Scientific Research Related to Genetically Modified Trees

  • Chapter
  • First Online:
Challenges and Opportunities for the World's Forests in the 21st Century

Part of the book series: Forestry Sciences ((FOSC,volume 81))

Abstract

Over the last decade, we have witnessed impressive advances in tree molecular biology and the consolidation of tree genomics. We have essentially moved from a small portfolio of genes focusing on a specific genetic trait to large databases including thousands of genes and their respective expression profiles. In 2006, we saw the publication of the first genomic sequence of a tree, the model tree species Populus trichocarpa. Though, not surprisingly, much progress has been made with Populus, impressive research results have also been realized in more recalcitrant coniferous species such as pines and spruces.

Despite the rapid advances in tree genomics, tree genetic engineering (GE) proved to be a bottleneck requiring the development of whole-tree regeneration protocols using in vitro culture and an effective method of DNA transfer. The introduction of simple single gene traits such as insect resistance was the early target of tree genetic engineers. Today more tree species are compatible with GE and at a higher throughput, making functional genomics approaches possible to improve our understanding of gene functions.

In this chapter we will provide an historical overview of the advances made in GE of trees. We will also explore the various applications of tree GE to improving response to biotic and abiotic stresses, which is becoming more important in an ever-changing environment. Improvement of specific traits for tree domestication will also be covered. Lastly, we will briefly discuss issues related to the regulation of GM trees, particularly concerning genetic containment and environmental risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees Struct Funct 23:1125–1135

    CAS  Google Scholar 

  • Ahuja M (2010) Fate of transgenes in the forest tree genome. Tree Genet Genomes 7:221–230

    Google Scholar 

  • Azzarello E, Pandolfi C, Pollastri S, Masi E, Mugnai S, Mancuso S (2011) The use of trees in phytoremediation. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 6(037). doi:10.1079/PAVSNNR20116037

    Google Scholar 

  • Baucher M, Halpin C, Petit-Conil M, Boerjan W (2003) Lignin: genetic engineering and impact on pul**. Crit Rev Biochem Mol Biol 38:305–350

    PubMed  CAS  Google Scholar 

  • Benedict C, Skinner JS, Meng R, Chang Y, Bhalerao R, Huner NP, Finn CE, Chen TH, Hurry V (2006) The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp. Plant Cell Environ 29:1259–1272

    PubMed  CAS  Google Scholar 

  • Berg P, Baltimore D, Brenner S, Roblin RO 3rd, Singer MF (1975a) Asilomar conference on recombinant DNA molecules. Science 188:991–994

    PubMed  CAS  Google Scholar 

  • Berg P, Baltimore D, Brenner S, Roblin RO, Singer MF (1975b) Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci U S A 72:1981–1984

    PubMed  CAS  Google Scholar 

  • Bevan MW, Flavell RB, Chilton M-D (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    CAS  Google Scholar 

  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166

    PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    PubMed  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    PubMed  CAS  Google Scholar 

  • Brasileiro ACM, Tourneur C, Leple JC, Combes V, Jouanin L (1992) Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res 1:133–141

    CAS  Google Scholar 

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genet Genomes 3:75–100

    Google Scholar 

  • Campbell MM, Brunner AM, Jones HM, Strauss SH (2003) Forestry’s fertile crescent: the application of biotechnology to forest trees. Plant Biotechnol J 1:141–154

    PubMed  CAS  Google Scholar 

  • Castle LA, Wu G, McElroy D (2006) Agricultural input traits: past, present and future. Curr Opin Biotechnol 17:105–112

    PubMed  CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 70:3240–3244

    PubMed  CAS  Google Scholar 

  • Coleman HD, Canam T, Kang KY, Ellis DD, Mansfield SD (2007) Over-expression of UDP-glucose pyrophosphorylase in hybrid poplar affects carbon allocation. J Exp Bot 58:4257–4268

    PubMed  CAS  Google Scholar 

  • Coleman HD, Yan J, Mansfield SD (2009) Sucrose synthase affects carbon partitioning to increase cellulose production and altered cell wall ultrastructure. Proc Natl Acad Sci U S A 106:13118–13123

    PubMed  CAS  Google Scholar 

  • Coleman HD, Canovas FM, Man H, Kirby EG, Mansfield SD (2012) Enhanced expression of glutamine synthetase (GS1a) confers altered fibre and wood chemistry in field grown hybrid poplar (Populus tremula X alba) (717-1B4). Plant Biotechnol J 10:883–889

    PubMed  CAS  Google Scholar 

  • Collinge DB, Jorgensen HJ, Lund OS, Lyngkjaer MF (2010) Engineering pathogen resistance in crop plants: current trends and future prospects. Annu Rev Phytopathol 48:269–291

    PubMed  CAS  Google Scholar 

  • Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tiss Org Cult 72:109–138

    CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  Google Scholar 

  • De Block M (1990) Factors influencing the tissue culture and the Agrobacterium tumefaciens-mediated transformation of hybrid aspen and poplar clones. Plant Physiol 93:1110–1116

    Google Scholar 

  • Déjardin A, Laurans F, Arnaud D, Breton C, Pilate G, Leplé JC (2010) Wood formation in angiosperms. Comptes Rendus Biologies 333:325–334

    PubMed  Google Scholar 

  • Demura T, Fukuda H (2007) Transcriptional regulation in wood formation. Trends Plant Sci 12:64–70

    PubMed  CAS  Google Scholar 

  • DiFazio SP, Leonardi S, Slavov GT, Garman SL, Adams WT, Strauss SH (2012) Gene flow and simulation of transgene dispersal from hybrid poplar plantations. New Phytol 193:903–915

    PubMed  CAS  Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    PubMed  CAS  Google Scholar 

  • Doty SL, James CA, Moore AL, Vajzovic A, Singleton GL, Ma C, Khan Z, **n G, Kang JW, Park JY, Meilan R, Strauss SH, Wilkerson J, Farin F, Strand SE (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci U S A 104:16816–16821

    PubMed  CAS  Google Scholar 

  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11:84–89

    CAS  Google Scholar 

  • Ewald D, Hu J, Yang M (2006) Transgenic forest trees in China. In: Fladung M, Ewald D (eds) Tree transgenesis – recent developments. Springer, Berlin, pp 25–45

    Google Scholar 

  • Farre G, Ramessar K, Twyman RM, Capell T, Christou P (2010) The humanitarian impact of plant biotechnology: recent breakthroughs vs bottlenecks for adoption. Curr Opin Plant Biol 13:219–225

    PubMed  Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    PubMed  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    CAS  Google Scholar 

  • Flachowsky H, Hanke MV, Peil A, Strauss SH, Fladung M (2009) A review on transgenic approaches to accelerate breeding of woody plants. Plant Breed 128:217–226

    CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    PubMed  CAS  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over-expressing the arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22:223–234

    PubMed  CAS  Google Scholar 

  • Gallardo F, Fu JM, Canton FR, Garcia-Gutierrez A, Canovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26

    PubMed  CAS  Google Scholar 

  • Gill RIS, Ellis BE, Isman MB (2003) Tryptamine-induced resistance in tryptophan decarboxylase transgenic poplar and tobacco plants against their specific herbivores. J Chem Ecol 29:779–793

    PubMed  CAS  Google Scholar 

  • Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J (2005) EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. Plant J 43:553–567

    PubMed  CAS  Google Scholar 

  • Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep 24:103–111

    PubMed  CAS  Google Scholar 

  • Harcourt RL, Kyozuka J, Floyd RB, Bateman KS, Tanaka H, Decroocq V, Llewellyn DJ, Zhu X, Peacock WJ, Dennis ES (2000) Insect- and herbicide-resistant transgenic eucalypts. Mol Breed 6:307–315

    CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    PubMed  CAS  Google Scholar 

  • Harfouche A, Meilan R, Kirst M, Morgante M, Boerjan W, Sabatti M, Scarascia MG (2012) Accelerating the domestication of forest trees in a changing world. Trends Plant Sci 17:64–72

    PubMed  CAS  Google Scholar 

  • Hay I, Morency M-J, Séguin A (2002) Assessing the persistence of DNA in decomposing leaves of genetically modified poplar trees. Can J For Res 32:977–982

    CAS  Google Scholar 

  • Henderson AR, Walter C (2006) Genetic engineering in conifer plantation forestry. Silvae Genet 55:253–262

    Google Scholar 

  • Herrera-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2:987–995

    PubMed  CAS  Google Scholar 

  • Hinchee M, Rottmann W, Mullinax L, Zhang C, Chang S, Cunningham M, Pearson L, Nehra N (2009) Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell Dev Biol Plant 45:619–629

    PubMed  Google Scholar 

  • Ho CK, Chang SH, Tsay JY, Tsai CJ, Chiang VL, Chen ZZ (1998) Agrobacterium tumefaciens-mediated transformation of Eucalyptus camaldulensis and production of transgenic plants. Plant Cell Rep 17:675–680

    Google Scholar 

  • Hoenicka H, Lautner S, Klingberg A, Koch G, El-Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012) Influence of over-expression of the flowering promoting factor 1 gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. x P. tremuloides Michx.). Planta 235:359–373

    PubMed  CAS  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    PubMed  CAS  Google Scholar 

  • Hu JJ, Tian YC, Han YF, Li L, Zhang BE (2001) Field evaluation of insect-resistant transgenic Populus nigra trees. Euphytica 121:123–127

    Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pul** efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51:6178–6183

    PubMed  CAS  Google Scholar 

  • Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA (2011) SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in eucalyptus. BMC Plant Biol 11:173

    PubMed  CAS  Google Scholar 

  • **g ZP, Gallardo F, Pascual MB, Sampalo R, Romero J, De Navarra AT, Cánovas FM (2004) Improved growth in a field trial of transgenic hybrid poplar overexpressing glutamine synthetase. New Phytol 164:137–145

    CAS  Google Scholar 

  • Joshi CP, Thammannagowda S, Fu**o T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, Debolt S, Peter GF (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331–345

    PubMed  CAS  Google Scholar 

  • Kaida R, Kaku T, Baba K, Oyadomari M, Watanabe T, Nishida K, Kanaya T, Shani Z, Shoseyov O, Hayashi T (2009) Loosening xyloglucan accelerates the enzymatic degradation of cellulose in wood. Mol Plant 2:904–909

    PubMed  CAS  Google Scholar 

  • Kerstens S, Decraemer WF, Verbelen JP (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381–385

    PubMed  CAS  Google Scholar 

  • Kleiner KW, Ellis DD, McCown BH, Raffa KF (1995) Field evaluation of transgenic poplar expressing a Bacillus thuringiensis crylA(a) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environ Entomol 24:1358–1364

    Google Scholar 

  • Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T (2005) Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev 19:1855–1860

    PubMed  CAS  Google Scholar 

  • Kumar S, Fladung M (2004) Molecular genetics and breeding of forest trees. Haworth Press Inc., New York, 436 p

    Google Scholar 

  • Lachance D, Hamel LP, Pelletier F, Valéro J, Bernier-Cardou M, Chapman K, Van Frankenhuyzen K, Séguin A (2007) Expression of a Bacillus thuringiensis cry1Ab gene in transgenic white spruce and its efficacy against the spruce budworm (Choristoneura fumiferana). Tree Genet Genomes 3:153–167

    Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé JC, Boerjan W, Ferret VV, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pul**. Plant Physiol 119:153–164

    PubMed  CAS  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye Z-H (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089

    PubMed  CAS  Google Scholar 

  • Legay S, Sivadon P, Blervacq AS, Pavy N, Baghdady A, Tremblay L, Levasseur C, Ladouce N, Lapierre C, Séguin A, Hawkins S, Mackay J, Grima-Pettenati J (2010) EgMYB1, an R2R3 MYB transcription factor from eucalyptus negatively regulates secondary cell wall formation in Arabidopsis and poplar. New Phytol 188:774–786

    PubMed  CAS  Google Scholar 

  • Lemmetyinen J, Sopanen T (2004) Modification of flowering in forest trees. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth, New York, pp 263–291

    Google Scholar 

  • Leplé JC, Bonade-Bottino M, Augustin S, Pilate G, Le Tan VD, Delplanque A, Cornu D, Jouanin L (1995) Toxicity to Chrysomela tremulae (Coleoptera: Chrysomelidae) of transgenic poplars expressing a cysteine proteinase inhibitor. Mol Breed 1:319–328

    Google Scholar 

  • Leplé JC, Dauwe R, Morreel K, Storme V, Lapierre C, Pollet B, Naumann A, Kang KY, Kim H, Ruel K, Lefèbvre A, Joseleau JP, Grima-Pettenati J, De Rycke R, Andersson-Gunnerås S, Erban A, Fehrle I, Petit-Conil M, Kopka J, Polle A, Messens E, Sundberg B, Mansfield SD, Ralph J, Pilate G, Boerjan W (2007) Downregulation of cinnamoyl-coenzyme A reductase in poplar: multiple-level phenoty** reveals effects on cell wall polymer metabolism and structure. Plant Cell 19:3669–3691

    PubMed  Google Scholar 

  • Levée V, Lelu M-A, Jouanin L, Cornu D, Pilate G (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi x L. decidua) and transgenic plant regeneration. Plant Cell Rep 16:680–685

    Google Scholar 

  • Levée V, Garin E, Klimaszewska K, Séguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Google Scholar 

  • Li J, Meilan R, Ma C, Barish M, Strauss SH (2008) Stability of herbicide resistance over 8 years of coppice in field-grown, genetically engineered poplars. West J Appl For 23:89–93

    Google Scholar 

  • Li J, Brunner AM, Meilan R, Strauss SH (2009) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    PubMed  CAS  Google Scholar 

  • Li Q, Min D, Wang JP-Y, Peszlen I, Horvath L, Horvath B, Nishimura Y, Jameel H, Chang H-M, Chiang VL (2011) Down-regulation of glycosyltransferase 8D genes in Populus trichocarpa caused reduced mechanical strength and xylan content in wood. Tree Physiol 31:226–236

    PubMed  CAS  Google Scholar 

  • Li D, Song S, **a X, Yin W (2012) Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tiss Org Cult 109:477–489

    CAS  Google Scholar 

  • Liang H, Maynard CA, Allen RD, Powell WA (2001) Increased Septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Mol Biol 45:619–629

    PubMed  CAS  Google Scholar 

  • Liu CJ (2012) Deciphering the enigma of lignification: precursor transport, oxidation, and the topochemistry of lignin assembly. Mol Plant 5:304–317

    PubMed  CAS  Google Scholar 

  • McCown BH, McCabe DE, Russell DR, Robison DJ, Barton KA, Raffa KF (1991) Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration. Plant Cell Rep 9:590–594

    PubMed  CAS  Google Scholar 

  • Meilan R, Ma C, Cheng S, Eaton JA, Miller LK, Crocket RP, DiFazio SP, Strauss SH (2000) High levels of Roundup® and leaf beetle resistance in genetically engineered hybrid cottonwoods. In: Blattner KA, Johnson JD, Baumgartner DM (eds) Hybrid poplars in the Pacific Northwest: culture, commerce and capability. Washington State University, Pullman, pp 29–38

    Google Scholar 

  • Meilan R, Han KH, Ma C, DiFazio SP, Eaton JA, Hoien EA, Stanton BJ, Crockett RP, Taylor ML, James RR, Skinner JS, Jouanin L, Pilate G, Strauss SH (2002) The CP4 transgene provides high levels of tolerance to Roundup® herbicide in field-grown hybrid poplars. Can J Forest Res 32:967–976

    CAS  Google Scholar 

  • Mellerowicz EJ, Sundberg B (2008) Wood cell walls: biosynthesis, developmental dynamics and their implications for wood properties. Curr Opin Plant Biol 11:293–300

    PubMed  CAS  Google Scholar 

  • Merkle SA, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    PubMed  CAS  Google Scholar 

  • Merkle SA, Nairn CJ (2005) Hardwood tree biotechnology. In Vitro Cell Dev Biol Plant 41:602–619

    CAS  Google Scholar 

  • Merkle SA, Andrade GM, Nairn CJ, Powell WA, Maynard CA (2007) Restoration of threatened species: a noble cause for transgenic trees. Tree Genet Genomes 3:111–118

    Google Scholar 

  • Min DY, Li QZ, Jameel H, Chiang V, Chang HM (2011) Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. Trichocarpa). Biomass Bioenergy 35:3514–3521

    CAS  Google Scholar 

  • Neale DB (2007) Genomics to tree breeding and forest health. Curr Opin Genet Dev 17:539–544

    PubMed  CAS  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    PubMed  CAS  Google Scholar 

  • Nehra NS, Becwar MR, Rottmann WH, Pearson L, Chowdhury K, Chang S, Wilde HD, Kodrzycki RJ, Zhang C, Gause KC, Parks DW, Hinchee MA (2005) Forest biotechnology: innovative methods, emerging opportunities. In Vitro Cell Dev Biol Plant 41:701–717

    CAS  Google Scholar 

  • Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    PubMed  CAS  Google Scholar 

  • Noël A, Levasseur C, Le VQ, Séguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67:92–99

    Google Scholar 

  • Pappinen A, Degefu Y, Syrjälä L, Keinonen K, Von Weissenberg K (2002) Transgenic silver birch (Betula pendula) expressing sugarbeet chitinase 4 shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep 20:1046–1051

    CAS  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    PubMed  CAS  Google Scholar 

  • Pasonen HL, Seppänen SK, Degefu Y, Rytkönen A, Von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    PubMed  CAS  Google Scholar 

  • Pilate G, Déjardin A, Leplé JC (2012) Field trials with lignin-modified transgenic trees. In: Jouanin L, Lapierre C (eds) Advances in botanical research. Academic Press, Burlington, pp 1–36

    Google Scholar 

  • Powell WA, Maynard CA, Boyle B, Séguin A (2006) Fungal and bacterial resistance in transgenic trees. In: Fladung M, Ewald D (eds) Tree transgenesis – recent developments. Springer, Berlin, pp 235–252

    Google Scholar 

  • Pu YQ, Kosa M, Kalluri UC, Tuskan GA, Ragauskas AJ (2011) Challenges of the utilization of wood polymers: how can they be overcome? Appl Microbiol Biotechnol 91:1525–1536

    PubMed  CAS  Google Scholar 

  • Robischon M (2006) Field trials with transgenic trees – state of the art and developments. In: Fladung M, Ewald D (eds) Tree transgenesis – recent developments. Springer, Berlin, pp 3–23

    Google Scholar 

  • Robischon M, Du J, Miura E, Groover A (2011) The Populus class III HD ZIP, popREVOLUTA, influences cambium initiation and patterning of woody stems. Plant Physiol 155:1214–1225

    PubMed  CAS  Google Scholar 

  • Sanahuja G, Banakar R, Twyman RM, Capell T, Christou P (2011) Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol J 9:283–300

    PubMed  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    PubMed  CAS  Google Scholar 

  • Sederoff RR, MacKay JJ, Ralph J, Hatfield RD (1999) Unexpected variation in lignin. Curr Opin Plant Biol 2:145–152

    PubMed  CAS  Google Scholar 

  • Séguin A, Lachance D, Charest PJ (1996) Transient gene expression and stable genetic transformation into conifer tissues by microprojectile bombardment. In: Lindsey K (ed) Plant molecular biology manual. Kluwer Academic Publishers, Dordrecht, pp 1–46

    Google Scholar 

  • Shin DI, Podila GK, Huang Y, Karnosky DF, Huang YH (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 24:2059–2067

    Google Scholar 

  • Somerville C (2006) Cellulose synthesis in higher plants. Annu Rev Plant Biol 22:53–78

    CAS  Google Scholar 

  • Sutela S, Niemi K, Edesi J, Laakso T, Saranpää P, Vuosku J, Mäkelä R, Tiimonen H, Chiang VL, Koskimäki J, Suorsa M, Julkunen-Tiitto R, Häggman H (2009) Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC Plant Biol 9:124

    PubMed  Google Scholar 

  • Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    PubMed  CAS  Google Scholar 

  • Tang W, Tian Y (2003) Transgenic loblolly pine (Pinus taeda L.) plants expressing a modified δ-endotoxin gene of Bacillus thuringiensis with enhanced resistance to Dendrolimus punctatus Walker and Crypyothelea formosicola Staud. J Exp Bot 54:835–844

    PubMed  CAS  Google Scholar 

  • Tang W, Newton R, Li C, Charles T (2007) Enhanced stress tolerance in transgenic pine expressing the pepper CaPF1 gene is associated with the polyamine biosynthesis. Plant Cell Rep 26:115–124

    PubMed  CAS  Google Scholar 

  • Tournier V, Grat S, Marque C, El Kayal W, Penchel R, de Andrade G, Boudet AM, Teulières C (2003) An efficient procedure to stably introduce genes into an economically important pulp tree (Eucalyptus grandis x Eucalyptus urophylla). Transgenic Res 12:403–411

    PubMed  CAS  Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    PubMed  CAS  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    PubMed  CAS  Google Scholar 

  • Wagner A, Donaldson L, Ralph J (2012) Lignification and lignin manipulations in conifers. In: Jouanin L, Lapierre C (eds) Advances in botanical research. Academic Press, Burlington, pp 37–76

    Google Scholar 

  • Walter C, Fenning T (2004) Deployment of genetically-engineered trees in plantation forestry – an issue of concern? The science and politics of genetically modified tree plantations. In: Walter C, Carson M (eds) Plantation forest biotechnology for the 21st century. Research Signpost, Kerala, pp 423–446

    Google Scholar 

  • Walter C, Grace LJ, Wagner A, White DWR, Walden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468

    CAS  Google Scholar 

  • Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GM trees. Nat Biotechnol 28:656–658

    PubMed  CAS  Google Scholar 

  • Welch AJ, Stipanovic AJ, Maynard CA, Powell WA (2007) The effects of oxalic acid on transgenic Castanea dentata callus tissue expressing oxalate oxidase. Plant Sci 172:488–496

    CAS  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    PubMed  CAS  Google Scholar 

  • Ye X, Busov V, Zhao N, Meilan R, McDonnell LM, Coleman HD, Mansfield SD, Chen F, Li Y, Cheng ZM (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit Rev Plant Sci 30:415–434

    Google Scholar 

  • Yevtushenko DP, Misra S (2010) Efficient agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. x P. maximowiczii A. Henry. Plant Cell Rep 29:211–221

    PubMed  CAS  Google Scholar 

  • York WS, O’Neill MA (2008) Biochemical control of xylan biosynthesis – which end is up? Curr Opin Plant Biol 11:258–265

    PubMed  CAS  Google Scholar 

  • Yu X, Kikuchi A, Matsunaga E, Morishita Y, Nanto K, Sakurai N, Suzuki H, Shibata D, Shimada T, Watanabe KN (2009) Establishment of the evaluation system of salt tolerance on transgenic woody plants in the special netted-house. Plant Biotechnol 26:135–141

    CAS  Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Diao S, Tian Y, Su X (2011) Laboratory and field evaluation of the transgenic Populus alba x Populus glandulosa expressing double coleopteran-resistance genes. Tree Physiol 31:567–573

    PubMed  Google Scholar 

  • Zhong R, Ye Z-H (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    PubMed  CAS  Google Scholar 

  • Zhong R, Lee C, Ye Z-H (2010) Functional characterization of poplar wood-associated NAC domain transcription factors. Plant Physiol 152:1044–1055

    PubMed  CAS  Google Scholar 

  • Zhong R, McCarthy RL, Lee C, Ye ZH (2011) Dissection of the transcriptional program regulating secondary wall biosynthesis during wood formation in poplar. Plant Physiol 157:1452–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pamela Cheers for her editorial work. We apologize to all our colleagues whose scientific contributions could not be acknowledged in this chapter owing to space limitations. This work is supported by a grant from the Canadian Regulatory Systems for Biotechnology to AS and support from the EU-COST Action FP0905 entitled “Biosafety of forest transgenic trees: improving the scientific basis for safe tree development and implementation of EU policy directives”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armand Séguin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Séguin, A., Lachance, D., Déjardin, A., Leplé, JC., Pilate, G. (2014). Scientific Research Related to Genetically Modified Trees. In: Fenning, T. (eds) Challenges and Opportunities for the World's Forests in the 21st Century. Forestry Sciences, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7076-8_22

Download citation

Publish with us

Policies and ethics

Navigation