Molecular Electric, Magnetic, and Optical Properties

  • Living reference work entry
  • First Online:
Handbook of Computational Chemistry

Abstract

The theory and applications of ab initio methods for the calculation of molecular properties are reviewed. A wide range of properties characterizing the interactions of molecules with external or internal sources of static or dynamic electromagnetic fields (including nonlinear properties and those related to nuclear and electron spins) is considered. Emphasis is put on the properties closely connected to the parameters used to describe experimentally observed spectra. We discuss the definitions of these properties, their relation to experiment, and give some remarks regarding various computational aspects. Theory provides a unified approach to the analysis of molecular properties in terms of average values, transition moments, and linear and nonlinear responses to the perturbing fields. Several literature examples are given, demonstrating that theoretical calculations are becoming easier, and showing that computed ab initio molecular properties are in many cases more accurate than those extracted from experimentally observed data.

We dedicate this work to the memory of our longtime friend Andrzej Sadlej.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Abragam, A. (1961). The principles of nuclear magnetic resonance. Oxford: Oxford University Press.

    Google Scholar 

  • Anet, F. A. L., O’Leary, D. J., Wade, C. G., & Johnson, R. D. (1990). NMR relaxation by the antisymmetric component of the shielding tensor: A longer transverse than longitudinal relaxation time. Chemical Physics Letters, 171, 401.

    Article  CAS  Google Scholar 

  • Arbuznikov, A. V., Vaara, J., & Kaupp, M. (2004). Relativistic spin-orbit effects on hyperfine coupling tensors by density-functional theory. Journal of Chemical Physics, 120, 2127.

    Article  CAS  Google Scholar 

  • Aucar, G. A. (2008). Understanding NMR J-couplings by the theory of polarization propagators. Concepts in Magnetic Resonance Part A, 32, 88.

    Article  CAS  Google Scholar 

  • Auer, A. A., Gauss, J., & Stanton, J. F. (2003). Quantitative prediction of gas-phase 13C nuclear magnetic shielding constants. Journal of Chemical Physics, 118, 10407.

    Article  CAS  Google Scholar 

  • Autschbach, J. (2007). Density functional theory applied to calculating optical and spectroscopic properties of metal complexes: NMR and optical activity. Coordination Chemistry Reviews, 251, 1796.

    Article  CAS  Google Scholar 

  • Autschbach, J. (2008). Two-component relativistic hybrid density functional computations of nuclear spin–spin coupling tensors using Slater-type basis sets and density-fitting techniques. Journal of Chemical Physics, 129, 094105. Erratum: 130, 209901 (2009).

    Article  CAS  Google Scholar 

  • Bak, K. L., Gauss, J., Helgaker, T., Jørgensen, P., & Olsen, J. (2000). The accuracy of molecular dipole moments in standard electronic structure calculations. Chemical Physics Letters, 319, 563.

    Article  CAS  Google Scholar 

  • Baker, J., Buckingham, A. D., Fowler, P. W., Steiner, E., Lazzeretti, P., & Zanasi, R. (1989). The electrostatic model of field gradients at nuclei – an application to hydrogen-bonded complexes of HCl. Journal of the Chemical Society, Faraday Transactions 2, 85, 901.

    Article  CAS  Google Scholar 

  • Barone, V. (1995). Structure, magnetic properties and reactivities of open-shell species from density functional and self-consistent hybrid methods. In D. P. Chong (Ed.), Recent advances in density functional methods (Vol. 1, p. 287). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Barron, L. D. (2004). Molecular light scattering and optical activity. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Barron, L. D., & Vrbancich, J. (1984). Magneto-chiral birefringence and dichroism. Molecular Physics, 51, 715.

    Article  CAS  Google Scholar 

  • Benedikt, U., Auer, A. A., & Jensen, F. (2008). Optimization of augmentation functions for correlated calculations of spin-spin coupling constants and related properties. Journal of Chemical Physics, 129, 064111.

    Article  CAS  Google Scholar 

  • Benkova, Z., Sadlej, A. J., Oakes, R. E., & Bell, S. E. J. (2005). Reduced-size polarized basis sets for calculations of molecular electric properties. I. The basis set generation. Journal of Computational Chemistry, 26, 145.

    Article  CAS  Google Scholar 

  • Bethe, H., & Salpeter, E. (1957). Quantum mechanics of one- and two-electron atoms. New York: Academic.

    Book  Google Scholar 

  • Bishop, D. M. (1990). Molecular vibrational and rotational motion in static and dynamic electric fields. Reviews of Modern Physics, 62, 343.

    Article  CAS  Google Scholar 

  • Bishop, D. M. (1995). Dispersion formula for the average first hyperpolarizability β. Journal of Chemical Physics, 95, 5489.

    Article  Google Scholar 

  • Bishop, D. M., & Pipin, J. (1989). Improved dynamic hyperpolarizabilities and field-gradient polarizabilities for helium. Journal of Chemical Physics, 91, 3549.

    Article  CAS  Google Scholar 

  • Bogaard, M. P., & Orr, B. J. (1975). Electric dipole polarizabilities of atoms and molecules. In A. D. Buckingham (Ed.), International review of science, physical chemistry, molecular structure, and properties, series 2 (Vol. 2, p. 149). London: Butterworths.

    Google Scholar 

  • Böhm, M. C., Ramirez, R., & Schulte, J. (2007). On the influence of vibrational modes and intramolecular isomerization processes on the NMR parameters of bullvalene: A Feynman path integral – Ab initio investigation. Chemical Physics, 342, 1.

    Article  CAS  Google Scholar 

  • Bolvin, H. (2006). An alternative approach to the g-matrix: Theory and applications. ChemPhysChem, 7, 1575.

    Article  CAS  Google Scholar 

  • Bonin, K. D., & Kresin, V. V. (1997). Electric-dipole polarizabilities of atoms, molecules and clusters. Singapore: World Scientific.

    Book  Google Scholar 

  • Born, M. (1918). Elektronentheorie des natürlichen optischen Drehungsvermögens isotroper und anisotroper Flüssigkeiten. Annalen der Physik, 55, 177.

    Article  CAS  Google Scholar 

  • Buckingham, A. D. (1959). Direct method of measuring molecular quadrupole moments. Journal of Chemical Physics, 30, 1580.

    Article  CAS  Google Scholar 

  • Buckingham, A. D. (1967). Permanent and induced molecular moments and long-range intermolecular forces. Advances in Chemical Physics, 12, 107.

    CAS  Google Scholar 

  • Buckingham, A. D., & Disch, R. L. (1963). The quadrupole moment of the carbon dioxide molecule. Proceedings of the Royal Society A, 273, 275.

    Article  CAS  Google Scholar 

  • Buckingham, A. D., & Longuet-Higgins, H. C. (1968). The quadrupole moments of dipolar molecules. Molecular Physics, 14, 63.

    Article  CAS  Google Scholar 

  • Buckingham, A. D., & Love, I. (1970). Theory of the anisotropy of nuclear spin coupling. Journal of Magnetic Resonance, 2, 338.

    CAS  Google Scholar 

  • Buckingham, A. D., & Pople, J. A. (1956). A theory of magnetic double refraction. Proceedings of the Physical Society. Section B, 69, 1133.

    Article  Google Scholar 

  • Buckingham, A. D., & Stephens, P. J. (1966). Magnetic optical activity. Annual Review of Physical Chemistry, 17, 399.

    Article  CAS  Google Scholar 

  • Buckingham, A. D., Pyykkö, P., Robert, J. B., & Wiesenfeld, L. (1982). Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited. Molecular Physics, 46, 177.

    Article  CAS  Google Scholar 

  • Champagne, B., Perpète, E. A., Jacquemin, D., van Gisbergen, S. J. A., Baerends, E. J., Soubra-Ghaoui, C., Robins, K. A., & Kirtman, B. (2000). Assessment of conventional density functional schemes for computing the dipole moment and (hyper)polarizabilities of push–pull π-conjugated systems. Journal of Physical Chemistry A, 104, 4755.

    Article  CAS  Google Scholar 

  • Christiansen, O., Koch, H., & Jørgensen, P. (1995). The second-order approximate coupled cluster singles and doubles model CC2. Chemical Physics Letters, 243, 409.

    Article  CAS  Google Scholar 

  • Christiansen, O., Jørgensen, P., & Hättig, C. (1998). Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy. International Journal of Quantum Chemistry, 68, 1.

    Article  CAS  Google Scholar 

  • Christiansen, O., Coriani, S., Gauss, J., Hättig, C., Jørgensen, P., Pawłowski, F., & Rizzo, A. (2006). Accurate nonlinear optical properties for small molecules. In M. G. Papadopoulos, A. J. Sadlej, & J. Leszczynski (Eds.), Non-linear optical properties of matter: From molecules to condensed phases (p. 51). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Ciofini, I., Adamo, C., & Barone, V. (2004). Complete structural and magnetic characterization of biological radicals in solution by an integrated quantum mechanical approach: Glycyl radical as a case study. Journal of Chemical Physics, 121, 6710.

    Article  CAS  Google Scholar 

  • Coriani, S., Hättig, C., & Rizzo, A. (1999a). The electric-field-gradient-induced birefringence of helium, neon, argon, and SF 6. Journal of Chemical Physics, 111, 7828.

    Article  CAS  Google Scholar 

  • Coriani, S., Jørgensen, P., Rizzo, A., Ruud, K., & Olsen, J. (1999b). Ab initio determinations of magnetic circular dichroism. Chemical Physics Letters, 300, 61.

    Article  CAS  Google Scholar 

  • Craig, D. P., & Thirunamachandran, T. (1984). Molecular quantum electrodynamics. An introduction to radiation molecule interaction. Mineola: Dover.

    Google Scholar 

  • Cronstrand, P., Luo, Y., Norman, P., & Agren, H. (2003). Ab initio calculations of three-photon absorption. Chemical Physics Letters, 375, 233.

    Article  CAS  Google Scholar 

  • Cybulski, S. M., & Bishop, D. M. (1994). Calculations of magnetic properties. V. Electron-correlated hypermagnetizabilities (Cotton–Mouton effect) for H2, N2, HF, and CO. Journal of Chemical Physics, 101, 424.

    Article  CAS  Google Scholar 

  • De Boni, L., Toro, C., & Hernández, F. E. (2008). Synchronized double L-scan technique for the simultaneous measurement of polarization-dependent two-photon absorption in chiral molecules. Optics Letters, 33, 2958.

    Article  Google Scholar 

  • Drake, G. W. F. (2006). High precision calculations for helium. In G. W. F. Drake (Ed.), Springer handbook of atomic, molecular and optical physics (p. 199). New York: Springer.

    Chapter  Google Scholar 

  • Dyall, K. G., & Faegri, K., Jr. (2007). Introduction to relativistic quantum chemistry. USA: Oxford University Press.

    Google Scholar 

  • Enevoldsen, T., Oddershede, J., & Sauer, S. P. A. (1998). Correlated calculations of indirect nuclear spin-spin coupling constants using second-order polarization propagator approximations: SOPPA and SOPPA(CCSD). Theoretical Chemistry Accounts, 100, 275.

    Article  CAS  Google Scholar 

  • Engström, M., Minaev, B., Vahtras, O., & Agren, H. (1998). Linear response calculations of electronic g-factors and spin-rotational coupling constants for diatomic molecules with a triplet ground state. Chemical Physics, 237, 149.

    Article  Google Scholar 

  • Faraday, M. (1846a). XLIX. Experimental researches in electricity. Nineteenth series. Philosophical Magazine, 28, 294.

    Google Scholar 

  • Faraday, M. (1846b). Experimental researches in electricity. Nineteenth series. Philosophical Transactions of the Royal Society of London, 136, 1.

    Article  Google Scholar 

  • Fernandez, B., Jørgensen, P., Byberg, J., Olsen, J., Helgaker, T., & Jensen, H. J. A. (1992). Spin polarization in restricted electronic structure theory: Multiconfiguration self-consistent-field calculations of hyperfine coupling constants. Journal of Chemical Physics, 97, 3412.

    Article  CAS  Google Scholar 

  • Fernandez, B., Christiansen, O., Jørgensen, P., Byberg, J., Gauss, J., & Ruud, K. (1997). Hyperfine and nuclear quadrupole coupling in chlorine and fluorine dioxides. Journal of Chemical Physics, 106, 1847.

    Article  CAS  Google Scholar 

  • Flygare, W. H. (1974). Magnetic interactions in molecules and an analysis of molecular electronic charge distribution from magnetic parameters. Chemical Reviews, 74, 653.

    Article  CAS  Google Scholar 

  • Fowler, P. W., & Buckingham, A. D. (1989). The magnetic hyperpolarizability anisotropy of some two-electron systems. Molecular Physics, 67, 681.

    Article  CAS  Google Scholar 

  • Fowler, P. W., Lazzeretti, P., Steiner, E., & Zanasi, R. (1989). The theory of Sternheimer shielding in molecules in external fields. Chemical Physics, 133, 221.

    Article  CAS  Google Scholar 

  • Fowler, P. W., Hunt, K. L. C., Kelly, H. M., & Sadlej, A. J. (1994). Multipole polarizabilities of the helium atom and collision-induced polarizabilities of pairs containing He or H atoms. Journal of Chemical Physics, 100, 2932.

    Article  CAS  Google Scholar 

  • Fukui, H., Baba, T., & Inomata, H. (1996). Calculation of nuclear magnetic shieldings. X. Relativistic effects. Journal of Chemical Physics, 105, 3175. Erratum: 106, 2987 (1997).

    Article  CAS  Google Scholar 

  • Gauss, J., & Stanton, J. F. (1995). Coupled-cluster calculations of nuclear magnetic resonance chemical shifts. Journal of Chemical Physics, 103, 3561.

    Article  CAS  Google Scholar 

  • Gauss, J., & Stanton, J. F. (2002). Electron-correlated approaches for the calculation of NMR chemical shifts. Advances in Chemical Physics, 123, 355.

    CAS  Google Scholar 

  • Gauss, J., Ruud, K., & Helgaker, T. (1996). Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. Journal of Chemical Physics, 105, 2804.

    Article  CAS  Google Scholar 

  • Gauss, J., Ruud, K., & Kállay, M. (2007). Gauge-origin independent calculation of magnetizabilities and rotational g tensors at the coupled-cluster level. Journal of Chemical Physics, 127, 074101.

    Article  CAS  Google Scholar 

  • Geurts, P. J. M., Bouten, P. C. P., & van der Avoird, A. (1980). Hartree–Fock–Slater–LCAO calculations on the Cu(II) bis(dithiocarbamate) complex; Magnetic coupling parameters and optical spectrum. Journal of Chemical Physics, 73, 1306.

    Article  CAS  Google Scholar 

  • Giorgio, E., Viglione, R., Zanasi, R., & Rosini, C. (2004). Ab initio calculation of optical rotatory dispersion (ORD) curves: A simple and reliable approach to the assignment of the molecular absolute configuration. Journal of the American Chemical Society, 126, 12968.

    Article  CAS  Google Scholar 

  • Hansen, A. E., & Bouman, T. D. (1980). Natural chiroptical spectroscopy: Theory and computations. Advances in Chemical Physics, 44, 545.

    Article  CAS  Google Scholar 

  • Harding, M. E., Lenhart, M., Auer, A. A., & Gauss, J. (2008a). Quantitative prediction of gas-phase 19F nuclear magnetic shielding constants. Journal of Chemical Physics, 128, 244111.

    Article  CAS  Google Scholar 

  • Harding, M. E., Metzroth, T., Gauss, J., & Auer, A. A. (2008b). Parallel calculation of CCSD and CCSD(T) analytic first and second derivatives. Journal of Chemical Theory and Computation, 4, 64.

    Article  CAS  Google Scholar 

  • Harriman, J. E. (1978). Theoretical foundations of electron spin resonance. New York: Academic.

    Google Scholar 

  • Hättig, C., & Jørgensen, P. (1998). Dispersion coefficients for first hyperpolarizabilities using coupled cluster quadratic response theory. Theoretical Chemistry Accounts, 100, 230.

    Article  Google Scholar 

  • Hättig, C., Christiansen, O., & Jørgensen, P. (1998a). Multiphoton transition moments and absorption cross sections in coupled cluster response theory employing variational transition moment functionals. Journal of Chemical Physics, 108, 8331.

    Article  Google Scholar 

  • Hättig, C., Christiansen, O., & Jørgensen, P. (1998b). Coupled cluster response calculations of two-photon transition probability rate constants for helium, neon and argon. Journal of Chemical Physics, 108, 8355.

    Article  Google Scholar 

  • Helgaker, T., Ruud, K., Bak, K. L., Jørgensen, P., & Olsen, J. (1994). Vibrational Raman optical-activity calculations using London atomic orbitals. Faraday Discussions, 99, 165.

    Article  CAS  Google Scholar 

  • Helgaker, T., Jaszuński, M., & Ruud, K. (1997). Ab initio calculation of the NMR shielding and indirect spin–spin coupling constants of fluoroethylene. Molecular Physics, 91, 881.

    Article  CAS  Google Scholar 

  • Helgaker, T., Jaszuński, M., & Ruud, K. (1999). Ab initio methods for the calculation of NMR shielding and indirect spin–spin coupling constants. Chemical Reviews, 99, 293.

    Article  CAS  Google Scholar 

  • Helgaker, T., Jørgensen, P., & Olsen, J. (2000). Molecular electronic-structure theory. Chichester: Wiley.

    Book  Google Scholar 

  • Helgaker, T., Jaszuński, M., & Pecul, M. (2008). The quantum-chemical calculation of NMR indirect spin-spin coupling constants. Progress in Nuclear Magnetic Resonance Spectroscopy, 53, 249.

    Article  CAS  Google Scholar 

  • Hess, B. A., Marian, C. M., Wahlgren, U., & Gropen, O. (1996). A mean-field spin-orbit method applicable to correlated wavefunctions. Chemical Physics Letters, 251, 365.

    Article  CAS  Google Scholar 

  • Jackowski, K., Wilczek, M., Pecul, M., & Sadlej, J. (2000). Nuclear magnetic shielding and spin-spin coupling of 1,2–13C-enriched acetylene in gaseous mixtures with xenon and carbon dioxide. Journal of Physical Chemistry A, 104, 5955. Erratum: 104, 9806 (2000).

    Article  CAS  Google Scholar 

  • Jackowski, K., Makulski, W., & Wasylishen, R. E. (2011). To be published.

    Google Scholar 

  • Jackson, D. A. (1998). Classical electrodynamics (3rd ed.). New York: Wiley.

    Google Scholar 

  • Jameson, C. J. (1987). Spin–spin coupling. In J. Mason (Ed.), Multinuclear NMR (p. 89). New York: Plenum Press.

    Chapter  Google Scholar 

  • Jameson, C. J., Jameson, A. K., Oppusunggu, D., Wille, S., Burrell, P. M., & Mason, J. (1981). 15N nuclear magnetic shielding scale from gas phase studies. Journal of Chemical Physics, 74, 81.

    Article  CAS  Google Scholar 

  • Jamieson, M. J. (1991). A time-dependent Hartree–Fock study of dispersion in the Cotton–Mouton effect for the helium isoelectronic sequence. Chemical Physics Letters, 183, 9.

    Article  CAS  Google Scholar 

  • Jansík, B., Rizzo, A., & Agren, H. (2005). Response theory calculations of two-photon circular dichroism. Chemical Physics Letters, 414, 461.

    Article  CAS  Google Scholar 

  • Jansík, B., Rizzo, A., & Agren, H. (2007). Ab initio study of the two-photon circular dichroism in chiral natural amino acids. The Journal of Physical Chemistry B, 111, 446. Erratum: 111, 2409 (2007).

    Article  CAS  Google Scholar 

  • Jaszuński, M. (2004). Ab initio study of the shielding and spin–spin coupling constants in ClF 3, PF 3 and PF 5. Chemical Physics Letters, 385, 122.

    Article  CAS  Google Scholar 

  • Jaszuński, M., & Jackowski, K. (2008). Nuclear magnetic dipole moments from NMR spectra – quantum chemistry and experiment. In S. G. Karshenboim (Ed.), Precision physics of simple atoms and molecules (Lecture notes in physics, Vol. 745, p. 233). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Jaszuński, M., & Ruud, K. (2001). Spin–spin coupling constants in C2H2. Chemical Physics Letters, 336, 473.

    Article  Google Scholar 

  • Jaszuński, M., Jørgensen, P., Rizzo, A., Ruud, K., & Helgaker, T. (1994). MCSCF calculations of Verdet constants. Chemical Physics Letters, 222, 263.

    Article  Google Scholar 

  • Jensen, F. (2006). The basis set convergence of spin-spin coupling constants calculated by density functional methods. Journal of Chemical Theory and Computation, 2, 1360.

    Article  CAS  Google Scholar 

  • Jensen, F. (2008). Basis set convergence of nuclear magnetic shielding constants calculated by density functional methods. Journal of Chemical Theory and Computation, 4, 719.

    Article  CAS  Google Scholar 

  • Kacprzak, S., & Kaupp, M. (2004). Electronic g-tensors of semiquinones in photosynthetic reaction centers. A density functional study. The Journal of Physical Chemistry B, 108, 2464.

    Article  CAS  Google Scholar 

  • Kállay, M., & Gauss, J. (2004). Analytic second derivatives for general coupled-cluster and configuration-interaction models. Journal of Chemical Physics, 120, 6841.

    Article  CAS  Google Scholar 

  • Kalugin, N. K., Kleindienst, P., & Wagnière, G. H. (1999). The magnetochiral birefringence in diamagnetic solutions and in uniaxial crystals. Chemical Physics, 248, 105.

    Article  CAS  Google Scholar 

  • Kaupp, M. (2004). Relativistic effects on NMR chemical shifts. In P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 2. Applications (p. 552). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Keal, T. W., & Tozer, D. J. (2003). The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. Journal of Chemical Physics, 119, 3015.

    Article  CAS  Google Scholar 

  • Kellö, V., & Sadlej, A. J. (1998). The quadrupole moment of the 39K and 41K nuclei from microwave data for KF and KCl. Chemical Physics Letters, 292, 403.

    Article  Google Scholar 

  • Kendall, R. A., Dunning, T. H., Jr., & Harrison, R. J. (1992). Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. Journal of Chemical Physics, 96, 6796.

    Article  CAS  Google Scholar 

  • Kerr, J. (1875a). XL. A new relation between electricity and light: Dielectrified media birefringent. Philosophical Magazine, 50, 337.

    Google Scholar 

  • Kerr, J. (1875b). LIV. A new relation between electricity and light: Dielectrified media birefringent (second paper). Philosophical Magazine, 50, 446.

    Google Scholar 

  • Kielich, S. (1972). General molecular theory and electric field effects in isotropic dielectrics. In M. Davies (Ed.), Specialist periodical report, dielectric and related molecular processes (Vol. 1, p. 192). London: Chemical Society.

    Chapter  Google Scholar 

  • Kirpekar, S., Oddershede, J., & Jensen, H. J. A. (1995). Relativistic corrections to molecular dynamic dipole polarizabilities. Journal of Chemical Physics, 103, 2983.

    Article  CAS  Google Scholar 

  • Kirtman, B., Champagne, B., & Luis, J. M. (2000). Efficient treatment of the effect of vibrations on electrical, magnetic, and spectroscopic properties. Journal of Computational Chemistry, 21, 1572.

    Article  CAS  Google Scholar 

  • Kleinman, D. A. (1972). Nonlinear dielectric polarization in optical media. Physical Review, 126, 1977.

    Article  Google Scholar 

  • Koch, H., Christiansen, O., Jørgensen, P., Sánchez de Merás, A. M. J., & Helgaker, T. (1997). The CC3 model: An iterative coupled cluster approach including connected triples. Journal of Chemical Physics, 106, 1808.

    Article  CAS  Google Scholar 

  • Kosegi, S., Gordon, M. S., Schmidt, M. W., & Matsunaga, N. (1995). Main group effective nuclear charges for spin-orbit calculations. Journal of Physical Chemistry, 99, 12764.

    Article  Google Scholar 

  • Krivdin, L. B., & Contreras, R. H. (2007). Recent advances in theoretical calculations of indirect spin-spin coupling constants. In Annual reports on NMR spectroscopy (Vol. 61, p. 133).

    Google Scholar 

  • Kukolich, S. G. (1969). Measurement of the molecular g values in H2O and D2O and hyperfine structure in H2O. Journal of Chemical Physics, 50, 3751.

    Article  CAS  Google Scholar 

  • Kussmann, J., & Ochsenfeld, C. (2007). Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree–Fock and density-functional theory. Journal of Chemical Physics, 127, 054103.

    Article  CAS  Google Scholar 

  • Kutzelnigg, W. (1980). Theory of magnetic-susceptibilities and NMR chemical shifts in terms of localized quantities. Israel Journal of Chemistry, 19, 193.

    Article  CAS  Google Scholar 

  • Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.

    Article  CAS  Google Scholar 

  • Langevin, P. (1910). Sur les biréfringences électrique et magnétique. Radium, Paris, 7, 249.

    Article  Google Scholar 

  • Langhoff, P. W., & Karplus, M. (1970). Application of Pad´e approximants to dispesion force and optical polarizability computations. In G. A. Baker Jr. & J. L. Gammel (Eds.), The Padé approximant in theoretical physics (pp. 41–97). New York: Academic.

    Chapter  Google Scholar 

  • Langhoff, P. W., Gordon, R. G., & Karplus, M. (1971). Comparisons of dispersion force bounding methods with applications to anisotropic interactions. Journal of Chemical Physics, 55, 2126.

    Article  CAS  Google Scholar 

  • Lazzeretti, P., & Zanasi, R. (1996). Molecular magnetic properties via formal annihilation of paramagnetic contribution to electronic current density. International Journal of Quantum Chemistry, 60, 249.

    Article  CAS  Google Scholar 

  • Lazzeretti, P., Malagoli, M., & Zanasi, R. (1994). Computational approach to molecular magnetic properties by continuous transformation of the origin of the current density. Chemical Physics Letters, 220, 299.

    Article  CAS  Google Scholar 

  • Löwdin, P.-O., & Goscinski, O. (1999). Studies in perturbation theory. XIV. Treatment of constants of motion, degeneracies and symmetry properties by means of multidimensional partitioning. International Journal of Quantum Chemistry, 5, 685.

    Article  Google Scholar 

  • Lushington, G. H., & Grein, F. (1996). The electronic g-tensor of MgF: A comparison of ROHF and MRD–CI level results. International Journal of Quantum Chemistry, 60, 1679.

    Article  Google Scholar 

  • Lutnæs, O. B., Teale, A. M., Helgaker, T., Tozer, D. J., Ruud, K., & Gauss, J. (2009). Benchmarking density-functional-theory calculations of rotational g tensors and magnetizabilities using accurate coupled-cluster calculations. Journal of Chemical Physics, 131, 144104.

    Article  CAS  Google Scholar 

  • Maldonado, A. F., & Aucar, G. A. (2009). The UKB prescription and the heavy atom effects on the nuclear magnetic shielding of vicinal heavy atoms. Physical Chemistry Chemical Physics, 11, 5615.

    Article  CAS  Google Scholar 

  • Manninen, P., Lantto, P., Vaara, J., & Ruud, K. (2003). Perturbational ab initio calculations of relativistic contributions to nuclear magnetic resonance shielding tensors. Journal of Chemical Physics, 119, 2623.

    Article  CAS  Google Scholar 

  • Marchesan, D., Coriani, S., Forzato, C., Nitti, P., Pitacco, G., & Ruud, K. (2005). Optical rotation calculation of a highly flexible molecule: The case of paraconic acid. Journal of Physical Chemistry A, 109, 1449.

    Article  CAS  Google Scholar 

  • Mason, J. (1993). Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants at the University of Maryland, College Park, July 1992. Solid State Nuclear Magnetic Resonance, 2, 285.

    Article  CAS  Google Scholar 

  • McClain, W. M. (1974). Two-photon molecular spectroscopy. Accounts of Chemical Research, 7, 129.

    Article  CAS  Google Scholar 

  • McWeeny, R. (1992). Methods of molecular quantum mechanics (2nd ed.). London: Academic.

    Google Scholar 

  • Mennucci, B., & Cammi, R. (2007). Continuum solvation models in chemical physics: From theory to applications. Chichester: Wiley.

    Book  Google Scholar 

  • Michl, J., & Thulstrup, E. W. (1995). Spectroscopy with polarized light. Weinheim: VCH.

    Google Scholar 

  • Minaev, B., Loboda, O., Rinkevicius, Z., Vahtras, O., & Agren, H. (2003). Fine and hyperfine structure in three low-lying 3Σ + states of molecular hydrogen. Molecular Physics, 101, 2335.

    Article  CAS  Google Scholar 

  • Misquitta, A. J., Podeszwa, R., Jeziorski, B., & Szalewicz, K. (2005). Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. Journal of Chemical Physics, 123, 214103.

    Article  CAS  Google Scholar 

  • Møgelhøj, A., Aidas, K., Mikkelsen, K. V., & Kongsted, J. (2008). Solvent effects on the nitrogen NMR shielding and nuclear quadrupole coupling constants in 1-methyltriazoles. Chemical Physics Letters, 460, 129.

    Article  CAS  Google Scholar 

  • Møgelhøj, A., Aidas, K., Mikkelsen, K. V., Sauer, S. P. A., & Kongsted, J. (2009). Prediction of spin-spin coupling constants in solution based on combined density functional theory/molecular mechanics. Journal of Chemical Physics, 130, 134508.

    Article  CAS  Google Scholar 

  • Moss, R. E. (1973). Advanced molecular quantum mechanics. London: Chapman and Hall.

    Book  Google Scholar 

  • Müller, T., Wiberg, K. B., & Vaccaro, P. H. (2000). Cavity ring-down polarimetry (CRDP): A new scheme for probing circular birefringence and circular dichroism in the gas phase. Journal of Physical Chemistry A, 104, 5959.

    Article  CAS  Google Scholar 

  • Neese, F. (2003). Metal and ligand hyperfine couplings in transition metal complexes: The effect of spin–orbit coupling as studied by coupled perturbed Kohn–Sham theory. Journal of Chemical Physics, 118, 3939.

    Article  CAS  Google Scholar 

  • Neese, F., & Solomon, E. I. (2003). Interpretation and calculation of spin-Hamiltonian parameters in transition metal complexes. In J. S. Miller & M. Drillon (Eds.), Magnetism: Molecules to materials IV (p. 345). Weinheim: Wiley.

    Chapter  Google Scholar 

  • Nielsen, E. S., Jørgensen, P., & Oddershede, J. (1980). Transition moments and dynamic polarizabilities in a second order polarization propagator approach. Journal of Chemical Physics, 73, 6238.

    Article  CAS  Google Scholar 

  • Noodleman, L. (1981). Valence bond description of antiferromagnetic coupling in transition metal dimers. Journal of Chemical Physics, 74, 5737.

    Article  CAS  Google Scholar 

  • Noodleman, L., & Baerends, E. J. (1984). Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-Xα valence bond theory. Journal of the American Chemical Society, 106, 2316.

    Article  CAS  Google Scholar 

  • Norman, P., Jiemchooroj, A., & Sernelius, B. E. (2003). Polarization propagator calculations of the polarizability tensor at imaginary frequencies and long-range interactions for the noble gases and n-alkanes. Journal of Chemical Physics, 118, 9167.

    Article  CAS  Google Scholar 

  • Ochsenfeld, C., Kussmann, J., & Koziol, F. (2004). Ab initio NMR spectra for molecular systems with a thousand and more atoms: A linear-scaling method. Angewandte Chemie International Edition, 43, 4485.

    Article  CAS  Google Scholar 

  • Oddershede, J., Geertsen, J., & Scuseria, G. E. (1988). Nuclear spin-spin coupling constant of hydrogen molecule with deuterium (HD). Journal of Physical Chemistry, 92, 3056.

    Article  CAS  Google Scholar 

  • Olsen, J., & Jørgensen, P. (1985). Linear and nonlinear response functions for an exact state and for an MCSCF state. Journal of Chemical Physics, 82, 3235.

    Article  CAS  Google Scholar 

  • Olsen, J., & Jørgensen, P. (1995). Time-dependent response theory with applications to self-consistent field and multiconfigurational self-consistent field wave functions. In D. R. Yarkony (Ed.), Modern electronic structure theory (p. 857). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Parkinson, W. A., & Oddershede, J. (1997). Response function analysis of magnetic optical rotation. International Journal of Quantum Chemistry, 64, 599.

    Article  CAS  Google Scholar 

  • Paterson, M. J., Christiansen, O., Pawłowski, F., Jørgensen, P., Hättig, C., Helgaker, T., & Sałek, P. (2006). Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory. Journal of Chemical Physics, 124, 054322.

    Article  CAS  Google Scholar 

  • Pawłowski, F., Jørgensen, P., & Hättig, C. (2004). Gauge invariance of oscillator strengths in the approximate coupled cluster triples model CC3. Chemical Physics Letters, 389, 413.

    Article  CAS  Google Scholar 

  • Pecul, M., Ruud, K., Rizzo, A., & Helgaker, T. (2004). Conformational effects on the optical rotation of alanine and proline. Journal of Physical Chemistry A, 108, 4269.

    Article  CAS  Google Scholar 

  • Pedersen, T. B., Koch, H., Boman, L., & Sánchez de Merás, A. M. J. (2004). Origin invariant calculation of optical rotation without recourse to London orbitals. Chemical Physics Letters, 393, 319.

    Article  CAS  Google Scholar 

  • Perera, S. A., Sekino, H., & Bartlett, R. J. (1994a). Coupled-cluster calculations of indirect nuclear coupling constants: The importance of non-Fermi contact contributions. Journal of Chemical Physics, 101, 2186.

    Article  CAS  Google Scholar 

  • Perera, S. A., Watts, J. D., & Bartlett, R. J. (1994b). A theoretical study of hyperfine coupling constants. Journal of Chemical Physics, 100, 1425.

    Article  CAS  Google Scholar 

  • Pluta, T., & Sadlej, A. J. (1998). HyPol basis sets for high-level-correlated calculations of electric dipole hyperpolarizabilities. Chemical Physics Letters, 297, 391.

    Article  CAS  Google Scholar 

  • Podeszwa, R., & Szalewicz, K. (2008). Physical origins of interactions in dimers of polycyclic aromatic hydrocarbons. Physical Chemistry Chemical Physics, 10, 2735.

    Article  CAS  Google Scholar 

  • Raynes, W. T. (1992). Letter to editor. Magnetic Resonance in Chemistry, 30, 686.

    Article  CAS  Google Scholar 

  • Raynes, W. T. (1996). Electric field effects on shielding constants. In D. M. Grant & R. K. Harris (Eds.), Encyclopaedia of NMR (p. 1846). New York: Wiley.

    Google Scholar 

  • Raynes, W. T., McVay, R., & Wright, S. J. (1989). An improved 13C nuclear shielding scale. Journal of the Chemical Society, Faraday Transactions 2, 85, 759.

    Article  CAS  Google Scholar 

  • Reiher, M., & Wolf, A. (2009). Relativistic quantum chemistry. Weinheim: Wiley.

    Book  Google Scholar 

  • Rinkevicius, Z., Vaara, J., Telyatnyk, L., & Vahtras, O. (2003). Calculations of nuclear magnetic shielding in paramagnetic molecules. Journal of Chemical Physics, 118, 2550.

    Article  CAS  Google Scholar 

  • Rinkevicius, Z., Telyatnyk, L., Vahtras, O., & Agren, H. (2004). Density functional theory for hyperfine coupling constants with the restricted-unrestricted approach. Journal of Chemical Physics, 121, 7614.

    Article  CAS  Google Scholar 

  • Rinkevicius, Z., de Almeda, K. J., Oprea, C. I., Vahtras, O., Agren, H., & Ruud, K. (2008). Degenerate perturbation theory for electronic g tensors: Leading-order relativistic effects. Journal of Chemical Theory and Computation, 4, 1810.

    Article  CAS  Google Scholar 

  • Rizzo, A., & Coriani, S. (2005). Birefringences: A Challenge for both theory and experiment. Advances in Quantum Chemistry, 50, 143.

    Article  CAS  Google Scholar 

  • Rizzo, A., & Gauss, J. (2002). Shielding polarizabilities calculated at the coupled-cluster singles and doubles level augmented by a perturbative treatment of triple excitations. Journal of Chemical Physics, 116, 869.

    Article  CAS  Google Scholar 

  • Rizzo, C., Rizzo, A., & Bishop, D. M. (1997). The Cotton–Mouton effect in gases: Experiment and theory. International Reviews in Physical Chemistry, 16, 81.

    Article  CAS  Google Scholar 

  • Rizzo, A., Jansík, B., Pedersen, T. B., & Agren, H. (2006). Origin invariant approaches to the calculation of two-photon circular dichroism. Journal of Chemical Physics, 125, 064113.

    Article  CAS  Google Scholar 

  • Rizzo, A., Frediani, L., & Ruud, K. (2007). An ab initio investigation of the Buckingham birefringence of furan, thiophene, and selenophene in cyclohexane solution. Journal of Chemical Physics, 127, 164321.

    Article  CAS  Google Scholar 

  • Rudziński, A., Puchalski, M., & Pachucki, K. (2009). Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He. Journal of Chemical Physics, 130, 244102.

    Article  CAS  Google Scholar 

  • Ruiz de Azúa, M. C., Melo, J. I., & Giribet, C. G. (2003). Orbital contributions to relativistic corrections of the NMR nuclear magnetic shielding tensor originated in scalar field-dependent operators. Molecular Physics, 101, 3103.

    Article  CAS  Google Scholar 

  • Ruud, K., & Helgaker, T. (1997). The magnetizability, rotational g tensor, and quadrupole moment of PF 3 revisited. Chemical Physics Letters, 264, 17.

    Article  CAS  Google Scholar 

  • Ruud, K., Helgaker, T., Bak, K. L., Jørgensen, P., & Olsen, J. (1995). Accurate magnetizabilities of the isoelectronic series BeH −, BH, and CH +. The MCSCF-GIAO approach. Chemical Physics, 195, 157.

    Article  CAS  Google Scholar 

  • Ruud, K., Vaara, J., Lounila, J., & Helgaker, T. (1998). Vibrationally averaged magnetizabilities and rotational g tensors of the water molecule. Chemical Physics Letters, 297, 467.

    Article  CAS  Google Scholar 

  • Ruud, K., Taylor, P. R., & Jaszuński, M. (2000). Comment on “On the magnetic susceptibility of fluorine”. Journal of Physical Chemistry A, 104, 168.

    Article  CAS  Google Scholar 

  • Ruud, K., Astrand, P.-O., & Taylor, P. R. (2001a). Zero-point vibrational effects on proton shieldings: Functional-group contributions from ab initio calculations. Journal of the American Chemical Society, 123, 4826.

    Article  CAS  Google Scholar 

  • Ruud, K., Taylor, P. R., & Astrand, P.-O. (2001b). Zero-point vibrational effects on optical rotation. Chemical Physics Letters, 337, 217.

    Article  CAS  Google Scholar 

  • Ruud, K., Stephens, P. J., Devlin, F. J., Taylor, P. R., Cheeseman, J. R., & Frisch, M. J. (2003). Coupled-cluster calculations of optical rotation. Chemical Physics Letters, 373, 606.

    Article  CAS  Google Scholar 

  • Sadlej, A. J. (1988). Medium-size polarized basis sets for high-level correlated calculations of molecular electric properties. Collection of Czechoslovak Chemical Communications, 53, 1995.

    Article  CAS  Google Scholar 

  • Sasagane, K., Aiga, F., & Itoh, R. (1993). Higher-order response theory based on the quasienergy derivatives: The derivation of the frequency-dependent polarizabilities and hyperpolarizabilities. Journal of Chemical Physics, 99, 3738.

    Article  CAS  Google Scholar 

  • Saue, T. (2002). Post Dirac–Fock–methods – Properties. In P. Schwerdtfeger (Ed.), Relativistic electronic structure theory. Part 1. Fundamentals (p. 332). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Sauer, S. P. A. (1997). Second-order polarization propagator approximation with coupled-cluster singles and doubles amplitudes – SOPPA(CCSD): The polarizability and hyperpolarizability of Li . Journal of Physics B: Atomic, Molecular and Optical Physics, 30, 3773.

    Article  CAS  Google Scholar 

  • Sauer, S. P. A., Enevoldsen, T., & Oddershede, J. (1993). Paramagnetism of closed shell diatomic hydrides with six valence electrons. Journal of Chemical Physics, 98, 9748.

    Article  CAS  Google Scholar 

  • Sauer, S. P. A., Jensen, H. J. A., & Ogilvie, J. F. (2005). Quantum-chemical calculations of radial functions for rotational and vibrational g factors, electric dipolar moment and adiabatic corrections to the potential energy for analysis of spectra of HeH +. Advances in Quantum Chemistry, 48, 319.

    Article  Google Scholar 

  • Schatz, P. N., & McCaffery, A. J. (1969). Faraday effect. Quarterly Review of the Chemical Society, 23, 552.

    Article  CAS  Google Scholar 

  • Schindler, M., & Kutzelnigg, W. (1982). Theory of magnetic susceptibilities and NMR chemical shifts in terms of localized quantities. II. Application to some simple molecules. Journal of Chemical Physics, 76, 1919.

    Article  CAS  Google Scholar 

  • Seth, M., Ziegler, T., Banerjee, A., Autschbach, J., van Gisbergen, S. J. A., & Baerends, E. J. (2004). Calculation of the A term of magnetic circular dichroism based on time dependent-density functional theory I. Formulation and implementation. Journal of Chemical Physics, 120, 10942.

    Article  CAS  Google Scholar 

  • Shelton, D. P., & Rice, J. E. (1994). Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase. Chemical Reviews, 94, 3.

    Article  CAS  Google Scholar 

  • Smith, S. A., Palke, W. E., & Gerig, J. T. (1992). The Hamiltonians of NMR. Part I. Concepts in Magnetic Resonance, 4, 107.

    Article  CAS  Google Scholar 

  • Snyder, P. A., Atanasova, S., & Hansen, R. W. C. (2004). Ethylene. Experimental evidence for new assignments of electronic transitions in the π → π * energy region. Absorption and magnetic circular dichroism measurements with synchrotron radiation. Journal of Physical Chemistry A, 108, 4194.

    Article  CAS  Google Scholar 

  • Solheim, H., Ruud, K., Coriani, S., & Norman, P. (2008). Complex polarization propagator calculations of magnetic circular dichroism spectra. Journal of Chemical Physics, 128, 094103.

    Article  CAS  Google Scholar 

  • Stanton, J. F., & Bartlett, R. J. (1993). The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties. Journal of Chemical Physics, 98, 7029.

    Article  CAS  Google Scholar 

  • Stanton, J. F., Gauss, J., & Christiansen, O. (2001). Equilibrium geometries of cyclic SiC3 isomers. Journal of Chemical Physics, 114, 2993.

    Article  CAS  Google Scholar 

  • Stephens, P. J. (1976). Magnetic circular dichroism. Advances in Chemical Physics, 35, 197.

    CAS  Google Scholar 

  • Stephens, P. J., Devlin, F. J., Cheeseman, J. R., & Frisch, M. J. (2001). Calculation of optical rotation using density functional theory. Journal of Physical Chemistry A, 105, 5356.

    Article  CAS  Google Scholar 

  • Sundholm, D., & Gauss, J. (1997). Isotope and temperature effects on nuclear magnetic shieldings and spin-rotation constants calculated at the coupled-cluster level. Molecular Physics, 92, 1007.

    Article  CAS  Google Scholar 

  • Tellgren, E. I., Soncini, A., & Helgaker, T. (2008). Nonperturbative ab initio calculations in strong magnetic fields using London orbitals. Journal of Chemical Physics, 129, 154114.

    Article  CAS  Google Scholar 

  • Thorvaldsen, A. J., Ruud, K., Rizzo, A., & Coriani, S. (2008). Analytical calculations of frequency-dependent hypermagnetizabilities and Cotton–Mouton constants using London atomic orbitals. Journal of Chemical Physics, 129, 164110.

    Article  CAS  Google Scholar 

  • Tinoco, I. (1975). Two-photon circular dichroism. Journal of Chemical Physics, 62, 1006.

    Article  CAS  Google Scholar 

  • Tozer, D. J., & Handy, N. C. (1998). Improving virtual Kohn–Sham orbitals and eigenvalues: Application to excitation energies and static polarizabilities. Journal of Chemical Physics, 109, 10180.

    Article  CAS  Google Scholar 

  • Vaara, J., & Pyykkö, P. (2003). Relativistic, nearly basis-set-limit nuclear magnetic shielding constants of the rare gases He–Rn: A way to absolute nuclear magnetic resonance shielding scales. Journal of Chemical Physics, 118, 2973.

    Article  CAS  Google Scholar 

  • Vaara, J., Ruud, K., Vahtras, O., Agren, H., & Jokisaari, J. (1998). Quadratic response calculations of the electronic spin-orbit contribution to nuclear shielding tensors. Journal of Chemical Physics, 109, 1212.

    Article  Google Scholar 

  • Vaara, J., Ruud, K., & Vahtras, O. (1999). Second- and third-order spin-orbit contributions to nuclear shielding tensors. Journal of Chemical Physics, 111, 2900.

    Article  CAS  Google Scholar 

  • Vaara, J., Jokisaari, J., Wasylishen, R. E., & Bryce, D. L. (2002). Spin–spin coupling tensors as determined by experiment and computational chemistry. Progress in Nuclear Magnetic Resonance Spectroscopy, 41, 233.

    Article  CAS  Google Scholar 

  • Vahtras, O., Agren, H., Jørgensen, P., Jensen, H. J. A., Helgaker, T., & Olsen, J. (1992a). Multiconfigurational quadratic response functions for singlet and triplet perturbations: The phosphorescence lifetime of formaldehyde. Journal of Chemical Physics, 97, 9178.

    Article  CAS  Google Scholar 

  • Vahtras, O., Agren, H., Jørgensen, P., Jensen, H. J. A., Padkjær, S. B., & Helgaker, T. (1992b). Indirect nuclear spin–spin coupling constants from multiconfiguration linear response theory. Journal of Chemical Physics, 96, 6120.

    Article  CAS  Google Scholar 

  • Vahtras, O., Agren, H., Jørgensen, P., Jensen, H. J. A., Helgaker, T., & Olsen, J. (1992c). Spin–orbit coupling constants in a multiconfiguration linear response approach. Journal of Chemical Physics, 96, 2118.

    Article  CAS  Google Scholar 

  • Vahtras, O., Loboda, O., Minaev, B., Agren, H., & Ruud, K. (2002). Ab initio calculations of zero-field splitting parameters. Chemical Physics, 279, 133.

    Article  CAS  Google Scholar 

  • van Lenthe, E., Wormer, P. E. S., & van der Avoird, A. (1997). Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects. Journal of Chemical Physics, 107, 2488.

    Article  Google Scholar 

  • Verhoeven, J., & Dymanus, A. (1970). Magnetic properties and molecular quadrupole tensor of the water molecule by beam-maser Zeeman spectroscopy. Journal of Chemical Physics, 52, 3222.

    Article  CAS  Google Scholar 

  • Visscher, L., & Saue, T. (2000). Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation. Journal of Chemical Physics, 113, 3996.

    Article  CAS  Google Scholar 

  • Wasylishen, R. E., & Bryce, D. L. (2002). A revised experimental absolute magnetic shielding scale for oxygen. Journal of Chemical Physics, 117, 10061.

    Article  CAS  Google Scholar 

  • Wiberg, K. B., Wang, Y. G., Wilson, S. M., Vaccaro, P. H., & Cheeseman, J. R. (2006). Sum-over-states calculation of the specific rotations of some substituted oxiranes, chloropropionitrile, ethane, and norbornenone. Journal of Physical Chemistry A, 110, 13995.

    Article  CAS  Google Scholar 

  • Wigglesworth, R. D., Raynes, W. T., Kirpekar, S., Oddershede, J., & Sauer, S. P. A. (2000). Nuclear spin-spin coupling in the acetylene isotopomers calculated from ab initio correlated surfaces for 1J(C, H), 1J(C, C), 2J(C, H), and 3J(H, H). Journal of Chemical Physics, 112, 3735. Erratum: 114, 9192 (2001).

    Article  CAS  Google Scholar 

  • Willets, A., Rice, J., Burland, D. M., & Shelton, D. P. (1992). Problems in the comparison of theoretical and experimental hyperpolarizabilities. Journal of Chemical Physics, 97, 7590.

    Article  Google Scholar 

  • Woon, D. E., & Dunning, T. H., Jr. (1994). Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. Journal of Chemical Physics, 100, 2975.

    Article  CAS  Google Scholar 

  • Yanai, T., Tew, D. P., & Handy, N. C. (2004). A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chemical Physics Letters, 393, 51.

    Article  CAS  Google Scholar 

  • Zanasi, R., Lazzeretti, P., Malagoli, M., & Piccinini, F. (1995). Molecular magnetic properties within continuous transformations of origin of the current density. Journal of Chemical Physics, 102, 7150.

    Article  CAS  Google Scholar 

  • Zuber, G., & Hug, W. (2004). Rarefied basis sets for the calculation of optical tensors. 1. The importance of gradients on hydrogen atoms for the Raman scattering tensor. Journal of Physical Chemistry A, 108, 2108.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Stephan Sauer and to Dr. Olav Vahtras for many helpful comments. We are indebted to Dr. Anna Kaczmarek-Kędziera for help in the editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Jaszuński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Jaszuński, M., Rizzo, A., Ruud, K. (2015). Molecular Electric, Magnetic, and Optical Properties. In: Leszczynski, J. (eds) Handbook of Computational Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6169-8_11-2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6169-8_11-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Online ISBN: 978-94-007-6169-8

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation