PubMed  Google Scholar 

  141. Sanchez MG, Bourque M, Morissette M, et al. Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010;16:e43–71.

    CAS  PubMed  Google Scholar 

  142. Maggi M, Ciana P, Belcredito S, et al. Estrogens in the nervous system: mechanisms and nonreproductive functions. Annu Rev Physiol. 2004;66:291–313.

    CAS  PubMed  Google Scholar 

  143. Pelizza L, Ferrari A. Anhedonia in schizophrenia and major depression: state or trait? Ann Gen Psychiatry. 2009;8:22.

    PubMed Central  PubMed  Google Scholar 

  144. van der Staay FJ. Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev. 2006;52:131–59.

    PubMed  Google Scholar 

  145. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    CAS  PubMed  Google Scholar 

  146. Barr AM, Markou A, Phillips AG. A ‘crash’ course on psychostimulant withdrawal as a model of depression. Trends Pharmacol Sci. 2002;23:475–82.

    CAS  PubMed  Google Scholar 

  147. Bevins RA, Besheer J. Novelty reward as a measure of anhedonia. Neurosci Biobehav Rev. 2005;29:707–14.

    PubMed  Google Scholar 

  148. Von Frijtag JC, Reijmers LG, Van der Harst JE, et al. Defeat followed by individual housing results in long-term impaired reward- and cognition-related behaviours in rats. Behav Brain Res. 2000;117:137–46.

    Google Scholar 

  149. Miczek KA, Nikulina EM, Takahashi A, et al. Gene expression in aminergic and peptidergic cells during aggression and defeat: relevance to violence, depression and drug abuse. Behav Genet. 2011;41:787–802.

    PubMed  Google Scholar 

  150. Razzoli M, Carboni L, Arban R. Alterations of behavioral and endocrinological reactivity induced by 3 brief social defeats in rats: relevance to human psychopathology. Psychoneuroendocrinology. 2009;34:1405–16.

    CAS  PubMed  Google Scholar 

  151. Taylor GT, Smith SE, Kirchhoff BA. Differential effects of antipsychotics on lateral bias and social attention in rats. Psychopharmacology. 2013;225:453–60.

    CAS  PubMed  Google Scholar 

  152. Hill MN, Hellemans KG, Verma P, et al. Neurobiology of chronic mild stress: parallels to major depression. Neurosci Biobehav Rev. 2012;36:2085–117.

    CAS  PubMed  Google Scholar 

  153. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology. 1997;134:319–29.

    CAS  PubMed  Google Scholar 

  154. Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92:39–43.

    CAS  PubMed  Google Scholar 

  155. Dang H, Chen Y, Liu X, et al. Antidepressant effects of ginseng total saponins in the forced swimming test and chronic mild stress models of depression. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:1417–24.

    CAS  Google Scholar 

  156. Pan Y, Wang FM, Qiang LQ, et al. Icariin attenuates chronic mild stress-induced dysregulation of the LHPA stress circuit in rats. Psychoneuroendocrinology. 2010;35:272–83.

    CAS  PubMed  Google Scholar 

  157. Grippo AJ, Francis J, Beltz TG, et al. Neuroendocrine and cytokine profile of chronic mild stress-induced anhedonia. Physiol Behav. 2005;84:697–706.

    CAS  PubMed  Google Scholar 

  158. Grippo AJ, Sullivan NR, Damjanoska KJ, et al. Chronic mild stress induces behavioral and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacology (Berl). 2005;179:769–80.

    CAS  Google Scholar 

  159. Buynitsky T, Mostofsky DI. Restraint stress in biobehavioral research: recent developments. Neurosci Biobehav Rev. 2009;33:1089–98.

    PubMed  Google Scholar 

  160. Konkle ATM, Baker SL, Kentner AC, et al. Evaluation of the effects of chronic mild stressors on hedonic and physiological responses: sex and strain compared. Brain Res. 2003;992:227–38.

    CAS  PubMed  Google Scholar 

  161. Dalla C, Antoniou K, Drossopoulou G, et al. Chronic mild stress impact: are females more vulnerable? Neuroscience. 2005;135:703–14.

    CAS  PubMed  Google Scholar 

  162. Bachis A, Cruz MI, Nosheny RL, et al. Chronic unpredictable stress promotes neuronal apoptosis in the cerebral cortex. Neurosci Lett. 2008;442:104–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Garcia LS, Comim CM, Valvassori SS, et al. Ketamine treatment reverses behavioral and physiological alterations induced by chronic mild stress in rats. Prog Neuro-Psychopharmacol Biol Psychiatry. 2009;33:450455.

    Google Scholar 

  164. Wiborg O. Chronic mild stress for modeling anhedonia. Cell Tissue Res. 2013;354(1):155–69. doi:10.1007/s00441-013-1664-0.

    PubMed  Google Scholar 

  165. Elizalde N, Garcia-Garcia AL, Totterdell S, et al. Sustained stress-induced changes in mice as a model for chronic depression. Psychopharmacology. 2010;210:393–406.

    CAS  PubMed  Google Scholar 

  166. Muscat R, Papp M, Willner P. Reversal of stress – induced anhedonia by the atypical antidepressants, fluoxetine and maprotiline. Psychopharmacology. 1993;109:433–8.

    Google Scholar 

  167. Grippo AJ, Beltz TG, Weiss RM, et al. The effects of chronic fluoxetine treatment on chronic mild stress-induced cardiovascular changes and anhedonia. Biol Psychiatry. 2006;59:309–16.

    CAS  PubMed  Google Scholar 

  168. Bogdan R, Pizzagalli DA. Acute stress reduces reward responsiveness: implications for depression. Biol Psychiatry. 2006;60:1147–54.

    PubMed Central  PubMed  Google Scholar 

  169. Troisi A, Alcini S, Coviello M, et al. Adult attachment style and social anhedonia in healthy volunteers. Personal Individ Differ. 2010;48:640–3.

    Google Scholar 

  170. Bennett DS, Ambrosini PJ, Kudes D, et al. Gender differences in adolescent depression: do symptoms differ for boys and girls? J Affect Disord. 2005;89:35–44.

    PubMed  Google Scholar 

  171. Bielajew C, Konkle AT, Kentner AC, et al. Strain and gender specific effects in the forced swim test: effects of previous stress exposure. Stress. 2003;6:269–80.

    CAS  PubMed  Google Scholar 

  172. D’Aquila PS, Brain P, Willner P. Effects of chronic mild stress on performance in behavioural tests relevant to anxiety and depression. Physiol Behav. 1994;56:861–7.

    PubMed  Google Scholar 

  173. Benelli A, Filaferro M, Bertolini A, et al. Influence of Sadenosyl-L-methionine on chronic mild stress-induced anhedonia in castrated rats. Br J Pharmacol. 1999;127:645–54.

    CAS  PubMed  Google Scholar 

  174. Pitychoutis PM, Dalla C, Sideris AC, et al. 5-HT1A, 5-HT2A, and 5-HT2C receptor mRNA modulation by antidepressant treatment in the chronic mild stress model of depression: sex differences exposed. Neuroscience. 2012;210:152–67.

    CAS  PubMed  Google Scholar 

  175. Kamper EF, Chatzigeorgiou A, Tsimpoukidi O, et al. Sex differences in oxidant/antioxidant balance under a chronic mild stress regime. Physiol Behav. 2009;98:215–22.

    CAS  PubMed  Google Scholar 

  176. Gronli J, Murison R, Fiske E, et al. Effects of chronic mild stress on sexual behavior, locomotor activity and consumption of sucrose and saccharine solutions. Physiol Behav. 2005;84:571–7.

    CAS  PubMed  Google Scholar 

  177. Herrera-Perez JJ, Martinez-Mota L, Chavira R, et al. Testosterone prevents but not reverses anhedonia in middle-aged males and lacks an effect on stress vulnerability in young adults. Horm Behav. 2012;61:623–30.

    CAS  PubMed  Google Scholar 

  178. Carrier N, Kabbaj M. Extracellular signal-regulated kinase 2 signaling in the hippocampal dentate gyrus mediates the antidepressant effects of testosterone. Biol Psychiatry. 2012;71:642–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Hellemans KG, Verma P, Yoon E, et al. Prenatal alcohol exposure increases vulnerability to stress and anxiety-like disorders in adulthood. Ann N Y Acad Sci. 2008;1144:154–75.

    CAS  PubMed  Google Scholar 

  180. Bloch M, Schmidt PJ, Danaceau MA, et al. Dehydroepiandrosterone treatment of midlife dysthymia. Biol Psychiatry. 1999;45:1533–41.

    CAS  PubMed  Google Scholar 

  181. Harden M, Smith SE, Niehoff JA, et al. Anti-depressive effects of the κ-opioid receptor agonist salvinorin A in a rat model of anhedonia. Behav Pharmacol. 2012;23:710–5.

    CAS  PubMed  Google Scholar 

  182. Recamier-Carballo S, Estrada-Camarena E, Reyes R, et al. Synergistic effect of estradiol and fluoxetine in young adult and middle-aged female rats in two models of experimental depression. Behav Brain Res. 2012;233:351–8.

    CAS  PubMed  Google Scholar 

  183. Taylor GT, Farr S, Klinga K, et al. Chronic fluoxetine suppresses circulating estrogen and the enhanced spatial learning of estrogen-restored ovariectomized female rats. Psychoneuroendocrinology. 2004;29:1241–9.

    CAS  PubMed  Google Scholar 

  184. Romano-Torres M, Fernandez-Guasti A. Estradiol valerate elicits antidepressant-like effects in middle-aged female rats under chronic mild stress. Behav Pharmacol. 2010;21:104–11.

    CAS  PubMed  Google Scholar 

  185. Schiller CE, O’Hara MW, Rubinow DR, et al. Estradiol modulates anhedonia and behavioral despair in rats and negative affect in a subgroup of women at high risk for postpartum depression. Physiol Behav. 2013;119:137–44.

    CAS  PubMed  Google Scholar 

  186. Carroll ME, Anker JJ. Sex differences and ovarian hormones in animal models of drug dependence. Horm Behav. 2010;58:44–56.

    CAS  PubMed  Google Scholar 

  187. Galankin T, Shekunova E, Zvartau E. Estradiol lowers intracranial self-stimulation thresholds and enhances cocaine facilitation of intracranial self-stimulation in rats. Horm Behav. 2010;58:827–34.

    CAS  PubMed  Google Scholar 

  188. Quinones-Jenab V, Jenab S. Progesterone attenuates cocaine-induced responses. Horm Behav. 2010;58:22–32.

    CAS  PubMed  Google Scholar 

  189. Auriacombe M, Reneric JP, LeMoal M. Animal models of anhedonia. Psychopharmacology. 1997;134:337–8.

    CAS  PubMed  Google Scholar 

  190. Weiss JM, Kilts CD. Animal models of depression and schizophrenia. In: Schatzberg A, Nemeroff C, editors. Textbook of psychopharmacology. 2nd ed. Washington, DC: American Psychiatric Press; 1998. p. 89–131.

    Google Scholar 

  191. Morley JE, Kim MJ, Haren MT. Frailty and hormones. Rev Endocr Metab Disord. 2005;6:101–8.

    CAS  PubMed  Google Scholar 

  192. Lam RW. Onset, time course and trajectories of improvement with antidepressants. Eur Neuropsychopharmacol. 2012;22 Suppl 3:S492–8.

    CAS  PubMed  Google Scholar 

  193. Taylor GT, Weiss J, Rupich R. Male rat behavior, endocrinology and reproductive physiology in a mixed-sex, socially stressful colony. Physiol Behav. 1987;39:429–33.

    CAS  PubMed  Google Scholar 

  194. Altemus M. Hormone-specific psychiatric disorders: do they exist? Arch Womens Ment Health. 2010;13:25–6.

    PubMed Central  PubMed  Google Scholar 

  195. Henry JF, Sherwin BB. Hormones and cognitive functioning during late pregnancy and postpartum: a longitudinal study. Behav Neurosci. 2012;126:73–85.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Preparation of this manuscript was supported in part by grants from the University of Missouri Research Board and the College Dean’s Faculty Research Awards at UM-St. Louis. The authors thank Joseph Boggiano, now at the Washington University School of Medicine in St. Louis, Missouri, for assistance in the conduct of the unpublished experiment cited in the manuscript. Also, we thank Dr. Juergen Weiss of the University of Heidelberg (Germany) for assistance in preparing the figure (Fig. 10.1) depicting the metabolic cascade in the brain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George T. Taylor Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Taylor, G.T., Cabrera, O., Hoffman, J. (2014). The Neuroendocrinology of Anhedonia. In: Ritsner, M. (eds) Anhedonia: A Comprehensive Handbook Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8591-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-8591-4_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-017-8590-7

  • Online ISBN: 978-94-017-8591-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation