Thermochemical Conversion of Biomass

  • Chapter
  • First Online:
Practices and Perspectives in Sustainable Bioenergy

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Sustainable biomass, with number of environmental and economic advantages, has enormous potential in reducing fossil fuels usage to mitigate climate change and achieving low-carbon economy. Because of variety of biomass species with numerous physical and chemical properties, conversion of biomass feedstocks into bioenergy and bio-based products involves a broad diversity of existing and emerging pre-treatment and conversion technologies. Biomass conversion into power, heat, fuels and bio-based products, based on the specific feedstock, is generally categorized into two major conversion pathways—biochemical and thermochemical. Thermochemical conversion technologies to convert sustainable biomass and organic waste into energy forms (heat, power, fuels and bio-based materials) can be categorized as direct combustion, gasification and pyrolysis based on the amount of oxidizing agent present. In this chapter, biomass thermochemical conversion to low-carbon energy and bio-based product production pathways is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agblevor FA et al (1994) Inorganic compounds in biomass feedstocks: their role in char formation and effect on the quality of fast pyrolysis oils. In: Milne TA (ed) Proceedings of biomass pyrolysis oils properties and combustion meeting, 26–28 Sept 1994, Estes Park, CO, NREL-CP-430-7215. Golden CO, NREL, pp 77–89

    Google Scholar 

  • Agblevor FA et al (1995) Fast pyrolysis of stored biomass feedstocks. Energy Fuels 635–640

    Google Scholar 

  • Agblevor FA, Besler-Guran S (2002) Fractional pyrolysis of biomass for high-valued products. Fuel Chem Div Prepr 47:374–375

    Google Scholar 

  • Agblevor FA et al (2010) Production of stable biomass pyrolysis oils using fractional catalytic pyrolysis. Energy Fuels 24:4087–4089

    Article  Google Scholar 

  • Aho A et al (2008) Catalytic pyrolysis of woody biomass in a fluidized-bed reactor: influence of zeolite structure. Fuel 87:2493–2501

    Article  Google Scholar 

  • Ahrenfelt J et al (2013) Biomass gasification cogeneration—a review of state of the art technology and near future perspectives. Appl Therm Eng 50:1407–1417

    Article  Google Scholar 

  • Akhtar J, Amin NAS (2011) A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sustain Energy Rev 15:1615–1624

    Article  Google Scholar 

  • Alauddin ZABZ et al (2010) Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: a review. Renew Sustain Energy Rev 14:2852–2862

    Article  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification: a review. Waste Manag 32:625–639

    Article  Google Scholar 

  • Babu BV, Chaurasia AS (2003) Modeling for pyrolysis of solid particle: kinetics and heat transfer effects. Energy Convers Manag 44:2251–2275

    Article  Google Scholar 

  • Bain RL et al (2005) Evaluation of catalyst deactivation during the catalytic steam reforming of biomass-derived syngas. Ind Eng Chem Res 44:7945–7956

    Article  Google Scholar 

  • Basu P (2010) Gasification theory and modelling gasifiers. In: Gasification design handbook. Academic Press, Boston, pp 117–165. https://doi.org/10.1016/B978-0-12-374988-8.00005-2

  • Baxter L (2005) Biomass-coal co-combustion: opportunity for affordable renewable energy. Fuel 84:2141–2162

    Article  Google Scholar 

  • Binod P et al (2011) Hydrolysis of lignocellulosic biomass for bioethanol production (Chap. 10). In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels: alternative feedstocks and conversion processes. Academic Press, pp 229–250. ISBN: 978-0-12-385099-7

    Google Scholar 

  • Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Polym Sci 19:797–841

    Google Scholar 

  • Bond JQ (2014) Production of renewable jet fuel range alkanes and commodity chemicals from integrated catalytic processing of biomass. Energy Environ Sci. https://doi.org/10.1039/c.3ee43946e

    Article  Google Scholar 

  • Bonelli PR, Cerella EG, Cukierman AI (2003) Slow pyrolysis of nutshells: characterization of derived chars and of process kinetics. Energy Sources Part A: Recover Util Environ Eff 25:767–778

    Article  Google Scholar 

  • Brennan M, Guran S, Specca DR (2014) Assessment of biomass energy potential in New Jersey, 2.0. NJAES Publication No. 2014, Rutgers, the State University of New Jersey, New Brunswick, NJ

    Google Scholar 

  • Brennan-Tonetta M, Guran S, Specca D (2014) Feedstock opportunities for bioenergy production: assessment of biomass energy potential in New Jersey. Ind Biotechnol 10(6):404–412. https://doi.org/10.1089/ind.2014.0023

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  Google Scholar 

  • Bridgwater AV, Bridge SA (1991) A review of biomass pyrolysis and pyrolysis technologies. In: Bridgewater AV et al (eds) Biomass pyrolysis liquids upgrading and utilization, vol 2. ECSC, EEC, EAEC, Brussels and Luxembourg, pp 11–91

    Google Scholar 

  • Bridgwater AV et al (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  Google Scholar 

  • Bridgwater AV et al (2001) An overview of fast pyrolysis. In: Bridgwater AV (ed) Progress in thermochemical biomass conversion. Blackwell Science, Oxford, pp 977–997

    Google Scholar 

  • Broido A, Nelson MA (1975) Char yield on pyrolysis of cellulose. Combust Flame 24:263–268

    Article  Google Scholar 

  • Brown RC (2006) Biorefineries based on hybrid thermochemical-biological processing—an overview. In: Kamn B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products, status quo and future directions, vol 1. Wiley-VCH Verlag GmBH &Co., Weinheim, pp 227–251

    Google Scholar 

  • Buhler W, Dinjus E, Ederer HJ, Kruse A, Mas C (2002) Ionic reactions and pyrolysis of glycerol as competing pathways in near and supercritical catalytic dehydration of biomass-derived in sub- and supercritical water. J Supercrit Fluids 22:37–53

    Article  Google Scholar 

  • Burhenne L, Messmer J, Aicher T, Laborie MP (2013) The effect of biomass components lignin, cellulose, and hemicellulose on TGA and fixed bed pyrolysis. J Anal Appl Pyrol 101:177–184

    Article  Google Scholar 

  • Christensen KA, Livbjerg H (2009) A plug flow model for chemical reactions and aerosol nucleation and growth in an alkali-containing flue gas. Aerosol Sci Technol 33:470–489

    Article  Google Scholar 

  • Couhert C et al (2009a) Failure of the component additivity rule to predict gas yields of biomass in flash pyrolysis at 950 °C. Biomass Bioenergy 33:316–326

    Article  Google Scholar 

  • Couhert C et al (2009b) Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicellulose and lignin? Fuel 88(3):408–417

    Article  Google Scholar 

  • Damartzis T, Zabaniotou A (2011) Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review. Renew Sustain Energy Rev 15:366–378

    Google Scholar 

  • Datar RP, Shenkman RM, Cateni BG, Huhnke RL, Lewis RS (2004) Fermentation of biomass generated producer gas to ethanol. Biotechnol Bioeng 86:587–594

    Google Scholar 

  • Dayton DC, French RJ, Milne TA (1995) Direct observation of alkali vapor release during biomass combustion and gasification. 1. Application of molecular beam/mass spectrometry to switchgrass combustion. Energy Fuels 9:855–865

    Article  Google Scholar 

  • Delmer DP, Amor Y (1995) Cellulose biosynthesis. Plant Cell 7:987–1000

    Google Scholar 

  • Demirbas A (2004) Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J Anal Appl Pyrol 71:803–815

    Article  Google Scholar 

  • Demirbas A et al (2004) Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J Anal Appl Pyrol 72:243–248

    Article  Google Scholar 

  • Devi LM et al (2003) A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24:125–140

    Google Scholar 

  • Di Blasi C (1996) Heat, momentum and mass transport through a shrinking biomass particle exposed to thermal radiation. Chem Eng Sci 51:1121–1132

    Article  Google Scholar 

  • Di Blasi C et al (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224

    Article  Google Scholar 

  • Dodge E (2009) Plasma gasification: clean renewable fuel through vaporization of waste. http://isites.harvard.edu/fs/docs/icb.topic1431395.files/PLASMA%20GASIFICATION_Clean%20Renewable%20Fuel%20Through%20Vaporization%20of%20Waste.pdf

  • Dry ME (1996) Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl Catal 138:319–344

    Article  Google Scholar 

  • Dutta A, Phillips SD (2009) Thermochemical ethanol via direct gasification and mixed alcohol synthesis of lignocellulosic biomass. Technical report, NREL/TP-510-45913, July 2009

    Google Scholar 

  • El-Rub AZ, Bramer EA, Brem G (2004) Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res 43:6911–6919

    Article  Google Scholar 

  • Fargione J et al (2008) Land clearing and the biofuel carbon debt. Science 319(5867):1235–1238

    Google Scholar 

  • French R, Czernik S (2010) Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol 91:25–32

    Google Scholar 

  • Garcia-Perez M et al (2006) Multiphase structure of bio-oils. Energy Fuels 20:364–375

    Article  Google Scholar 

  • Granatstein D et al (2009) Use of biochar from the pyrolysis of waste organic material as a soil amendment. Washington State University, Sustaining Agriculture and Natural Resources, C0800248, July 2009

    Google Scholar 

  • Green AES, Feng J (2006) Systematics of corn stover pyrolysis yields and comparisons of analytical and kinetic representations. J Anal Appl Pyrol 76:60–69

    Article  Google Scholar 

  • Grethlein AJ, Jain MK (1993) Bioprocessing of coal-derived synthesis gases by anaerobic bacteria. Trends Biotechnol 10:418–423

    Google Scholar 

  • Guran S, Agblevor FA, Brenan-Tonetta M (in press) Biofuels, bio-power, and bio-products from sustainable biomass: coupling energy crops and waste with clean energy technologies. Wiley Biotechnology Series

    Google Scholar 

  • Hanaoka T, Inoue S, Uno S, Ogi T, Minowa T (2005) Effect of woody biomass components on air-steam gasification. Biomass Bioenergy 28:69–76

    Google Scholar 

  • Harris EE (1949) Wood saccharification advances in carbohydrate chemistry. Academic Press, pp 153–88

    Google Scholar 

  • Hein KRG, Bemtgen JM (1998) EU clean coal technology-co-combustion of coal and biomass. Fuel Process Technol 54:159–169

    Article  Google Scholar 

  • Herman RG (1991) Classical and non-classical routes for alcohol synthesis (Chap. 7). In: Guczi L (ed) New trends in CO activation. Elsevier, New York, pp 265–349

    Google Scholar 

  • Hernandez AM, Labady M, Laine J (2014) Granular activated carbon from wood originated from tropical virgin forest. Open J For 4:208–211

    Google Scholar 

  • Hernandez-Pacheco E, Mann MD, Hutton PN, Singh D, Martin KE (2005) A cell-level model for a solid oxide fuel cell operated with syngas from a gasification process. Int J Hydrog Energy 30:1221–1233

    Article  Google Scholar 

  • Hertel T et al (2010) Effects of US maize ethanol on global land use and greenhouse gas emissions: estimating market-mediated responses. Bioscience 60:223–231

    Article  Google Scholar 

  • Heschel W, Klose E (1995) On the suitability of agricultural byproducts for the manufacture of granular activated carbon. Fuel 1786–1791

    Google Scholar 

  • Iaquaniello G, Mangiapane A (2006) Integration of biomass gasification with MCFC. Int J Hydrog Energy 31:399–404

    Article  Google Scholar 

  • Johansson LS et al (2003) Particle emission from biomass combustion in small combustors. Biomass Bioenerg 25:435–446

    Article  Google Scholar 

  • Jokiniemi JK, Lind T, Hokkinen J, Kurkela J, Kauppinen EI (2001) Modelling and experimental results on aerosol formation, deposition and emissions in fluidized bed combustion of biomass. In: Nussbaumer T (ed) Aerosols from biomass combustion. International seminar, 27 June 2001, Zurich

    Google Scholar 

  • Jurado F, Cano A, Carpio J (2004) Biomass based micro-turbine plant and distribution network stability. Energy Conserv Manag 45:2713–2727

