Electron Transport Studies of Disorder and Dimensionality in Nano-Crystalline Diamond

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

  • 2585 Accesses

Abstract

In this chapter we present and discuss experimental results on electron transport in various forms of granular diamond. Diamond has drawn attention in physical research as a semiconductor with unique properties. We should mention its extremely high thermal conductivity, resistance against radiation, wide bandgap, high mobility for electrons and holes, mechanical hardness, and biocompatibility giving diamond-based devices a potential applicability in a wide range of fields from high-power and high-frequency electronics to biomedicine. Preparation of synthetic diamond by high-pressure and high-temperature techniques in the 1950s was a first step to wide utilization. In the 1980s the chemical vapor deposition (CVD) technique was elaborated for diamond technology (Nebel CE, Ristein J (eds), Thin-film diamond I, II: semiconductors and semimetals, vols 76, 77. Elsevier, Amsterdam, 2004). From the late 1990s, the nano-crystalline and ultra-nano-crystalline diamond (NCD, UNCD) with a controlled grain size in the nanometer (nm) range came into play (Gruen DM, Annu Rev Mater Sci 29:211–259, 1999). Because of the possibility to prepare large-area thin films on non-diamond substrates, application of NCD and UNCD became promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nebel CE, Ristein J (eds) (2004) Thin-film diamond I, II: semiconductors and semimetals, vols 76, 77. Elsevier, Amsterdam

    Google Scholar 

  2. Gruen DM (1999) Nanocrystalline diamond films. Annu Rev Mater Sci 29:211–259

    Article  CAS  Google Scholar 

  3. Deneuville A (2004) Boron do** of diamond films from the gas phase. In: Nebel CE, Ristein J (eds) Thin-film diamond I: semiconductors and semimetals, vol 76. Elsevier, Amsterdam, pp 183–238

    Google Scholar 

  4. Nesládek M (2005) Conventional n-type do** in diamond: state of the art and recent progress. Semicond Sci Technol 20:R19–R27

    Article  Google Scholar 

  5. Gan L, Bolker A, Saguy C, Kalish R, Tan DL, Tay BK, Gruen D, Bruno P (2009) The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond. Diamond Relat Mater 18:1118–1122

    Article  CAS  Google Scholar 

  6. Ferry DK, Goodnick SM (1999) Transport in nanostructures. Cambridge University Press, Cambridge

    Google Scholar 

  7. Gheeraert E, Koizumi S, Teraji T, Kanda H (2000) Electronic transitions of electrons bound to phosphorus donors in diamond. Solid State Commun 113:577–580

    Article  CAS  Google Scholar 

  8. Mareš JJ, Hubík P, Krištofik J, Kindl D, Nesládek M (2008) Quantum transport in boron doped nanocrystalline diamond. Chem Vap Depos 14:161–172

    Article  Google Scholar 

  9. El-Haji H, Denisenko A, Kaiser A, Balmer RS, Kohn E (2008) Diamond MISFET based on boron delta-doped channel. Diamond Relat Mater 17:1259–1263

    Article  Google Scholar 

  10. Nebel CE, Rezek B, Zrenner A (2004) Electronic properties of the 2D-hole accumulation layer on hydrogen terminated diamond. Diamond Relat Mater 13:2031–2036

    Article  CAS  Google Scholar 

  11. Bolker A, Saguy C, Tordjman M, Gan L, Kalish R (2011) Two-dimensional and zero-dimensional quantization of transfer-doped diamond studied by low-temperature scanning tunneling spectroscopy. Phys Rev B 83:155434(7)

    Article  Google Scholar 

  12. Gruen DM, Bruno P, **e M (2008) Configurational, electronic entropies and the thermoelectric properties of nanocarbon ensembles. Appl Phys Lett 92:143118(3)

    Article  Google Scholar 

  13. Williams OA, Curat S, Gerbi JE, Gruen DM, Jackman RB (2004) n-Type conductivity in ultrananocrystalline diamond films. Appl Phys Lett 85:1680–1682

    Article  CAS  Google Scholar 

  14. Achatz P, Williams OA, Bruno P, Gruen DM, Garrido JA, Stutzmann M (2006) Effect of nitrogen on the electronic properties of ultrananocrystalline diamond thin films grown on quartz and diamond substrates. Phys Rev B 74:155429(7)

    Article  Google Scholar 

  15. Mareš JJ, Hubík P, Krištofik J, Kindl D, Fanta M (2006) Weak localization in ultrananocrystalline diamond. Appl Phys Lett 88:092107(3)

    Google Scholar 

  16. Mareš JJ, Krištofik J, Hubík P (1997) Low-field magnetoresistance anomaly in two-dimensional electron gas. Solid State Commun 101:243–247

    Article  Google Scholar 

  17. Bergmann G (1984) Weak localization in thin films: a time-of-flight experiment with conduction electrons. Phys Rep 107:1–58

    Article  CAS  Google Scholar 

  18. Zhao HL, Spivak BZ, Gelfand MP, Feng S (1991) Negative magnetoresistance in variable-range-hop** conduction. Phys Rev B 44:10760–10767

    Article  Google Scholar 

  19. Feng X, Mareš JJ, Raikh ME, Koch F, Grützmacher D, Kohl A (1992) Magnetotransport in planar do** structures. Surf Sci 263:147–151

    Article  CAS  Google Scholar 

  20. Fukuyama H (1985) Interaction effects in the weakly localized regime of two- and three-dimensional disordered systems. In: Efros AL, Pollak M (eds) Electron–electron interactions in disordered systems. North Holland, Amsterdam, pp 155–230

    Google Scholar 

  21. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485–491

    Article  Google Scholar 

  22. Kawarada H (1996) Hydrogen-terminated diamond surfaces and interfaces. Surf Sci Rep 26:205–259

    Article  CAS  Google Scholar 

  23. Landstrass MI, Ravi KV (1989) Resistivity of chemical vapor deposited diamond films. Appl Phys Lett 55:975–977

    Article  CAS  Google Scholar 

  24. Ri S, Mizumasa T, Akiba Y, Hirose Y, Kurosu T, Iida M (1995) Formation mechanism of p-type surface conductive layer on deposited diamond films. Jpn J Appl Phys 34:5550–5555

    Article  Google Scholar 

  25. Maier F, Riedel M, Mantel B, Ristein J, Ley L (2000) Origin of surface conductivity in diamond. Phys Rev Lett 85:3472–3475

    Article  CAS  Google Scholar 

  26. Ri SG, Tashiro K, Tanaka S, Fujisawa T, Kimura H, Kurosu T, Iida M (1999) Hall effect measurements of surface conductive layer on undoped diamond films in NO2 and NH3 atmospheres. Jpn J Appl Phys 38:3492–3496

    Article  Google Scholar 

  27. Mareš JJ, Hubík P, Krištofik J, Ristein J, Strobel P, Ley L (2008) Influence of ambient humidity on the surface conductivity of hydrogenated diamond. Diamond Relat Mater 17:1356–1361

    Article  Google Scholar 

  28. Rezek B, Krátká M, Kromka A, Kalbáčová M (2010) Effects of protein inter-layers on cell–diamond FET characteristics. Biosens Bioelectron 26:1307–1312

    Article  CAS  Google Scholar 

  29. Stavis C, Clare TL, Butler JE, Radadia AD, Carr R, Zeng H, King WP, Carlisle JA, Aksimentiev A, Bashir R, Hamers RJ (2011) Surface functionalization of thin-film diamond for highly stable and selective biological interfaces. Proc Natl Acad Sci USA 108:983–988

    Article  CAS  Google Scholar 

  30. Strobel P, Riedel M, Ristein J, Ley L (2004) Surface transfer do** of diamond. Nature (Lond) 430:439–441

    Article  CAS  Google Scholar 

  31. Kueck D, Scharpf J, Ebert W, Fikry M, Scholz F, Kohn E (2010) Passivation of H-terminated diamond with MOCVD-aluminium nitride: a key to understand and stabilize its surface conductivity. Phys Status Solidi A 207:2035–2039

    Article  CAS  Google Scholar 

  32. Hubík P, Mareš JJ, Kozak H, Kromka A, Rezek B, Krištofik J, Kindl D (2012) Transport properties of hydrogen-terminated nanocrystalline diamond films. Diamond Relat Mater 24:63–68. doi:10.1016/j.diamond.2011.10.021

    Article  Google Scholar 

  33. Butler JE, Sumant AV (2008) CVD of nanodiamond materials. Chem Vap Depos 14:145–160

    Article  CAS  Google Scholar 

  34. (2004) Low level measurements handbook, 6th edn. Keithley Instruments, Cleveland

    Google Scholar 

  35. Popovic RS (1991) Hall effect devices. Adam Hilger, Bristol

    Google Scholar 

  36. Hubík P, Mareš JJ, Kozak H, Kromka A, Rezek B, Krištofik J, Kindl D (2012) Ambient and time dependent surface conductivity in hydrogen-terminated nanocrystalline diamond (submitted to Semicond Sci Technol)

    Google Scholar 

  37. (2010) ASTM E112-10 Standard test methods for determining average grain size. ASTM International, West Conshohocken

    Google Scholar 

  38. Hayashi K, Yamanaka S, Watanabe H, Sekiguchi T, Okushi H, Kajimura K (1997) Investigation of the effect of hydrogen on electrical and optical properties in chemical vapor deposited on homoepitaxial diamond films. J Appl Phys 81:744–753

    Article  CAS  Google Scholar 

  39. Garrido JA, Heimbeck T, Stutzmann M (2005) Temperature-dependent transport properties of hydrogen-induced diamond surface conductive channels. Phys Rev B 71:245310(8)

    Article  Google Scholar 

  40. Rezek B, Watanabe H, Nebel CE (2006) High carrier mobility on hydrogen terminated <100> diamond surfaces. Appl Phys Lett 88:042110(3)

    Article  Google Scholar 

  41. Feliciangeli MC, Rossi MC, Conte G (2007) An admittance spectroscopy study of grain and grain boundary of diamond. Diamond Relat Mater 16:930–934

    Article  CAS  Google Scholar 

  42. Orton JW, Powell MJ (1980) The Hall effect in polycrystalline and powdered semiconductors. Rep Prog Phys 43:1263–1303

    Article  Google Scholar 

  43. Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247–5254

    Article  CAS  Google Scholar 

  44. Kozak H, Kromka A, Ukraintsev E, Houdkova J, Ledinsky M, Vaněček M, Rezek B (2009) Detecting sp2 phase on diamond surfaces by atomic force microscopy phase imaging and its effects on surface conductivity. Diamond Relat Mater 18:722–725

    Article  CAS  Google Scholar 

  45. Nesládek M, Meykens K, Stals LM, Vaněček M, Rosa J (1996) Origin of characteristic subgap optical absorption in CVD diamond films. Phys Rev B 54:5552–5561

    Article  Google Scholar 

  46. Dasgupta D, Demichelis F, Tagliaferro A (1991) Electrical conductivity of amorphous carbon and amorphous hydrogenated carbon. Philos Mag B 63:1255–1266

    Article  CAS  Google Scholar 

  47. Ekimov EA, Sidorov VA, Bauer ED, Meľnik NN, Curro NJ, Thompson JD, Stishov SM (2004) Superconductivity in diamond. Nature (Lond) 428:542–545

    Article  CAS  Google Scholar 

  48. Takano Y, Nagao M, Sakaguchi I, Tachiki M, Hatano T, Kobayashi K, Umezawa H, Kawarada H (2004) Superconductivity in diamond thin films well above liquid helium temperature. Appl Phys Lett 85:2851–2853

    Article  CAS  Google Scholar 

  49. Bustarret E, Kačmarčik J, Marcenat C, Gheeraert E, Cytermann C, Marcus J, Klein T (2004) Dependence of the superconducting transition temperature on the do** level in single-crystalline diamond films. Phys Rev Lett 93:237005(4)

    Article  Google Scholar 

  50. Nesládek M, Tromson D, Mer C, Bergonzo P, Hubík P, Mareš JJ (2006) Superconductive B-doped nanocrystalline diamond thin films electrical transport and Raman spectra. Appl Phys Lett 88:232111(3)

    Article  Google Scholar 

  51. Wang ZL, Luo Q, Liu LW, Li CY, Yang HX, Yang HF, Li JJ, Lu XY, ** ZS, Lu L, Gu CZ (2006) The superconductivity in boron-doped polycrystalline diamond thick films. Diamond Relat Mater 15:659–663

    Article  Google Scholar 

  52. Waldram JR (1996) Superconductivity of metals and cuprates. IOP Publishing, London

    Google Scholar 

  53. Mareš JJ, Hubík P, Nesládek M, Krištofik J (2007) Boron-doped diamond-Grained Mott’s metal revealing superconductivity. Diamond Relat Mater 16:921–925

    Article  Google Scholar 

  54. Mott NF (1987) Conduction in non-crystalline materials. Oxford University Press, New York

    Google Scholar 

  55. Thonke K (2003) The boron acceptor in diamond. Semicond Sci Technol 18:S20–S26

    Article  CAS  Google Scholar 

  56. Werner M, Job R, Zaitzev A, Fahrner WR, Seifert W, Johnston C, Chalker PR (1996) The relationship between resistivity and boron do** concentration of single and polycrystalline diamond. Phys Status Solidi A 154:385–393

    Article  CAS  Google Scholar 

  57. Mareš JJ, Hubík P, Krištofik J, Nesládek M (2008) Selected topics related to the transport and superconductivity in boron-doped diamond. Sci Technol Adv Mater 9:044101(6)

    Google Scholar 

  58. Mareš JJ, Hubík P, Nesládek M, Kindl D, Krištofik J (2006) Weak localization: precursor of unconventional superconductivity in nanocrystalline boron-doped diamond. Diamond Relat Mater 15:1863–1867

    Article  Google Scholar 

  59. Mareš JJ, Nesládek M, Hubík P, Kindl D, Krištofik J (2007) On unconventional superconductivity in boron-doped diamond. Diamond Relat Mater 16:1–5

    Article  Google Scholar 

  60. Ornstein LS (1919) On the Brownian motion. Proc Acad Amst 21:96–108

    Google Scholar 

  61. Blakemore JS (1962) Semiconductor statistics. Pergamon Press, Oxford

    Google Scholar 

  62. Tilley DR, Tilley J (1974) Superfluidity and superconductivity. Van Nostrand Reinhold, New York

    Google Scholar 

  63. Moussa JE, Cohen ML (2008) Constraints on T c for superconductivity in heavily boron-doped diamond. Phys Rev B 77:064518(8)

    Article  Google Scholar 

  64. Takano Y, Takenouchi T, Ishii S, Ueda S, Okutsu T, Sakaguchi I, Umezawa H, Kawarada H, Tachiki M (2007) Superconducting properties of homoepitaxial CVD diamond. Diamond Relat Mater 16:911–914

    Article  CAS  Google Scholar 

  65. Likharev KK (1979) Superconducting weak links. Rev Mod Phys 51:101–159

    Article  Google Scholar 

  66. de Haas-Lorentz GL (1913) Die Brownsche Bewegung und einige verwandte Erscheinungen. F Vieweg u Sohn, Braunschweig

    Google Scholar 

  67. Russell A (1909) The coefficients of capacity and the mutual attractions or repulsions of two electrified spherical conductors when close together. Proc R Soc Lond A 82:524–531

    Article  Google Scholar 

  68. Williams OA, Nesládek M, Mareš JJ, Hubík P (2008) Growth and properties of nanocrystalline diamond films. In: Koizumi S, Nebel CE, Nesládek M (eds) Physics and applications of CVD diamond. Wiley-VCH, Berlin, pp 13–27

    Chapter  Google Scholar 

  69. Achatz P, Gajewski W, Bustarret E, Marcenat C, Piquerel R, Chapelier C, Dubouchet T, Williams OA, Haenen K, Garrido JA, Stutzmann M (2009) Low-temperature transport in highly boron-doped nanocrystalline diamond. Phys Rev B 79:201203(4)

    Article  Google Scholar 

  70. Dahlem F, Achatz P, Williams OA, Araujo D, Bustarret E, Courtois H (2010) Spatially correlated microstructure and superconductivity in polycrystalline boron-doped diamond. Phys Rev B 82:033306(4)

    Google Scholar 

  71. Kamper RA, Zimmerman JE (1971) Noise thermometry with the Josephson effect. J Appl Phys 42:132–136

    Article  Google Scholar 

Download references

Acknowledgments

Research presented in this chapter was supported by the Czech Science Foundation Contract No P204/10/0212. Dieter Gruen, Alexander Kromka, and Miloš Nesládek, are acknowledged for sample growth and supply. We thank Karel Hruška, Vlastimil Jurka, Halyna Kozak, Karel Melichar, Jiří Pangrác, Zdeňka Poláčková, Jiří Potměšil, and Lucie Prušáková for sample processing and Petr Bátrna and Jarmila Šidáková for technical assistance. Dobroslav Kindl, Jozef Krištofik, and Bohuslav Rezek contributed significantly to the experimental work described in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hubík .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hubík, P., Mareš, J.J. (2012). Electron Transport Studies of Disorder and Dimensionality in Nano-Crystalline Diamond. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_17

Download citation

Publish with us

Policies and ethics

Navigation