Bacteriocins: Natural Weapons for Control of Food Pathogens

  • Chapter
Management of Microbial Resources in the Environment

Abstract

Research on antimicrobial peptides is continuously growing because of the possibilities of applications they offer in different domains including food safety, human medicine, and plant biocontrol (phytosanitary).

The present chapter is aiming to shed lights on diversity, function and structure of ribosomally synthesized antimicrobial peptides from Gram positive bacteria usually referred to as bacteriocins. In bacterial systems, competition is often driven by the production of bacteriocins; narrow spectrum proteinaceous toxins that serve to kill closely related species providing the producer better access to limited resources. Despite high levels of bacteriocin diversity, these proteins share many general characteristics. They are generally high molecular weight protein antibiotics that kill closely related strains or species. The bacteriocin gains entry into the target cell by recognizing specific cell surface receptors and then kills the cell by forming ion-permeable channels in the cytoplasmic membrane, by nonspecific degradation of cellular DNA, by inhibition of protein synthesis through the specific cleavage of 16s rRNA, or by cell lysis. In this chapter, the limits and performances of production will be presented. Further clear evidences on their aptitudes to master growth of microbes will be discussed as well as the main achievements and perspectives of their applications in food, environment and medical domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abriouel H, Valdivia E, Gálvez A, Maqueda M (1998) Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Appl Environ Microbiol 64:4623–4626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Acuña L, Morero RD, Bellomio A (2010) Development of wide spectrum hybrid bacteriocins for food biopreservation. Food Bioprocess Technol 4:1029–1049

    Article  Google Scholar 

  • Ananou S, Valdivia E, Martínez-Bueno M, Gálvez A, Maqueda M (2004) Effect of combined physico-chemical preservatives on enterocin AS-48 activity against the enterotoxigenic Staphylococcus aureus CECT 976 strain. J Appl Microbiol 97:48–56

    Article  CAS  PubMed  Google Scholar 

  • Ananou S, Garriga M, Hugas M, Maqueda M, Martínez-Bueno M, Gálvez A, Valdivia E (2005a) Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int J Food Microbiol 103:179–190

    Article  CAS  PubMed  Google Scholar 

  • Ananou S, Maqueda M, Martínez-Bueno M, Gálvez A, Valdivia E (2005b) Control of Staphylococcus aureus in sausages by enterocin AS-48. Meat Sci 71:549–576

    Article  CAS  PubMed  Google Scholar 

  • Anastasiou R, Georgalaki M, Manolopoulou E, Kandarakis I, De Vuyst L, Tsakalidou E (2007) The performance of Streptococcus macedonicus ACA-DC 198 as starter culture in Kasseri cheese production. Int Dairy J 17:208–217

    Article  CAS  Google Scholar 

  • Angulo FJ, Getz J, Taylor JP, Hendricks KA, Hatheway CL, Barth SS, Solomon HM, Larson AE, Johnson EA, Nickey LN, Reis AA (1998) A large outbreak of botulism: the hazardous baked potato. J Infect Dis 178:172–177

    Article  CAS  PubMed  Google Scholar 

  • Annamalai N, Manivasagan P, Balasubramanian T, Vijayalakshmi S (2009) Enterocin from Enterococcus faecium isolated from mangrove environment. Afr J Biotechnol 8:6311–6316

    Article  CAS  Google Scholar 

  • Aymerich MT, Garriga M, Ylla J, Vallier J, Monfort JM, Hugas M (2000) Application of enterocins as biopreservatives against Listeria innocua in meat products. J Food Prot 63:721–726

    CAS  PubMed  Google Scholar 

  • Aymerich MT, Garriga M, Costa S, Monfort JM, Hugas M (2002) Prevention of ropiness in cooked pork by bacteriocinogenic cultures. Int Dairy J 12:239–246

    Article  Google Scholar 

  • Balaban N, Rasooly A (2000) Staphylococcal enterotoxins. Int J Food Microbiol 61:1–10

    Article  CAS  PubMed  Google Scholar 

  • Bari ML, Ukuku DO, Kawasaki T, Inatsu Y, Isshiki K, Kawamoto S (2005) Combined efficacy of nisin and pediocin with sodium lactate, citric acid, phytic acid, and potassium sorbate and EDTA in reducing the Listeria monocytogenes population of inoculated fresh-cut produce. J Food Prot 68:1381–1387

    CAS  PubMed  Google Scholar 

  • Ben Omar N, Abriouel H, Lucas R, Martínez-Cañamero M, Guyot JP, Gálvez A (2006) Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. Int J Food Microbiol 112:44–50

    Article  CAS  Google Scholar 

  • Benech RO, Kheadr EE, Lacroix C, Fliss I (2003) Impact of nisin producing culture and liposome-encapsulated nisin on ripening of Lactobacillus added-Cheddar cheese. J Dairy Sci 86:1895–1909

    Article  CAS  PubMed  Google Scholar 

  • Benkerroum N, Sandine WE (1988) Inhibitory action of nisin against Listeria monocytogenes. J Dairy Sci 71:3237–3245

    Article  CAS  PubMed  Google Scholar 

  • Benkerroum N, Oubel H, Mimoun LB (2002) Behavior of Listeria monocytogenes and Staphylococcus aureus in yogurt fermented with a bacteriocin-producing thermophilic starter. J Food Prot 65:799–805

    CAS  PubMed  Google Scholar 

  • Beuchat LR (1996) Pathogenic microorganisms associated with fresh produce. J Food Prot 59:204–216

    Google Scholar 

  • Boziaris IS, Humpheson L, Adams MR (1998) Effect of nisin on heat injury and inactivation of Salmonella enteritidis PT4. Int J Food Microbiol 43:7–13

    Article  CAS  PubMed  Google Scholar 

  • Branen JK, Davidson PM (2004) Enhancement of nisin, lysozyme, and monolaurin antimicrobial activities by ethylenediaminetetraacetic acid and lactoferrin. Int J Food Microbiol 90:63–74

    Article  CAS  PubMed  Google Scholar 

  • Breukink E, Wiedemann I, van Kraaij C, Kuipers OP, Sahl H, de Kruijff B (1999) Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 5448:2361–2364

    Article  Google Scholar 

  • Brown JL, Ross T, McMeekin TA, Nichols PD (1997) Acid habituation of Escherichia coli and the potential role of cyclopropane fatty acids in low pH tolerance. Int J Food Microbiol 37:163–173

    Article  CAS  PubMed  Google Scholar 

  • Buyong N, Kok J, Luchansky JB (1998) Use of a genetically enhanced, pediocin-producing starter culture, Lactococcus lactis subsp. lactis MM217, to control Listeria monocytogenes in cheddar cheese. Appl Environ Microbiol 64:4842–4845

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calderón-Miranda ML, Barbosa-Cánovas GV, Swanson BG (1999) Inactivation of Listeria innocua in skim milk by pulsed electric fields and nisin. Int J Food Microbiol 51:19–30

    Article  PubMed  Google Scholar 

  • Callewaert R, Hugas M, De Vuyst L (2000) Competitiveness and bacteriocin production of enterococci in the production of Spanish-style dry fermented sausages. Int J Food Microbiol 57:33–42

    Article  CAS  Google Scholar 

  • Carneiro de Melo AM, Cassar CA, Miles RJ (1998) Trisodium phosphate increases sensitivity of gram-negative bacteria to lysozyme and nisin. J Food Prot 61:839–843

    CAS  PubMed  Google Scholar 

  • Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature survey. Crit Rev Microbiol 28:281–370

    Article  CAS  PubMed  Google Scholar 

  • Cheville AM, Arnold KW, Buchrieser C, Cheng CM, Kaspar CW (1996) rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 62:1822–1824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cintas LM, Casaus P, Håvarstein LS, Hernández PE, Nes IF (1997) Biochemical and genetic characterization of enterocin P, a novel sec-dependent bacteriocin from Enterococcus faecium P13 with a broad antimicrobial spectrum. Appl Environ Microbiol 63:4321–4330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cintas LM, Casaus P, Fernandez MF, Hernandez PE (1998) Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and food borne pathogenic bacteria. Food Microbiol 15:289–298

    Article  CAS  Google Scholar 

  • Coderre PE, Somkuti GA (1999) Cloning and expression of the pediocin operon in Streptococcus thermophilus and other lactic fermentation bacteria. Curr Microbiol 39:295–301

    Article  CAS  PubMed  Google Scholar 

  • Cole K, Farnell MB, Donoghue AM, Stern NJ, Svetoch EA, Eruslanov BN, Volodina LI, Kovalev YN, Perelygin VV, Mitsevich EV, Mitsevich IP, Levchuk VP, Pokhilenko VD, Borzenkov VN, Svetoch OE, Kudryavtseva TY, Reyes-Herrera I, Blore PJ, Solis de los Santos F, Donoghue DJ (2006) Bacteriocins reduce Campylobacter colonization and alter gut morphology in turkey poults. Poult Sci 85:1570–1575

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: develo** innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  PubMed  Google Scholar 

  • Cutter CN, Siragusa GR (1995) Treatments with nisin and chelators to reduce Salmonella and Escherichia coli on beef. J Food Prot 58:1028–1030

    CAS  Google Scholar 

  • Davies EA, Delves-Broughton J (1999) Nisin. In: Robinson R, Batt C, Patel P (eds) Encyclopedia of food microbiology. Academic, London, pp 191–198

    Chapter  Google Scholar 

  • De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    Article  CAS  PubMed  Google Scholar 

  • De Vuyst L, Vandamme EJ (1994) Bacteriocins of lactic acid bacteria: microbiology, genetics and applications. Blackie Academic & Professional, London

    Book  Google Scholar 

  • Delves-Broughton J, Williams GC, Wilkinson S (1992) The use of bacteriocin, nisin, as a preservative in pasteurized liquid whole egg. Lett Appl Microbiol 15:133–136

    Article  CAS  Google Scholar 

  • Delves-Broughton J, Blackburn P, Evans RJ, Hugenholtz J (1996) Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek 69:193–202

    Article  CAS  PubMed  Google Scholar 

  • Doan CH, Davidson PM (2000) Microbiology of potatoes and potato products: a review. J Food Prot 63:668–683

    CAS  PubMed  Google Scholar 

  • EFSA (2007) Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA1. The EFSA J 587:1–16

    Google Scholar 

  • EFSA (2010) The community summary report on trends and sources of zoonoses and zoonotic agents and food-borne outbreaks in the European Union in 2008. J EFSA 8(1):1496 [pp. 410]. doi:10. 2903/j.efsa.2010.1496

    Google Scholar 

  • Eijsink VG, Skeie M, Middelhoven PH, Brurberg MB, Nes IF (1998) Comparative studies of Class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ennahar S, Assobhel O, Hasselmann C (1998) Inhibition of Listeria monocytogenes in a smear-surface soft cheese by Lactobacillus plantarum WHE 92, a pediocin AcH producer. J Food Prot 61:186–191

    CAS  PubMed  Google Scholar 

  • Fang TJ, Lin LW (1994a) Growth of Listeria monocytogenes and Pseudomonas fragi on cooked pork in a modified atmosphere packaging/nisin combination system. J Food Prot 57:479–485

    Google Scholar 

  • Fang TJ, Lin LW (1994b) Inactivation of Listeria monocytogenes on raw pork treated with modified atmosphere packaging and nisin. J Food Drug Anal 2:189–200

    CAS  Google Scholar 

  • Farías ME, de Ruiz Holgado AP, Sesma F (1994) Bacteriocin production by lactic acid bacteria isolated from regional cheeses: inhibition of foodborne pathogens. J Food Prot 57:1013–1015

    Google Scholar 

  • Farías ME, Nuñez de Kairuz M, Sesma F, Palacios J, de Ruiz Holgado AP, Oliver G (1999) Inhibition of Listeria monocytogenes by the bacteriocin enterocin CRL35 during goat cheese making. Milchwissenschaft 54:30–32

    Google Scholar 

  • Ferreira A, Canal N, Morales D, Fuentefria D, Corção G (2007) Characterization of enterocins produced by Enterococcus mundtii isolated from humans feces. Braz Arch Biol Technol 50:249–258

    Google Scholar 

  • Foulquié Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  PubMed  Google Scholar 

  • Gálvez A, Lucas-López R, Abriouel H, Valdivia E, Ben Omar N (2008) Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol 28:125–152

    Article  CAS  PubMed  Google Scholar 

  • Gálvez A, Valdivia E, Abriouel H, Camafeita E, Mendez E, Martinez-Bueno M, Maqueda M (1998) Isolation and characterization of enterocin EJ97, a bacteriocin produced by Enterococcus faecalis EJ97. Arch Microbiol 171(1):59–65

    Article  CAS  PubMed  Google Scholar 

  • Gänzle MG, Weber S, Hammes WP (1999) Effect of ecological factors on the inhibitory spectrum and activity of bacteriocins. Int J Food Microbiol 46:207–217

    Article  PubMed  Google Scholar 

  • García P, Rodríguez L, Rodríguez A, Martínez B (2010) Food biopreservation: promising strategies using bacteriocins, bacteriophages and endolysins. Trends Food Sci Technol 21:373–382

    Article  CAS  Google Scholar 

  • Ge J, ** W, Song G, Du C, Ling H, Sun X (2009) Paracin 1.7, a bacteriocin produced by Lactobacillus paracasei HD1.7 isolated from Chinese cabbage sauerkraut, a traditional Chinese fermented vegetable food. Wei sheng wu xue bao. Acta Microbiol Sin 49:609–616

    CAS  Google Scholar 

  • Georgalaki MD, Van den Berghe E, Kritikos D, Devreese B, Van Beeumen J, Kalantzopoulos G, De Vuyst L, Tsakalidou E (2002) Macedocin, a food-grade lantibiotic produced by Streptococcus macedonicus ACA-DC 198. Appl Environ Microbiol 68:5891–5903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill AO, Holley RA (2000a) Inhibition of bacterial growth on ham and bologna by lysozyme, nisin and EDTA. Food Res Int 33:83–90

    Article  CAS  Google Scholar 

  • Gill AO, Holley RA (2000b) Surface application of lysozyme, nisin, and EDTA to inhibit spoilage and pathogenic bacteria on ham and bologna. J Food Prot 63:1338–1346

    CAS  PubMed  Google Scholar 

  • Giraffa G (1995) Enterococcal bacteriocins: their potential as anti- Listeria factors in dairy technology. Food Microbiol 12:291–299

    Article  CAS  Google Scholar 

  • Glass KA, Loeffelholz JM, Ford JP, Doyle MP (1992) Fate of Escherichia coli O157:H7 as affected by pH or sodium chloride and in fermented, dry sausage. Appl Environ Microbiol 58:2513–2516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gould GW (1995) Homeostatic mechanisms during food preservation by combined methods. In: Welti-Chanes J, Barbosa-Canovas G (eds) Food preservation by moisture control – fundamentals and applications. Technomic Publishing Co., Lancaster, pp 397–410

    Google Scholar 

  • Grande MJ, Lucas R, Valdivia E, Abriouel H, Maqueda M, Martínez-Cañamero M, Ben Omar N, Gálvez A (2005) Stability of enterocin AS-48 in fruit and vegetable juices. J Food Prot 68:2085–2094

    CAS  PubMed  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H, Valdivia E, Ben Omar N, Maqueda M, Martínez-Bueno M, Martínez-Cañamero M, Gálvez A (2006) Inhibition of toxicogenic Bacillus cereus in rice-based foods by enterocin AS-48. Int J Food Microbiol 106:185–194

    Article  CAS  PubMed  Google Scholar 

  • Grande MJ, Lucas R, Abriouel H, Valdivia E, Ben Omar N, Maqueda M (2007) Treatment of vegetable sauces with enterocin AS-48 alone or in combination with phenolic compounds to inhibit proliferation of Staphylococcus aureus. J Food Prot 70:405–411

    CAS  PubMed  Google Scholar 

  • Hammami R, Zouhir A, Le Lay C, Ben Hamida J, Fliss I (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hampikyan H, Ugur M (2007) The effect of nisin on L. monocytogenes in Turkish fermented sausages (sucuks). Meat Sci 76:327–332

    Article  CAS  PubMed  Google Scholar 

  • Hanlin MB, Kalchayanand N, Ray P, Ray B (1993) Bacteriocins of lactic acid bacteria in combination have a greater antibacterial activity. J Food Prot 56:252–255

    CAS  Google Scholar 

  • Helander IM, Mattila-Sandholm T (2000) Permeability barrier of the gram-negative bacterial outer membrane with special reference to nisin. Int J Food Microbiol 60:153–161

    Article  CAS  PubMed  Google Scholar 

  • Hirsch A, Grinsted E, Chapman HR, Mattick ATR (1951) A note on the inhibition of an anaerobic spore former in Swiss-type cheese by a nisin-producing Streptococcus. J Dairy Res 18:205–206

    Article  Google Scholar 

  • Holck AL, Axelsson L, Huhme K, Krockel L (1994) Purification and cloning of sakacin 674, a bacteriocin from Lactobacillus sake Lb674. FEMS Microbiol Lett 115:143–150

    Article  CAS  PubMed  Google Scholar 

  • Hugas M, Garriga M, Aymerich T (2003) Functionality of enterococci in meat products. Int J Food Microbiol 88:223–233

    Article  CAS  PubMed  Google Scholar 

  • Jennes W, Dicks LM, Verwoerd DJ (2000) Enterocin 012, a bacteriocin produced by Enterococcus gallinarum isolated from the intestinal tract of ostrich. J Appl Microbiol 88:349–357

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen HJ, Maticen T, Løvseth A, Oboe K, Qvale KS, Loncarevic S (2005) An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. FEMS Microbiol Lett 252:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kalchayanand N, Hanlin MB, Ray B (1992) Sublethal injury makes Gram-negative and resistant Gram-positive bacteria sensitive to the bacteriocins, pediocin AcH and nisin. Lett Appl Microbiol 15:239–243

    Article  CAS  Google Scholar 

  • Kang JH, Lee MS (2005) Characterization of a bacteriocin produced by Enterococcus faecium GM-1 isolated from an infant. J Appl Microbiol 98:1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Klaenhammer TR (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev 12:39–85

    Article  CAS  PubMed  Google Scholar 

  • Knight KP, Bartlett FM, McKellar RC, Harris LJ (1999) Nisin reduces the thermal resistance of Listeria monocytogenes Scott A in liquid whole egg. J Food Prot 62:999–1003

    CAS  PubMed  Google Scholar 

  • Komitopoulou E, Boziaris IS, Davies EA, Delves-Broughton J, Adams MR (1999) Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int J Food Sci Technol 34:81–85

    Article  CAS  Google Scholar 

  • Lauková A, Czikková S (1999) The use of enterocin CCM 4231 in soy milk to control the growth of Listeria monocytogenes and Staphylococcus aureus. J Appl Microbiol 87:182–186

    Article  PubMed  Google Scholar 

  • Lauková A, Czikková S (2001) Antagonistic effect of enterocin CCM 4231 from Enterococcus faecium on “bryndza”, a traditional Slovak dairy product from sheep milk. Microbiol Res 156:31–34

    Article  PubMed  Google Scholar 

  • Lauková A, Czikková S, Burdova O (1999a) Anti-staphylococcal effect of enterocin in Sunar and yogurt. Folia Microbiol (Praha) 44:707–711

    Article  Google Scholar 

  • Lauková A, Czikková S, Dóbransky T, Burdova O (1999b) Inhibition of Listeria monocytogenes and Staphylococcus aureus by enterocin CCM4231 in milk products. Food Microbiol 16:93–99

    Article  Google Scholar 

  • Lauková A, Czikková S, Laczková S, Turek P (1999c) Use of enterocin CCM 4231 to control Listeria monocytogenes in experimentally contaminated dry fermented Horn’ad salami. Int J Food Microbiol 52:115–119

    Article  PubMed  Google Scholar 

  • Lauková A, Vlaemynick G, Czikková S (2001) Effect of enterocin CCM 4231 on Listeria monocytogenes in Saint-Paulin cheese. Folia Microbiol 46:157–160

    Article  Google Scholar 

  • Le Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2:63–76

    PubMed  Google Scholar 

  • Leverentz B, Conway WS, Camp MJ, Janisiewicz WJ, Abuladze T, Yang M, Saftner R, Sulakvelidze A (2003) Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol 69:4519–4526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leyer GJ, Wang LL, Johnson EA (1995) Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. Appl Environ Microbiol 61:3752–3755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang Z, Mittal GS, Griffiths MW (2002) Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field. J Food Prot 65:1081–1087

    CAS  PubMed  Google Scholar 

  • Loessner M, Guenther S, Steffan S, Scherer S (2003) A pediocin-producing Lactobacillus plantarum strain inhibits Listeria monocytogenes in a multispecies cheese surface microbial ripening consortium. Appl Environ Microbiol 69:1854–1857

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lucas R, Grande MJ, Abriouel H, Maqueda M, Ben Omar N, Valdivia E, Martínez-Cañamero M, Gálvez A (2006) Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in low-pH canned fruit and vegetable foods. Food Chem Toxicol 44:1774–1781

    Article  CAS  PubMed  Google Scholar 

  • Lüders T, Birkemo GA, Fimland G, Nissen-Meyer J, Nes IF (2003) Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria. Appl Environ Microbiol 69:1797–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lyon WJ, Glatz BA (1993) Isolation and purification of propionicin PLG-1, a bacteriocin produced by a strain of Propionibacterium thoenii. Appl Environ Microbiol 59:83–88

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon WJ, Sethi JK, Glatz BA (1993) Inhibition of psychrotrophic organisms by propionicin PLG-1, a bacteriocin produced by Propionibacterium thoenii. J Dairy Sci 76:1506–1513

    Article  CAS  PubMed  Google Scholar 

  • Maisnier-Patin S, Deschamps N, Tatini SR, Richard J (1992) Inhibition of Listeria monocytogenes in Camembert cheese made with a nisin-producing starter. Lait 72:249–263

    Article  CAS  Google Scholar 

  • Mathot AG, Beliard E, Thuault D (2003) Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese. J Dairy Sci 86:3068–3074

    Article  CAS  PubMed  Google Scholar 

  • Meindl K, Schmiederer T, Schneider K, Reicke A, Butz D, Keller S, Gühring H, Vértesy L, Wink J, Hoffmann H, Brönstrup M, Sheldrick GM, Süssmuth RD (2010) Labyrinthopeptins: a new class of carbacyclic lantibiotics. Angew Chem Int Ed Engl 49:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Messaoudi S, Kergourlay G, Rossero A, Ferchichi M, Prévost H, Drider D, Manai M, Dousset X (2011) Identification of lactobacilli residing in chicken ceca with antagonism against Campylobacter. Int Microbiol 14:103–110

    CAS  PubMed  Google Scholar 

  • Mills S, Stanton C, Hill C, Ross RP (2011) New developments and applications of bacteriocins and peptides in foods. Annu Rev Food Sci Technol 2:299–329

    Article  CAS  PubMed  Google Scholar 

  • Molinos AC, Abriouel H, López RL, Valdivia E, Ben Omar N, Gálvez A (2008) Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts. Food Chem Toxicol 46:2912–2921

    Article  CAS  Google Scholar 

  • Montville TJ, Winkowski K, Ludescherer RD (1995) Models and mechanisms for bacteriocin action and application. Int Dairy J 5:797–814

    Article  CAS  Google Scholar 

  • Morgan SM, Garvin M, Kelly J, Ross RP, Hill C (1999) Development of a lacticin 3147-enriched whey powder with inhibitory activity against foodborne pathogens. J Food Prot 62:1011–1016

    CAS  PubMed  Google Scholar 

  • Morgan SM, Ross RP, Beresford T, Hill C (2000) Combination of hydrostatic pressure and lacticin 3147 causes increased killing of Staphylococcus and Listeria. J Appl Microbiol 88:414–420

    Article  CAS  PubMed  Google Scholar 

  • Morgan SM, Garvin M, Ross RP, Hill C (2001) Evaluation of a spray-dried lacticin 3147 powder for the control of Listeria monocytogenes and Bacillus cereus in a range of food systems. Lett Appl Microbiol 33:387–391

    Article  CAS  PubMed  Google Scholar 

  • Morris SL, Walsh RC, Hansen JN (1984) Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J Biol Chem 259:13590–13594

    CAS  PubMed  Google Scholar 

  • Mulet-Powell N, Lactoste-Armynot AM, Vinas M, Simeon De Buochberg M (1998) Interactions between pairs of bacteriocins from lactic acid bacteria. J Food Prot 61:1210–1212

    CAS  PubMed  Google Scholar 

  • Muñoz A, Maqueda M, Gálvez A, Martínez-Bueno M, Rodríguez A, Valdivia E (2004) Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a non fat hard type cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot 67:1517–1521

    PubMed  Google Scholar 

  • Muñoz A, Ananou S, Gálvez A, Martínez-Bueno M, Rodríguez A, Maqueda M, Valdivia E (2007) Inhibition of Staphylococcus aureus in dairy products by enterocin AS-48 produced in situ and ex situ: bactericidal synergism through heat and AS-48. Int Dairy J 17:760–769

    Article  CAS  Google Scholar 

  • Murdock CA, Cleveland J, Matthews KR, Chikindas ML (2007) The synergistic effect of nisin and lactoferrin on the inhibition of Listeria monocytogenes and Escherichia coli O157:H7. Lett Appl Microbiol 44:255–261

    Article  CAS  PubMed  Google Scholar 

  • Muriana PM (1996) Bacteriocins for control ofListeria spp. in food. J Food Prot 59:S54–S63

    Google Scholar 

  • Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D (2008) Identification of lactic acid bacteria from poultry feces: evidence on anti-campylobacter and anti-listeria activities. Poult Sci 87:329–334

    Article  CAS  PubMed  Google Scholar 

  • Nissen H, Holo H, Axelsson L, Blom H (2001) Characterization and growth of Bacillus spp. in heat-treated cream with and without nisin. J Appl Microbiol 90:530–534

    Article  CAS  PubMed  Google Scholar 

  • O’Mahony T, Rekhif N, Cavadini C, Fitzgerald GF (2001) The application of a fermented food ingredient containing ‘variacin’, a novel antimicrobial produced by Kocuria varians, to control the growth of Bacillus cereus in chilled dairy products. J Appl Microbiol 90:106–114

    Article  PubMed  Google Scholar 

  • Ortega E, Abriouel H, Lucas R, Gálvez A (2010) Multiple roles of Staphylococcus aureus enterotoxins: pathogenicity, superantigenic activity, and correlation to antibiotic resistance. Toxins 2:2117–2131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parente E, Hill C (1992) Inhibition of Listeria in buffer, broth, and milk by enterocin 1146, a bacteriocin produced by Enterococcus faecium. J Food Prot 55:503–508

    CAS  Google Scholar 

  • Pawar DD, Malik SVS, Bhilegaonkar KN, Barbuddhe SB (2000) Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci 56:215–219

    Article  CAS  PubMed  Google Scholar 

  • Pedersen MB, Iversen SL, Sørensen KI, Johansen E (2005) The long and winding road from the research laboratory to industrial applications of lactic acid bacteria. FEMS Microbiol Rev 29:611–624

    Article  CAS  PubMed  Google Scholar 

  • Pettipher GL, Osmundson ME, Murphy JM (1997) Methods for the detection and enumeration of Alicyclobacillus acidoterrestris and investigations of growth and taint in fruit juice and fruit-containing drinks. Lett Appl Microbiol 24:185–189

    Article  CAS  PubMed  Google Scholar 

  • Pol IE, Mastwijk HC, Slump RA, Popa ME, Smith EJ (2001) Influence of food matrix on inactivation of Bacillus cereus by combinations of nisin, pulsed electric field treatment, and carvacrol. J Food Prot 64:1012–1018

    CAS  PubMed  Google Scholar 

  • Presser KA, Ross T, Ratkowsky DA (1998) Modelling the Angrowth limits (growth/no growth interface) of Escherichia coli as a function of temperature, pH, lactic acid concentration, and water activity. Appl Environ Microbiol 64:1773–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raccach M, Geshell DJ (1993) The inhibition of Listeria monocytogenes in milk by pediococci. Food Microbiol 10:181–186

    Article  Google Scholar 

  • Rayman K, Malik N, Hurst A (1983) Failure of nisin to inhibit outgrowth of Clostridium botulinum in a model cured meat system. Appl Environ Microbiol 46:1450–1452

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea MC, Ross P, Cotter PD, Hill C (2011) Classifications of bacteriocins from Gram positive bacteria. In: Drider D, Rebuffat S (eds) Prokaryotic antimicrobial peptides: from Geenes to applications. Springer, New York, 29–53. doi:10. 1007/978-1-4419-7692-5_3

    Google Scholar 

  • Reitsma CJ, Henning DR (1996) Survival of enterohemor- rhagic Escherichia coli O157:H7 during the manufacture and curing of cheddar cheese. J Food Prot 59:460–464

    Google Scholar 

  • Reviriego C, Fernández L, Rodríguez JM (2007) A food-grade system for production of pediocin PA-1 in nisin-producing and nonnisin- producing Lactococcus lactis strains: application to inhibit Listeria growth in a cheese model system. J Food Prot 70:2512–2517

    CAS  PubMed  Google Scholar 

  • Rilla N, Martinez B, Delgado T, Rodriguez A (2003) Inhibition of Clostridium tyrobutyricum in Vidiago cheese by Lactococcus lactis ssp. Lactis IPLA 729, a nisin Z producer. Int J Food Microbiol 85(1–2):23–33

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez JL, Gaya P, Medina M, Núñez M (1997) Bactericidal effect of enterocin 4 on Listeria monocytogenes in a model dairy system. J Food Prot 60:28–32

    PubMed  Google Scholar 

  • Rodríguez E, Calzada J, Arqués JL, Rodríguez JM, Núñez M, Medina M (2005) Antimicrobial activity of pediocin-producing, Lactococcus lactis on Listeria monocytogenes, Staphylococcus aureus and Escherichia coli O157:H7 in cheese. Int Dairy J 15:51–57

    Article  CAS  Google Scholar 

  • Rose NL, Sporns P, Stiles ME, McMullen LM (1999) Inactivation of nisin by glutathione in fresh meat. J Food Sci 64:759–762

    Article  CAS  Google Scholar 

  • Ross RP, Galvin M, McAuliffe O, Morgan S, Ryan M, Twomey DP, Meaney WJ, Hill C (1999) Develo** applications for lactococcal bacteriocins. Antonie Leeuwenhoek 76:337–346

    Article  CAS  PubMed  Google Scholar 

  • Sabia C, de Niederhäusern S, Messi P, Manicardi G, Bondi M (2003) Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). Int J Food Microbiol 87:173–179

    Article  CAS  PubMed  Google Scholar 

  • Şahingil D, Işlero lu H, Yildirim Z, Akçelik M, Yildirim M (2011) Characterization of lactococcin BZ produced by Lactococcus lactis subsp. lactis BZ isolated from boza. Turk J Biol 35:21–33

    Google Scholar 

  • Scannell AGM, Hill C, Buckley DJ, Arendt EK (1997) Determination of the influence of organic acids and nisin on shelflife and microbiological safety aspects of fresh pork sausage. J Appl Microbiol 83:407–412

    Article  CAS  PubMed  Google Scholar 

  • Scannell AG, Ross RP, Hill C, Arendt EK (2000a) An effective lacticin biopreservative in fresh pork sausage. J Food Prot 63:370–375

    CAS  PubMed  Google Scholar 

  • Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W, Arendt EK (2000b) Development of bioactive food packaging materials using immobilised bacteriocins lacticin 3147 and Nisaplin. Int J Food Microbiol 60:241–249

    Article  CAS  PubMed  Google Scholar 

  • Schillinger U, Becker B, Vignolo G, Holzapfel WH (2001) Efficacy of nisin in combination with protective cultures against Listeria monocytogenes Scott A in tofu. Int J Food Microbiol 71:159–168

    Article  CAS  PubMed  Google Scholar 

  • Schuman JD, Sheldon BW (2003) Inhibition of Listeria monocytogenes in pH-adjusted pasteurized liquid whole egg. J Food Prot 66:999–1006

    PubMed  Google Scholar 

  • Schved F, Henis Y, Juven BJ (1994) Response of spheroplasts and chelator-permeabilized cells of Gram-negative bacteria to the action of the bacteriocins pediocin SJ-1 and nisin. Int J Food Microbiol 21:305–314

    Article  CAS  PubMed  Google Scholar 

  • Seo KS, Bohach GA (2007) Staphylococcus aureus. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 493–518

    Google Scholar 

  • Shefet SM, Sheldon BW, Klaenhammer TR (1995) Efficacy of optimized nisin-based treatments to inhibit Salmonella typhimurium and extend shelf life of broiler carcasses. J Food Prot 58:1077–1082

    CAS  Google Scholar 

  • Sivarooban T, Hettiarachchy NS, Johnson MG (2007) Inhibition of Listeria monocytogenes using nisin with grape seed extract on turkey frankfurters stored at 4 and 10°C. J Food Prot 70:1017–1020

    CAS  PubMed  Google Scholar 

  • Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski JL (1994) Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 176:1729–1737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smaoui S, Elleuch L, Bejar W, Karray-Rebai I, Ayadi I, Jaouadi B (2010) Inhibition of fungi and gram-negative bacteria by bacteriocin BacTN635 produced by Lactobacillus plantarum sp. TN635. Appl Biochem Biotechnol 162:1132–1146

    Article  CAS  PubMed  Google Scholar 

  • Sobrino-López A, Martín Belloso O (2006) Enhancing inactivation of Staphylococcus aureus in skim milk by combining highintensity pulsed electric fields and nisin. J Food Prot 69:345–353

    PubMed  Google Scholar 

  • Solomakos N, Govaris A, Koidis P, Botsoglou N (2008) The antimicrobial effect of thyme essential oil, nisin, and their combination against Listeria monocytogenes in minced beef during refrigerated storage. Food Microbiol 25:120–127

    Article  CAS  PubMed  Google Scholar 

  • Somkuti GA, Steinberg DH (2003) Pediocin production by recombinant lactic acid bacteria. Biotechnol Lett 25:473–477

    Article  CAS  PubMed  Google Scholar 

  • Stergiou VA, Thomas LV, Adams MR (2006) Interactions of nisin with glutathione in a model protein system and meat. J Food Prot 69:951–956

    CAS  PubMed  Google Scholar 

  • Stern NJ, Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Pokhilenko VD, Levchuk VP, Svetoch OE, Seal BS (2006) Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob Agents Chemother 50:3111–3116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR (1991) Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria. Appl Environ Microbiol 57:3612–3615

    Google Scholar 

  • Sulzer G, Busse M (1991) Growth inhibition of Listeria spp. On Camembert cheese by bacteria producing inhibitory substances. Int J Food Microbiol 14:287–296

    Article  CAS  PubMed  Google Scholar 

  • Svetoch EA, Eruslanov BV, Perelygin VV, Mitsevich EV, Mitsevich IP, Borzenkov VN (2008) Diverse antimicrobial killing by Enterococcus faecium E 50–52 bacteriocin. J Agric Food Chem 56:1942–1948

    Article  CAS  PubMed  Google Scholar 

  • Tagg JR, Dajani AS, Wannamaker LW (1976) Bacteriocins of gram-positive bacteria. Bacteriol Rev 40:722–7256

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamarapu S, McKillip JL, Drake M (2001) Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products. J Food Prot 64:664–668

    CAS  PubMed  Google Scholar 

  • Thomas LV, Delves-Broughton J (2001) New advances in the application of the food preservative nisin. Adv Food Sci 2:11–22

    Google Scholar 

  • Thomas LV, Clarkson MR, Delves-Broughton J (2000) Nisin. In: Naidu AS (ed) Natural food antimicrobial systems. CRC Press, Boca Raton, pp 463–524

    Google Scholar 

  • Thomas LV, Ingram RE, Bevis HE, Davies EA, Milne CF, Delves-Broughton J (2002) Effective use of nisin to control Bacillus and Clostridium spoilage of a pasteurized mashed potato product. J Food Prot 65:1580–1585

    CAS  PubMed  Google Scholar 

  • Tichaczek PS, Vogel RF, Hammes WP (1994) Cloning and sequencing of sakP encoding sakacin P, the bacteriocin produced by Lactobacillus sake LHT673. Microbiology+ 140:361–367

    CAS  PubMed  Google Scholar 

  • Tirado C, Schimdt K (2001) WHO surveillance programme for control of foodborne infections and intoxications: preliminary results and trends across greater Europe. J Infect 43:80–84

    Article  CAS  PubMed  Google Scholar 

  • Tsakalidou E, Zoidou E, Pot B, Wassill L, Ludwig W, Devriese LA, Kalantzopoulos G, Schleifer KH, Kersters K (1998) Identification of streptococci from Greek Kasseri cheese and description of Streptococcus macedonicus sp. nov. Int J Syst Bacteriol 48:519–527

    Article  CAS  PubMed  Google Scholar 

  • Ukuku DO, Fett WF (2004) Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupet. J Food Prot 67:2143–2150

    CAS  PubMed  Google Scholar 

  • Valenzuela AS, Ben Omar N, Abriouel H, Lucas Lopez R, Ortega E, Martinez Canamero M, Gálvez A (2008) Risk factors in enterococci isolated from foods in Morocco: determination of antimicrobial resistance and incidence of virulence traits. Food Chem Toxicol 46:2648–2652

    Article  PubMed  CAS  Google Scholar 

  • Van den Berghe E, Skourtas G, Tsakalidou E, DeVuyst L (2006) Streptococcus macedonicus ACA-DC 198 produces the lantibiotic, macedocin, at temperature and pH conditions that prevail during cheese manufacture. Int J Food Microbiol 107:138–147

    Article  PubMed  CAS  Google Scholar 

  • Veras JF, Carmo LS, Tong LC, Shupp JW, Cummings C, Santos DA (2008) A study of the enterotoxigenicity of coagulase negative and coagulase positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. Int J Infect Dis 12:410–415

    Article  CAS  PubMed  Google Scholar 

  • Vignolo G, Fadda S, de Kairuz MN, de Ruiz Holgado AA, Oliver G (1996) Control of Listeria monocytogenes in ground beef by ‘Lactocin 705’, a bacteriocin produced by Lactobacillus casei CRL 705. Int J Food Microbiol 29:397–402

    Article  CAS  PubMed  Google Scholar 

  • Vignolo G, Fadda S, de Kairuz MN, Holgado APR, Oliver O (1998) Effects of curing additives on the control of Listeria monocytogenes by lactocin 705 in meat slurry. Food Microbiol 15:259–264

    Article  CAS  Google Scholar 

  • Vignolo G, Palacios J, Farias ME, Sesma F, Schillinger U, Holzapfel W, Oliver G (2000) Combined effect of bacteriocins on the survival of various Listeria species in broth and meat system. Curr Microbiol 41:410–416

    Article  CAS  PubMed  Google Scholar 

  • WHO (2002) Statistical information on food-borne disease in Europe. Microbiological and chemical hazards. In: FAO/WHO Pan-European conference on food quality and safety, Budapest. Springer, pp 29–53. ISBN 978-1-4419-7691-8

    Google Scholar 

  • Yuste J, Fung DY (2004) Inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 in apple juice by a combination of nisin and cinnamon. J Food Prot 67:371–377

    CAS  PubMed  Google Scholar 

  • Zamfir M, Callewaert R, Cornea PC, Savu L, Vatafu I, De Vuyst L (1999) Purification and characterization of a bacteriocin produced by Lactobacillus acidophilus IBB 801. J Appl Microbiol 87:923–931

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Drider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Omar, N.B., Abriouel, H., Fliss, I., Ferandez-Fuentes, M.Á., Galvez, A., Drider, D. (2013). Bacteriocins: Natural Weapons for Control of Food Pathogens. In: Malik, A., Grohmann, E., Alves, M. (eds) Management of Microbial Resources in the Environment. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5931-2_19

Download citation

Publish with us

Policies and ethics

Navigation