    Article  Google Scholar 

  • Kanaujia PK, Sharma YK, Garg MO, Tripathi D, Singh R (2014) Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J Anal Appl Pyrol 105:55–74

    Article  Google Scholar 

  • Karellas S, Karl J, Kakaras E (2008) An innovative biomass gasification process and its coupling with microturbine and fuel cell systems. Energy 33:284–291

    Article  Google Scholar 

  • Khan AA et al (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 20:21–50

    Article  Google Scholar 

  • Knutsson P et al (2014) Effect of bed materials mixing on the observed bed sintering. In: 11th international conference on fluidized bed technology, CFB 2014, Bei**g, China, 14 May 2014–17 May 2014, pp 655–660

    Google Scholar 

  • Kulmala M, Vesala T, Laaksonen A (2000) Physical chemistry of aerosol formation. In: Spurny KR (ed) Aerosol chemical processes in the environment. Lewis Publishers, Boca Raton

    Google Scholar 

  • Kumar P et al (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. Article ASAP. https://doi.org/10.1021/ie801542g. Publication Date (Web): 20 Mar 2009

  • Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Butterworth-Heinemann, Stoneham

    Google Scholar 

  • Lappas AA, Samolada MC, Iatridis DK, Voutetakis SS, Vasalos IA (2002) Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals. Fuel 81:2087–2095

    Article  Google Scholar 

  • Lede J (2013) Biomass fast pyrolysis reactors: a review of a few scientific challenges and of related recommended research topics. Oil Gas Sci Technol 68:801–814

    Article  Google Scholar 

  • Liu Q, Wang S, Zheng Y, Luo Z, Cen K (2008) Mechanism study of wood lignin pyrolysis by using TG-FTIR analysis. J Anal Appl Pyrol 82:170–177

    Article  Google Scholar 

  • Maness PC, Weaver PF (1994) Production of poly-3-hydroxyalkanolates from CO and H2 by a novel photosynthetic bacterium. Appl Biochem Biotechnol 45–46:395–406

    Article  Google Scholar 

  • McDonald JD et al (2000) Fine particle and gaseous emission rates from residential wood combustion. Environ Sci Technol 34:2080–2091

    Article  Google Scholar 

  • Mohan D et al (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20:848–889

    Article  Google Scholar 

  • Morin S et al (2012) Two stage fluid bed plasma gasification process for solid waste valorisation; technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manag 32:676–684

    Article  Google Scholar 

  • Mosier NS et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  Google Scholar 

  • Murphy AB, Heberlein J (2008) Thermal plasma waste treatment. J Phys D Appl Phys 41:1–20

    Article  Google Scholar 

  • Naik SN et al (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  Google Scholar 

  • Nemtsov DA, Zabaniotou A (2008) Mathematical modelling and simulation approaches of agricultural residues air gasification in a bubbling fluidized bed reactor. Chem Eng J 143:10–31

    Article  Google Scholar 

  • Ng KL, Chadwick D, Toseland BA (1999) Kinetics and modeling of dimethyl ether synthesis from synthesis gas. Chem Eng Sci 54:3587–3592

    Article  Google Scholar 

  • Oasmaa A, Czernik S (1999) Fuel quality of biomass pyrolysis oils-state of the art for the end users. Energy Fuels 13:914–921

    Article  Google Scholar 

  • Obaidullah M et al (2012) A review on particle emissions from small scale biomass combustion. Int J Renew Energy Res 2(1):147–159

    Google Scholar 

  • Obernberger I, Brunner T, Joller M (2001) Characterization and formation of aerosols and fly-ashes from fixed-bed biomass combustion. In: Nussbaumer T (ed) Aerosols from biomass combustion. International Seminar at 27, 2001, Zurich

    Google Scholar 

  • Pereira EG et al (2012) Sustainable energy: a review of gasification technologies. Renew Sustain Energy Rev 16:4753–4762

    Article  Google Scholar 

  • Peterson D, Haase S (2009) Market assessment of biomass gasification and combustion technology for small- and medium scale applications. Technical Report, July 2009, NREL/TP-7 A2-46190

    Google Scholar 

  • Piskorz J et al (1998) Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. J Anal Appl Pyrol 46:15–29

    Article  Google Scholar 

  • Prasad S et al (2007) Ethanol as an alternative fuel from agricultural, industrial and urban residues. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Puig-Arnavat M et al (2010) Review and analysis of biomass gasification models. Renew Sustain Energy Rev 14:2841–2851

    Google Scholar 

  • Putun AE et al (2005) Fixed-bed pyrolysis of cotton stalk for liquid and solid products. Fuel Process Technol 86:1207–1219

    Article  Google Scholar 

  • Rauch R (2003) Biomass gasification to produce synthesis gas for fuels and chemicals. Report for IEA bioenergy agreement, Task33, Thermal gasification of biomass

    Google Scholar 

  • Reed AR, Williams PT (2004) Thermal processing of biomass natural fiber wastes by pyrolysis. Int J Energy Res 28:131–145

    Article  Google Scholar 

  • Ringer M, Putsche V, Scahill J (2006) Large-scale pyrolysis oil production: a technology assessment and economic analysis. Technical report, National Renewable Energy Laboratory, NREL/TP-510-37779, Nov 2006

    Google Scholar 

  • Ruiz JA et al (2013) Biomass gasification for electricity generation: review of current technology barriers. Renew Sustain Energy Rev 18:174–183

    Article  Google Scholar 

  • Sadaka S, Johnson DM (2017) Biomass combustion. University of Arkansas, FSA 1056. https://www.uaex.edu/publications/PDF/FSA-1056.pdf

  • Schulz H (1999) Short history and present trends of Fischer-Tropsch process. Appl Catal 186:3–13

    Article  Google Scholar 

  • Searchinger T et al (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 310:1238–1240

    Article  Google Scholar 

  • Seinfeld JH, Pandis SN (2006) Atmospheric chemistry and physics—from air pollution to climate change. Wiley

    Google Scholar 

  • Shafizadeh F (1985) Pyrolytic reactions and products of biomass. In: Overend RP, Milne TA, Mudge LK (eds) Fundamentals of thermochemicals biomass conversion. Applied Science, London

    Google Scholar 

  • Shu** Z, Yulong W, Mingde Y, Kaleem I, Chun L, Tong J (2010) Production and characterization of bio-oil from hydrothermal liquefaction of microalgae Dunaliella tertiolecta cake. Energy 35:5406–5411

    Article  Google Scholar 

  • Sippula O (2010) Fine particle formation and emissions in biomass combustion. Dissertation. http://www.atm.helsinki.fi/faar/reportseries/rs-108.pdf

  • Skoulou V et al (2008) Syngas production from olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier. Int J Hydrog Energy 33:1185–1194

    Article  Google Scholar 

  • Stefanidis SD, Kalogiannis KG, Iliopoulu EF, Michailof CM, Pilavachi PA, Lappas AA (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrol 105:143–150

    Article  Google Scholar 

  • Sutton D et al (2001) Review of literature on catalysts for biomass gasification. Fuel Process Technol 73:155–173

    Article  Google Scholar 

  • Tao JL, Jun KW, Lee KW (2001) Co-production of dimethyl ether and methanol from CO2 hydrogenation: development of a stable hybrid catalyst. Appl Organomet Chem 15:105–108

    Article  Google Scholar 

  • Thunman H, Leckner B (2002) Thermal conductivity of wood-models for different stages of combustion. Biomass Bioenerg 23:47–54

    Article  Google Scholar 

  • Tijmensen MJA et al (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification. Biomass Bioenerg 23:129–152

    Article  Google Scholar 

  • Tissari J et al (2008) Fine particle and gas emissions from the combustion of agricultural fuels fired in a 20 kW burner. Energy Fuels 22:2033–2042

    Article  Google Scholar 

  • Toor SS, Rosendahl L, Rudolf A (2011) Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy 36:2328–2342

    Article  Google Scholar 

  • Vakkilainen E et al (2013) Large industrial users of energy biomass. IEA Bioenery, Task 40: sustainable international bioenergy trade, Sept 2013. http://www.bioenergytrade.org/downloads/t40-large-industrial-biomass-users.pdf

  • Valero A, Uson S (2006) Oxy-co-gasification of coal and biomass in an integrated gasification combined cycle (IGCC) power plant. Energy 31:1643–1655

    Article  Google Scholar 

  • Van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing. Earthscan, London

    Google Scholar 

  • Vardon DR (2012) Hydrothermal liquefaction for energy recovery from high-moisture waste biomass. Thesis for M.Sc., University of Illinois at Urbana-Champaign

    Google Scholar 

  • Vega JL, Prieto S, Elmore BB, Clausen EC, Gaddy JL (1989) The biological production of ethanol from synthesis gas. Appl Biochem Biotechnol 20–21:781–797

    Google Scholar 

  • Verma M, Godbout S, Brar SK, Solomatnikova O, Lemay SP, Larouche JP (2012) Biofuels production from biomass by thermochemical conversion technologies. Int J Chem Eng 1–18, ID 542426. https://doi.org/10.1155/2012/542426

  • Wang L et al (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenerg 32:573–581

    Article  Google Scholar 

  • Watanabe M, Lida T, Inomata H (2006) Decomposition of a long chain saturated fatty acid with some additives in hot compressed water. Energy Convers Manag 47:3344–3350

    Article  Google Scholar 

  • Waters PL (1960) Fractional thermogravimetric analysis. Anal Chem 32:852–858

    Article  Google Scholar 

  • Werther J, Saenger M, Hartge E-U, Ogada T, Siagi Z (2009) Combustion of agricultural residues. Prog. Energy Combust. Sci. 26:1–27

    Article  Google Scholar 

  • Weerdhof MW (2010) Modeling the pyrolysis process of biomass particles. Master thesis, Eindhoven University of Technology. http://w3.wtb.tue.nl/fileadmin/wtb/ct-pdfs/Master_Theses/Marcovandeweerdhof.pdf

  • White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrol 91:1–33

    Article  Google Scholar 

  • Wiinikka H, Gebart R (2005) The influence of fuel type on particle emissions in combustion of biomass pellets. Combust Sci Technol 177:741–763

    Article  Google Scholar 

  • Williams PT, Besler S (1996) The influence of temperature and heating rate on the slow pyrolysis of biomass. Renew Energy 7:233–250

    Article  Google Scholar 

  • Wright MM et al (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Technical report, NREL/TP-6A20-46586, Nov 2010

    Google Scholar 

  • Wu C, Wang L, Williams PT, Shi J, Huang J (2011) Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: influence of Ni concentration. Appl Catal B: Environ 108–109:6–13

    Article  Google Scholar 

  • Yu Y, Lou X, Wu H (2008) Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods. Energy Fuels 22:46–60

    Article  Google Scholar 

  • Zhang Y (2010) Hydrothermal liquefaction to convert biomass into crude oil. In: Blaschek HP, Ezeji TC, Scheffran J (eds) Biofuels from agricultural wastes and byproducts. Blackwell Publishing. ISBN: 978-0-813-80252-7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serpil Guran .

Editor information

Editors and Affiliations

Glossary

Sustainable Biomass

Biomass feedstocks that do not follow food to fuel pathways and do not result in forest conversion and/or land clearing for biomass production plantations.

Thermochemical Conversion

Conversion technology that involves heat application to rupture the main structure of polymers. This can be applied with or without oxygen.

Combustion

Combustion is an exothermic chemical reaction of a fuel with oxygen.

Gasification

Gasification is a thermochemical conversion process in which carbonaceous substances are partially oxidized in the presence of a gasifying agent (air, steam and oxygen) converted into gaseous products.

Pyrolysis

Thermal degradation of materials in the absence of an oxidizing agent, causing irreversible rupture of polymer structures into smaller molecules leading to the formation of solid (char), liquid (bio-oils) and non-condensable gaseous products (i.e., CO, CO2, H2, CH4, C2H6).

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature India Private Limited

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guran, S. (2020). Thermochemical Conversion of Biomass. In: Mitra, M., Nagchaudhuri, A. (eds) Practices and Perspectives in Sustainable Bioenergy. Green Energy and Technology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3965-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-3965-9_8

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-3963-5

  • Online ISBN: 978-81-322-3965-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation