Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

  • 921 Accesses

Abstract

MicroRNAs (miRNAs) are 21–23-nucleotide non-protein-coding RNA molecules that act as negative regulators of gene expression, modulating the stability and/or the translational efficiency of target messenger RNAs. This chapter describes miRNA regulation and function in tissue response to acute ischemia, focusing on miRNAs role in acute myocardial infarction. The role played by specific miRNAs in the regulation of apoptosis, fibrosis, regeneration, and myocardial arrhythmias is illustrated. Examples of the miRNA involvement in noncardiac ischemia are also included. The identification of specific miRNAs as key regulators of the response to ischemia has opened new clinical avenues. miRNAs may constitute excellent noninvasive disease biomarkers. Furthermore, innovative strategies targeting miRNAs, aimed at reducing the levels of pathogenic or aberrantly expressed miRNAs or to elevate the levels of miRNAs with beneficial functions, have been developed and could be applied in the treatment of ischemic diseases. The efficacy of these strategies is confirmed by two paradigmatic reports in which miRNAs have been targeted to improve cardiac function in preclinical models of myocardial infarction. Specifically, miR-210 upregulation and miR-15 inhibition can both protect against cardiac injury and rescue cardiac function after myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  2. Fasanaro, P., Greco, S., Ivan, M., Capogrossi, M.C., Martelli, F.: MicroRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol. Ther. 125, 92–104 (2010)

    Article  Google Scholar 

  3. Huntzinger, E., Izaurralde, E.: Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99–110 (2011)

    Article  Google Scholar 

  4. van Rooij, E.: The art of microRNA research. Circ. Res. 108, 219–234 (2011)

    Article  Google Scholar 

  5. Vasudevan, S.: Posttranscriptional upregulation by microRNAs. Wiley interdiscip. Rev. RNA 3(3), 311–330 (2011)

    Article  MathSciNet  Google Scholar 

  6. Friedman, R.C., Farh, K.K., Burge, C.B., Bartel, D.P.: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009)

    Article  Google Scholar 

  7. Krol, J., Loedige, I., Filipowicz, W.: The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597–610 (2010)

    Google Scholar 

  8. Winter, J., Jung, S., Keller, S., Gregory, R.I., Diederichs, S.: Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol. 11, 228–234 (2009)

    Article  Google Scholar 

  9. Morlando, M., Ballarino, M., Gromak, N., Pagano, F., Bozzoni, I., Proudfoot, N.J.: Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008)

    Article  Google Scholar 

  10. Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N.: Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. 9, 102–114 (2008)

    Article  Google Scholar 

  11. Parker, R., Sheth, U.: P bodies and the control of mRNA translation and degradation. Mol. Cell 25, 635–646 (2007)

    Article  Google Scholar 

  12. Bartel, D.P.: MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  Google Scholar 

  13. Thomson, D.W., Bracken, C.P., Goodall, G.J.: Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845–6853 (2011)

    Article  Google Scholar 

  14. Elefant, N., Altuvia, Y., Margalit, H.: A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics 27, 3093–3101 (2011)

    Article  Google Scholar 

  15. Fasanaro, P., Romani, S., Voellenkle, C., Maimone, B., Capogrossi, M.C., Martelli, F.: ROD1 is a seedless target gene of hypoxia-induced mir-210. PLoS One 7, e44651 (2012)

    Article  Google Scholar 

  16. Condorelli, G., Latronico, M.V., Dorn 2nd, G.W.: MicroRNAs in heart disease: putative novel therapeutic targets? Eur. Heart J. 31, 649–658 (2010)

    Article  Google Scholar 

  17. van Rooij, E., Marshall, W.S., Olson, E.N.: Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103, 919–928 (2008)

    Article  Google Scholar 

  18. Zampetaki, A., Willeit, P., Drozdov, I., Kiechl, S., Mayr, M.: Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc. Res. 93, 555–562 (2012)

    Article  Google Scholar 

  19. Di Stefano, V., Zaccagnini, G., Capogrossi, M.C., Martelli, F.: MicroRNAs as peripheral blood biomarkers of cardiovascular disease. Vascul. Pharmacol. 55, 111–118 (2011)

    Article  Google Scholar 

  20. D’Alessandra, Y., Devanna, P., Limana, F., Straino, S., Di Carlo, A., Brambilla, P.G., Rubino, M., Carena, M.C., Spazzafumo, L., De Simone, M., Micheli, B., Biglioli, P., Achilli, F., Martelli, F., Maggiolini, S., Marenzi, G., Pompilio, G., Capogrossi, M.C.: Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 31, 2765–2773 (2010)

    Article  Google Scholar 

  21. Ji, X., Takahashi, R., Hiura, Y., Hirokawa, G., Fukushima, Y., Iwai, N.: Plasma miR-208 as a biomarker of myocardial injury. Clin. Chem. 55, 1944–1949 (2009)

    Article  Google Scholar 

  22. Goren, Y., Kushnir, M., Zafrir, B., Tabak, S., Lewis, B.S., Amir, O.: Serum levels of microRNAs in patients with heart failure. Eur. J. Heart Fail. 14, 147–154 (2012)

    Article  Google Scholar 

  23. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., Stoffel, M.: Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438, 685–689 (2005)

    Article  Google Scholar 

  24. Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., Subramaniam, A., Propp, S., Lollo, B.A., Freier, S., Bennett, C.F., Bhanot, S., Monia, B.P.: miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 3, 87–98 (2006)

    Article  Google Scholar 

  25. Trang, P., Wiggins, J.F., Daige, C.L., Cho, C., Omotola, M., Brown, D., Weidhaas, J.B., Bader, A.G., Slack, F.J.: Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol. Ther. 19, 1116–1122 (2011)

    Article  Google Scholar 

  26. Ivan, M., Harris, A.L., Martelli, F., Kulshreshtha, R.: Hypoxia response and microRNAs: no longer two separate worlds. J. Cell. Mol. Med. 12, 1426–1431 (2008)

    Article  Google Scholar 

  27. Devlin, C., Greco, S., Martelli, F., Ivan, M.: miR-210: more than a silent player in hypoxia. IUBMB Life 63, 94–100 (2011)

    Google Scholar 

  28. Gorospe, M., Tominaga, K., Wu, X., Fahling, M., Ivan, M.: Post-transcriptional control of the hypoxic response by RNA-binding proteins and microRNAs. Front. Mol. Neurosci. 4, 7 (2011)

    Article  Google Scholar 

  29. Suarez, Y., Sessa, W.C.: MicroRNAs as novel regulators of angiogenesis. Circ. Res. 104, 442–454 (2009)

    Article  Google Scholar 

  30. Wang, S., Olson, E.N.: AngiomiRs–key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19, 205–211 (2009)

    Article  Google Scholar 

  31. Hu, S., Huang, M., Li, Z., Jia, F., Ghosh, Z., Lijkwan, M.A., Fasanaro, P., Sun, N., Wang, X., Martelli, F., Robbins, R.C., Wu, J.C.: MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122, S124–S131 (2010)

    Article  Google Scholar 

  32. Hullinger, T.G., Montgomery, R.L., Seto, A.G., Dickinson, B.A., Semus, H.M., Lynch, J.M., Dalby, C.M., Robinson, K., Stack, C., Latimer, P.A., Hare, J.M., Olson, E.N., van Rooij, E.: Inhibition of miR-15 protects against cardiac ischemic injury. Circ. Res. 110, 71–81 (2012)

    Article  Google Scholar 

  33. Buja, L.M.: Myocardial ischemia and reperfusion injury. Cardiovasc. Pathol. 14, 170–175 (2005)

    Article  Google Scholar 

  34. Ye, Y., Perez-Polo, J.R., Qian, J., Birnbaum, Y.: The role of microRNA in modulating myocardial ischemia–reperfusion injury. Physiol. Genomics 43, 534–542 (2011)

    Article  Google Scholar 

  35. Frost, R.J., van Rooij, E.: miRNAs as therapeutic targets in ischemic heart disease. J. Cardiovasc. Transl. Res. 3, 280–289 (2010)

    Article  Google Scholar 

  36. Dorn 2nd, G.W.: MicroRNAs in cardiac disease. Transl. Res. 157, 226–235 (2011)

    Article  Google Scholar 

  37. Heyn, J., Hinske, C., Mohnle, P., Luchting, B., Beiras-Fernandez, A., Kreth, S.: MicroRNAs as potential therapeutic agents in the treatment of myocardial infarction. Curr. Vasc. Pharmacol. 9, 733–740 (2011)

    Article  Google Scholar 

  38. Xu, C., Lu, Y., Pan, Z., Chu, W., Luo, X., Lin, H., **ao, J., Shan, H., Wang, Z., Yang, B.: The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120, 3045–3052 (2007)

    Article  Google Scholar 

  39. Tang, Y., Zheng, J., Sun, Y., Wu, Z., Liu, Z., Huang, G.: MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 50, 377–387 (2009)

    Article  Google Scholar 

  40. Shan, Z.X., Lin, Q.X., Fu, Y.H., Deng, C.Y., Zhou, Z.L., Zhu, J.N., Liu, X.Y., Zhang, Y.Y., Li, Y., Lin, S.G., Yu, X.Y.: Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem. Biophys. Res. Commun. 381, 597–601 (2009)

    Article  Google Scholar 

  41. Yang, B., Lin, H., **ao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., Wang, Z.: The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nat. Med. 13, 486–491 (2007)

    Article  Google Scholar 

  42. Ren, X.P., Wu, J., Wang, X., Sartor, M.A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T.J., Fan, G.C.: MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357–2366 (2009)

    Article  Google Scholar 

  43. De Celle, T., Vanrobaeys, F., Lijnen, P., Blankesteijn, W.M., Heeneman, S., Van Beeumen, J., Devreese, B., Smits, J.F., Janssen, B.J.: Alterations in mouse cardiac proteome after in vivo myocardial infarction: permanent ischaemia versus ischaemia–reperfusion. Exp. Physiol. 90, 593–606 (2005)

    Article  Google Scholar 

  44. Dong, S., Cheng, Y., Yang, J., Li, J., Liu, X., Wang, X., Wang, D., Krall, T.J., Delphin, E.S., Zhang, C.: MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J. Biol. Chem. 284(43), 29514–29525 (2009)

    Article  Google Scholar 

  45. Roy, S., Khanna, S., Hussain, S.R., Biswas, S., Azad, A., Rink, C., Gnyawali, S., Shilo, S., Nuovo, G.J., Sen, C.K.: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21–29 (2009)

    Article  Google Scholar 

  46. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M.A., Licht, J.D., Pena, J.T., Rouhanifard, S.H., Muckenthaler, M.U., Tuschl, T., Martin, G.R., Bauersachs, J., Engelhardt, S.: MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984 (2008)

    Article  Google Scholar 

  47. van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A., Olson, E.N.: Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. USA 105, 13027–13032 (2008)

    Article  Google Scholar 

  48. Bonauer, A., Carmona, G., Iwasaki, M., Mione, M., Koyanagi, M., Fischer, A., Burchfield, J., Fox, H., Doebele, C., Ohtani, K., Chavakis, E., Potente, M., Tjwa, M., Urbich, C., Zeiher, A.M., Dimmeler, S.: MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324, 1710–1713 (2009)

    Article  Google Scholar 

  49. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J.M., Roeten, M.K., van Oeveren-Rietdijk, A.M., Baelde, H.J., Monge, M., Vos, J.B., de Boer, H.C., Quax, P.H., Rabelink, T.J., van Zonneveld, A.J.: Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. 13(8A), 1577–1585 (2008)

    Article  Google Scholar 

  50. Huard, J., Li, Y., Fu, F.H.: Muscle injuries and repair: current trends in research. J. Bone Joint Surg. Am. 84-A, 822–832 (2002)

    Google Scholar 

  51. Blaisdell, F.W.: The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovasc. Surg. 10, 620–630 (2002)

    Article  Google Scholar 

  52. Hawke, T.J., Garry, D.J.: Myogenic satellite cells: physiology to molecular biology. J. Appl. Physiol. 91, 534–551 (2001)

    Google Scholar 

  53. Greco, S., De Simone, M., Colussi, C., Zaccagnini, G., Fasanaro, P., Pescatori, M., Cardani, R., Perbellini, R., Isaia, E., Sale, P., Meola, G., Capogrossi, M.C., Gaetano, C., Martelli, F.: Common micro-RNA signature in skeletal muscle damage and regeneration induced by Duchenne muscular dystrophy and acute ischemia. FASEB J. 23(10), 3335–3346 (2009)

    Article  Google Scholar 

  54. Straino, S., Germani, A., Di Carlo, A., Porcelli, D., De Mori, R., Mangoni, A., Napolitano, M., Martelli, F., Biglioli, P., Capogrossi, M.C.: Enhanced arteriogenesis and wound repair in dystrophin-deficient mdx mice. Circulation 110, 3341–3348 (2004)

    Article  Google Scholar 

  55. Dharap, A., Bowen, K., Place, R., Li, L.C., Vemuganti, R.: Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J. Cereb. Blood Flow Metab. 29, 675–687 (2009)

    Article  Google Scholar 

  56. Serracino-Inglott, F., Habib, N.A., Mathie, R.T.: Hepatic ischemia–reperfusion injury. Am. J. Surg. 181, 160–166 (2001)

    Article  Google Scholar 

  57. Yu, C.H., Xu, C.F., Li, Y.M.: Association of microRNA-223 expression with hepatic ischemia/reperfusion injury in mice. Dig. Dis. Sci. 54(11), 2362–2366 (2008)

    Article  Google Scholar 

  58. Shen, J., Yang, X., **e, B., Chen, Y., Swaim, M., Hackett, S.F., Campochiaro, P.A.: MicroRNAs regulate ocular neovascularization. Mol. Ther. 16, 1208–1216 (2008)

    Article  Google Scholar 

  59. Voellenkle, C., van Rooij, J., Guffanti, A., Brini, E., Fasanaro, P., Isaia, E., Croft, L., David, M., Capogrossi, M.C., Moles, A., Felsani, A., Martelli, F.: Deep-sequencing of endothelial cells exposed to hypoxia reveals the complexity of known and novel microRNAs. RNA 18, 472–484 (2012)

    Article  Google Scholar 

  60. Fasanaro, P., D’Alessandra, Y., Di Stefano, V., Melchionna, R., Romani, S., Pompilio, G., Capogrossi, M.C., Martelli, F.: MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J. Biol. Chem. 283, 15878–15883 (2008)

    Article  Google Scholar 

  61. Fasanaro, P., Greco, S., Lorenzi, M., Pescatori, M., Brioschi, M., Kulshreshtha, R., Banfi, C., Stubbs, A., Calin, G.A., Ivan, M., Capogrossi, M.C., Martelli, F.: An integrated approach for experimental target identification of hypoxia-induced miR-210. J. Biol. Chem. 284, 35134–35143 (2009)

    Article  Google Scholar 

  62. Huang, M., Chen, Z., Hu, S., Jia, F., Li, Z., Hoyt, G., Robbins, R.C., Kay, M.A., Wu, J.C.: Novel minicircle vector for gene therapy in murine myocardial infarction. Circulation 120, S230–S237 (2009)

    Article  Google Scholar 

  63. Small, E.M., Frost, R.J., Olson, E.N.: MicroRNAs add a new dimension to cardiovascular disease. Circulation 121, 1022–1032 (2010)

    Article  Google Scholar 

  64. Ikeda, S., Kong, S.W., Lu, J., Bis**, E., Zhang, H., Allen, P.D., Golub, T.R., Pieske, B., Pu, W.T.: Altered microRNA expression in human heart disease. Physiol. Genomics 31, 367–373 (2007)

    Article  Google Scholar 

  65. Zhao, Y., Ransom, J.F., Li, A., Vedantham, V., von Drehle, M., Muth, A.N., Tsuchihashi, T., McManus, M.T., Schwartz, R.J., Srivastava, D.: Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129, 303–317 (2007)

    Article  Google Scholar 

  66. Jeyaseelan, K., Lim, K.Y., Armugam, A.: MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39, 959–966 (2008)

    Article  Google Scholar 

  67. Pulkkinen, K., Malm, T., Turunen, M., Koistinaho, J., Yla-Herttuala, S.: Hypoxia induces microRNA miR-210 in vitro and in vivo ephrin-A3 and neuronal pentraxin 1 are potentially regulated by miR-210. FEBS Lett. 582, 2397–2401 (2008)

    Article  Google Scholar 

  68. Yin, C., Wang, X., Kukreja, R.C.: Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemia-reperfusion in mice. FEBS Lett. 582, 4137–4142 (2008)

    Article  Google Scholar 

  69. Bostjancic, E., Zidar, N., Glavac, D.: MicroRNA microarray expression profiling in human myocardial infarction. Dis. Markers 27, 255–268 (2009)

    Article  Google Scholar 

  70. Callis, T.E., Pandya, K., Seok, H.Y., Tang, R.H., Tatsuguchi, M., Huang, Z.P., Chen, J.F., Deng, Z., Gunn, B., Shumate, J., Willis, M.S., Selzman, C.H., Wang, D.Z.: MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119, 2772–2786 (2009)

    Article  Google Scholar 

  71. Lu, Y., Zhang, Y., Shan, H., Pan, Z., Li, X., Li, B., Xu, C., Zhang, B., Zhang, F., Dong, D., Song, W., Qiao, G., Yang, B.: MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc. Res. 84, 434–441 (2009)

    Article  Google Scholar 

  72. Rane, S., He, M., Sayed, D., Vashistha, H., Malhotra, A., Sadoshima, J., Vatner, D.E., Vatner, S.F., Abdellatif, M.: Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ. Res. 104, 879–886 (2009)

    Article  Google Scholar 

  73. Yin, C., Salloum, F.N., Kukreja, R.C.: A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ. Res. 104, 572–575 (2009)

    Article  Google Scholar 

  74. Biswas, S., Roy, S., Banerjee, J., Hussain, S.R., Khanna, S., Meenakshisundaram, G., Kuppusamy, P., Friedman, A., Sen, C.K.: Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc. Natl. Acad. Sci. USA 107, 6976–6981 (2011)

    Article  Google Scholar 

  75. Wang, J.X., Jiao, J.Q., Li, Q., Long, B., Wang, K., Liu, J.P., Li, Y.R., Li, P.F.: miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 17(71–78) (2011)

    Google Scholar 

Download references

Acknowledgments

We appreciate the permission of Elsevier Inc. to reprint excerpts from the publication “microRNA: emerging therapeutic targets in acute ischemic diseases” of Fasanaro P., Greco S., Ivan M., Capogrossi M.C., Martelli F. published on Pharmacology & Therapeutics (2010) January V.125, N.1: 92–104. FM and PF are supported by Ministero della Salute and Associazione Italiana per la Ricerca sul Cancro (AIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Martelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Italia

About this chapter

Cite this chapter

Fasanaro, P., Martelli, F. (2013). MicroRNAs and Tissue Response to Acute Ischemia. In: Grieco, N., Marzegalli, M., Paganoni, A. (eds) New Diagnostic, Therapeutic and Organizational Strategies for Acute Coronary Syndromes Patients. Contributions to Statistics. Springer, Milano. https://doi.org/10.1007/978-88-470-5379-3_7

Download citation

Publish with us

Policies and ethics

Navigation