Green Chemistry Protocols: Specific Ionic Liquids as Recyclable Reagents, Catalysts, Solvents and Extractors

  • Conference paper
  • First Online:
Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe

Abstract

Low-temperature melting salts or ionic liquids (ILs) were determined to be useful as alternative solvents, catalytic media and simply catalysts in various processes of organic synthesis. In this paper reviewed the available literature and our own data on the synthesis, physical and chemical properties, and future uses of imidazolic ionic liquids in different kind of reactions. Ionic liquids form a two-phase system, which greatly facilitates the separation of products from the catalyst. In addition, they can be used repeatedly without any activity loss and without a need of regeneration. Another important advantage is represented by the strength (for some systems – superacidic) of metal-chlorinated ionic liquids, a property that allows for the transformation process to occur at low temperatures. These properties permit ionic liquids to be full participants in “alternative” chemical processes, even if we don’t take into account the productivity and selectivity gains presented in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbott AP, Capper G, Davies DL, Munro HL, Rasheed RK, Tambyrajah V (2001) Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem Commun 19:2010–2011

    Article  Google Scholar 

  2. Arora P, Zhang Z (2004) Battery separators. Chem Rev 104:4419–4462

    Article  CAS  Google Scholar 

  3. Bates ED, Mayton RD, Ntai I, Davis JH (2002) CO2 capture by a task-specific ionic liquid. J Am Chem Soc 124:926–927

    Article  CAS  Google Scholar 

  4. Baudequin C, Bregeon D, Levillain J, Guillen F, Plaquevent JC, Gaumont AC (2005) Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron Asymmetry 16:3921–3936

    Article  CAS  Google Scholar 

  5. Bica K, Gaertner P (2008) Metal-containing ionic liquids as efficient catalysts for hydroxymethylation in water. Eur J Org Chem 14:3453–3456

    Article  Google Scholar 

  6. Bolm C, Legros J, Le Paih J, Zani L (2004) Iron-catalyzed reactions in organic synthesis. Chem Rev 104:6217–6254

    Article  CAS  Google Scholar 

  7. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  8. Bosmann A, Schulz P, Wasserscheid P (2007) Enhancing task specific ionic liquids’ thermal stability by structural modification. Monatshefte fur Chimie 138:1159–1161

    Article  Google Scholar 

  9. Chahar M, Pandey PS (2008) Design of steroid-based imidazolium receptors for fluoride ion recognition. Tetrahedron 64:6488–6493

    Article  CAS  Google Scholar 

  10. Chaturvedi D (2011) Recent development on task specific ionic liquids. Curr Org Chem 15:1236–1257

    Article  CAS  Google Scholar 

  11. Davis JH (2004) Task-specific ionic liquids. Chem Lett 33:1072–1077

    Article  CAS  Google Scholar 

  12. Demberelnyamba D, Yoon SJ, Lee H (2004) New epoxide molten salts: key intermediates for designing novel ionic liquids. Chem Lett 33:560–651

    Article  CAS  Google Scholar 

  13. Ding J, Armstrong DW (2005) Chiral ionic liquids: synthesis and applications. Chirality 17:281–292

    Article  CAS  Google Scholar 

  14. Fazliev RR, Vafina GF, Galin FZ (2008) Ionic liquids catalyzed Diels-Alder reaction of levopimaric acid with quinones. Vestnik BGU 13:38

    Google Scholar 

  15. Fei Z, Geldbach TJ, Zhao D, Dyson PJ (2006) From dysfunction to bis-function: on the design and applications of functionalised ionic liquids. Chem Eur J 12:2122–2130

    Article  CAS  Google Scholar 

  16. Fei Z, Zhao D, Pieraccini D, Ang WH, Geldbach TJ, Scopelliti R, Chiappe C, Dyson PJ (2007) Development of nitrile-functionalized ionic liquids for C−C coupling reactions: implication of carbene and nanoparticle catalysts. Organometallics 26:1588–1598

    Article  CAS  Google Scholar 

  17. Freemantle M (2009) An introduction in ionic liquids. RSC publishing, Cambridge, p 281

    Google Scholar 

  18. Germani R, Mancini MV, Savelli G, Spreti N (2007) Mercury extraction by ionic liquids: temperature and alkyl chain length effect. Tetrahedron Lett 48:1767–1769

    Article  CAS  Google Scholar 

  19. Gholap AR, Venkatesan K, Daniel T, Lahoti RJ, Srinivasan KV (2004) Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation. Green Chem 3:147–150

    Article  Google Scholar 

  20. Giernoth R (2010) Task specific ionic liquids. Angew Chem Int Ed 49:2834–2839

    Article  CAS  Google Scholar 

  21. Grin’ko M, Kulchitskii V, Ungur N, Vlad PF (2006) Superacid cyclization of certain aliphatic sesquiterpene derivatives in ionic liquids. Chem Nat Comp 42:439–441

    Article  Google Scholar 

  22. Gu Y, Shi F, Deng Y (2004) Esterification of aliphatic acids with olefin promoted by Brønsted acidic ionic liquids. J Mol Catal A Chem 212:71–75

    Article  CAS  Google Scholar 

  23. Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227

    Article  CAS  Google Scholar 

  24. Haumann M, Riisager A (2008) Hydroformylation in room temperature ionic liquids (RTILs): catalyst and process developments. Chem Rev 108:1474–1497

    Article  CAS  Google Scholar 

  25. Holbrey JD, M Reichert W, Swatloski RP, Broker GA, Pitner WR, Seddon KR, Rogers RD (2002) Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem 4:407–413

    Article  CAS  Google Scholar 

  26. Holbrey JD, Turner MB, Reichert WM, Rogers RD (2003) New ionic liquids containing an appended hydroxyl functionality from the atom-efficient, one-pot reaction of 1-methylimidazole and acid with propylene oxide. Green Chem 6:731–736

    Article  Google Scholar 

  27. Horvath A (1994) Hofmann-type elimination in the efficient N-alkylation of azoles: imidazole and benzimidazole. Synthesis 1:102–106

    Article  Google Scholar 

  28. Howarth J, Hanlon K, Fayne D, Mccorma P (1997) Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous Lewis acids in the Diels-Alder reaction. Tetrahedron Lett 38:3097–3100

    Article  CAS  Google Scholar 

  29. Ikegami S, Hamamoto H (2009) Novel recycling system for organic synthesis via designer polymer-gel catalysts. Chem Rev 109:583–593

    Article  CAS  Google Scholar 

  30. Itoh H, Naka K, Chujo Y (2004) Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J Am Chem Soc 126:3026–3027

    Article  CAS  Google Scholar 

  31. Kasradze VG, Kukovinets OS, Salimova EV, Giliazetdinova II, Zvereva TI, Galin FZ (2007) Allylic oxidation in ILs. In: XVIII Mendeleev congress on general and applied chemistry. vol 1, p 251, Moscow

    Google Scholar 

  32. Kustov LM, Vasinat V, Ksenofontov VA (2004) Ionic liquids as catalitic media. Russ Chem J 6:13–35

    Google Scholar 

  33. Lee S (2006) Functionalized imidazolium salts for task-specific ionic liquids and their applications. Chem Commun 14:1049–1063

    Article  Google Scholar 

  34. Leveque JM, Luche JL, Petrier C, Roux R, Bonrath W (2002) An improved preparation of ionic liquids by ultrasound. Green Chem 4:357–360

    Article  CAS  Google Scholar 

  35. Li P, Wang L, Wang M, Zhang Y (2008) Polymer-immobilized pyrrolidine-based chiral ionic liquids as recyclable organocatalysts for asymmetric Michael additions to nitrostyrenes under solvent-free reaction conditions. Eur J Org Chem 2008:1157–1160

    Article  Google Scholar 

  36. Macaev FZ, Stingaci EP, Munteanu V (2006) Synthesis and properties of 1-(3-cyanopropyl)-3-propyl-1H-imidazol-3-ium tetrafluoroborate. In: 4th Euroasian meeting on heterocyclic chemistry. Thessaloniki, Greece, pp 269–270

    Google Scholar 

  37. Macaev F, Stingaci E, Munteanu V (2006) New ionic liquids for synthesis of the α-methylene-β-hydroxycarbonyl compounds. International symposium on advanced science in organic chemistry. Sudak, Ucraine. C-102

    Google Scholar 

  38. Macaev F, Stingaci E, Munteanu V, Pogrebnoi SI (2006) New catalyst of the Biginelly reaction. In: II international conference “Chemistry, structure and function of bimolecules” Minsk, PR-88

    Google Scholar 

  39. Macaev F, Munteanu V, Stingaci E, Barba A, Pogrebnoi S (2007a) New room temperature liquids: synthesis and characterization. Chem J Mold 2:119–122

    Google Scholar 

  40. Macaev F, Gavrilov K, Muntyanu V, Styngach E, Vlad L, Bets L, Pogrebnoi S, Barba A (2007b) Synthesis of 4-substituted 2-carenes in novel imidazolium ionic liquids. Chem Nat Comp 43:136–139

    Article  CAS  Google Scholar 

  41. Macaev F, Stingaci E, Munteanu V, Pogrebnoi SI, Ribkovskaia Z, Barba А (2007c) New catalyst of the Biginelly reaction. Russ J Org Chem 43:1518–1520

    Google Scholar 

  42. Macaev F, Stingaci E, Munteanu V (2008) Design of new “ionic liquids” for liquid/liquid extraction of persistent toxic substances. In: Soil chemical pollution, risk assessment, remediation and security. Springer Science+Business Media B.V, Dordrecht, pp 223–228

    Chapter  Google Scholar 

  43. Macaev FZ, Vlad LA, Bets LP, Malinovskii ST, Gavrilov KN, Gdanets M (2010) Addition products of chlorosulfonylisocyanate to (+)-3-carene and α-pinene enantiomers. Chem Nat Comp 46:528–533

    Article  Google Scholar 

  44. Marcus Y (2004) Standard partial molar volumes of electrolytes and ions in nonaqueous solvents. Chem Rev 104:3405–3452

    Article  CAS  Google Scholar 

  45. Mastrorilli P, Nobile CF, Gallo V, Suranna GP, Farinola G (2002) Rhodium(I) catalyzed polymerization of phenylacetylene in ionic liquids. J Mol Catal A Chem 184:73–78

    Article  CAS  Google Scholar 

  46. Mi X, Luo S, Xu H, Zhang L, Cheng JP (2006) Hydroxyl ionic liquid (HIL)-immobilized quinuclidine for Baylis-Hillman catalysts: synergistic effect of ionic liquids as organocatalyst supports. Tetrahedron 62:2537–2544

    Article  CAS  Google Scholar 

  47. Minakata S, Komatsu M (2009) Organic reactions on silica in water. Chem Rev 109:711–724

    Article  CAS  Google Scholar 

  48. Mu Z, Liu W, Zhang S, Zhou F (2004) Functional room-temperature ionic liquids as lubricants for an aluminium-on-steel system. Chem Lett 33:524–525

    Article  CAS  Google Scholar 

  49. Munteanu V, Stingaci E, Macaev F (2007) New potentially intermediates for aminosacharides. All Russian scientific colloquium together with young scientific workshop. Russia, Ufa, p 117

    Google Scholar 

  50. Munteanu V, Stingaci E, Pogrebnoi S, Barba A, Macaev F (2007) Nitril-functionalized ionic liquids catalyst for Morita-Baylis-Hillman reaction. In: The II international conference of the chemical society of the republic of Moldova “achievements and perspectives of modern chemistry”. Chisinau, Moldova, p 131

    Google Scholar 

  51. Namboodiri VV, Varma RS (2002) An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett 43:5381–5383

    Article  CAS  Google Scholar 

  52. Pelrine BP, Comolli AG, Lee LK (2000) Iron-based ionic liquid catalysts for hydroprocessing carbonaceous feeds. Patent US № 6139723

    Google Scholar 

  53. Pernak J, Czepukowich A (2001) Ionic liquids and their antielectrostatic properties. Ind Eng Chem Res 40:2379–2383

    Article  CAS  Google Scholar 

  54. Plaquevent JC, Levillain J, Guillen F, Malhiac C, Gaumont AC (2008) Ionic liquids: new targets and media for α-amino acid and peptide chemistry. Chem Rev 108:5035–5060

    Article  CAS  Google Scholar 

  55. Putilova ES, Krishtal GN, Jdankina GM, Troitskii NA, Zvotin SG (2005) Per-halogensborates,- phosphates and aluminates alkylaminies and alkylimidazoles as catalysts of the Biginelly reaction. Russ J Org Chem 41:524–528

    Article  Google Scholar 

  56. Qiao K, Yokoyama C (2004) Novel acidic ionic liquids catalytic systems for Friedel-crafts alkylation of aromatic compounds with alkenes. Chem Lett 33:472–473

    Article  CAS  Google Scholar 

  57. Sargorovschi V, Styngach E, Macaev F (2008) Specific “ionic liquids” as new organocatalysts of Biginelli reaction. Chem J Mold 3:95–97

    Google Scholar 

  58. Sargorovschi V, Sucman N, Iudin T, Duca D, Stingaci E, Prodius D, Pogrebnoi S, Macaev F (2010) Ionic liquids derivative of 1H-imidazole as novel reagents, catalysts. Chem J Mold 5:36–56

    Google Scholar 

  59. Toma S, Meciarova M, Sebesta R (2009) Are ionic liquids suitable media for organocatalytic reactions? Eur J Org Chem 3:321–327

    Article  Google Scholar 

  60. Trindade AF, Gois PMP, Afonso CAM (2009) Recyclable stereoselective catalysts. Chem Rev 109:418–514

    Article  CAS  Google Scholar 

  61. Vallee C, Valerio C, Chauvin Y, Niccolai GP, Basset JM, Santini CC, Galland JC, Didillon B (2004) The catalytic isomerization reactions of 2-methyl-3-butenenitrile into 3-pentenenitrile in ionic liquids. J Mol Catal A Chem 214:71–81

    Article  CAS  Google Scholar 

  62. Varma RS, Namboodiri VV (2001) An expeditious solvent-free route to ionic liquids using microwaves. Chem Commun 7:643–644

    Article  Google Scholar 

  63. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  64. Wasserscheid P, Hilgers C, Gordon CM, Muldoon MJ, Dunkin IR (2001) Ionic liquids: polar, but weakly coordinating solvents for the first biphasic oligomerisation of ethene to higher α-olefins with cationic Ni complexes. Chem Commun 13:1186–1187

    Article  Google Scholar 

  65. Wasserscheid P, Driessen-Hölscher B, Van Hal R, Steffens HC, Zimmermann J (2003) New functionalised ionic liquids from Michael-type reactions – a chance for combinatorial ionic liquid development. Chem Commun 16:2038–2039

    Article  Google Scholar 

  66. Zaderenko P, Gil MS, Ballesteros P, Cerdan S (1994) Synthesis and regioselective hydrolysis of 2-(imidazol-1-yl)succinic esters. J Org Chem 59:6268–6273

    Article  CAS  Google Scholar 

  67. Zhao D, Fei Z, Scopelliti R, Dyson P (2004a) Synthesis and characterization of ionic liquids incorporating the nitrile functionality. J Inorg Chem 43:2197–2205

    Article  CAS  Google Scholar 

  68. Zhao G, Jiang T, Gao H, Han B, Huang H, Sun D (2004b) Mannich reaction using acidic ionic liquids as catalysts and solvents. Green Chem 6:75–77

    Article  CAS  Google Scholar 

  69. Zhao H, **a S, Ma PJ (2005) Chem Technol Biotechnol 80:1089–1096

    Article  CAS  Google Scholar 

  70. Znang Q, Ni B, Headley AD (2008) Asymmetric Michael addition reactions of aldehydes with nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron 64:5091–5097

    Article  Google Scholar 

Download references

Acknowledgments

I thank to all members of my team: researchers, PhDs, technicians and students for their suggestions have made a much better our research. Their names are listed in the references. Financial support of NATO is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fliur Z. Macaev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Macaev, F.Z. (2013). Green Chemistry Protocols: Specific Ionic Liquids as Recyclable Reagents, Catalysts, Solvents and Extractors. In: Simeonov, L., Macaev, F., Simeonova, B. (eds) Environmental Security Assessment and Management of Obsolete Pesticides in Southeast Europe. NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6461-3_25

Download citation

Publish with us

Policies and ethics

Navigation