Electron Spin Resonance Applied to Nanosized-Doped Oxides

  • Chapter
  • First Online:
EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 62))

  • 1744 Accesses

Abstract

The electron spin resonance (ESR or EPR) is a spectroscopic technique particularly suited to investigate solid paramagnetic samples like powders composed of nanosized paramagnetic particles. In this chapter we review ESR investigations on samples of this kind. The effects of do** oxidic nanoparticles by metal cations or by nonmetal species are shown in the first paragraph. ESR can provide information on the energy of the unpaired electron and on the crystal field around it. When two or more unpaired electrons are present on a paramagnetic system, their reciprocal interactions supply important information on nature and distribution of dopant magnetic ions. Moreover, compositional fluctuations at the nanometric scale can induce the formation of extended clusters of magnetic ions. Systems of this kind are discussed in the second and third paragraph of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, X., Mao, S.S.: Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Article  Google Scholar 

  2. Fujishima, A., Zhang, X., Tryk, D.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515–582 (2008)

    Article  Google Scholar 

  3. Meroni, D., Ardizzone, S., Cappelletti, G., Ceotto, M., Ratti, M., Annunziata, R., Benaglia, M., Raimondi, L.: Interplay between chemistry and texture in hydrophobic TiO2 hybrids. J. Phys. Chem. C 115, 18649–18658 (2011)

    Article  Google Scholar 

  4. Taylor, S., Mehta, M., Samakhvalov, A.: Production of hydrogen by glycerol photoreforming using binary nitrogen-metal-promoted N-M-TiO2 photocatalysts. ChemPhysChem 15, 942–949 (2014)

    Article  Google Scholar 

  5. Castro, A.L., Nunes, M.R., Carvalho, M.D., Ferreira, L.P., Jumas, J.C., Costa, F.M., Florencio, M.H.: Doped titanium dioxide nanocrystalline powders with high photocatalytic activity. J. Solid State Chem. 182, 1838–1845 (2009). (b) Cottineau, T., Béalu, N., Gross, P.-A., Pronkin, S.N., Keller, N., Savinova, E.R., Keller, V.: One step synthesis of niobium doped titania nanotube arrays to form (N,Nb) co-doped TiO2 with high visible light photoelectrochemical activity. J. Mater. Chem. A 1, 2151 (2013)

    Google Scholar 

  6. Kudo, A., Niishiro, R., Iwase, A., Kato, H.: Effects of do** of metal cations on morphology, activity, and visible light response of photocatalysts. Chem. Phys. 339, 104–110 (2007)

    Article  Google Scholar 

  7. Furubayashi, Y., Hitosagi, T., Yamamoto, Y., Inaba, K, Kinoda, G., Hirose, Y., Shimada, T., Hasegawa, T.: Transparent metal: Nb doped Anatase TiO2. Appl. Phys. Lett. 86, 252101 (2005). (b) Hitosugi, T., Yamada, N., Nakao, S., Hirose, Y., Hasegawa, T.: Properties of TiO2-based transparent conducting oxides. Phys. Status Solidi A 207, 1529–1537 (2010)

    Google Scholar 

  8. Lü, X., Mou, X., Wu, J., Zhang, D., Zhang, L., Huang, F., Xu, F., Huang, S.: Improved-performance dye-sensitized sola cell using Nb-doped TiO2 electrodes: efficient electron injection and transfer. Adv. Funct. Mater. 20, 509–515 (2010)

    Article  Google Scholar 

  9. Chandiran, A.K., Sauvage, F., Casas-Cabanas, M., Comte, P., Zakeeruddin, S.M., Grätzel, M.: Do** a TiO2 photoanode with Nb5+ to enhance transparency and charge collection efficiency in dye-sensitized solar cells. J. Phys. Chem. C 114, 15849–15856 (2010)

    Article  Google Scholar 

  10. Choudhury, B., Munmun Dey, M., Choudhury, A.: Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int. Nano Lett. 3, 25 (2013)

    Google Scholar 

  11. Atherton, N.M.: Electron Spin Resonance, Chapter 6. Ellis Horwood Ltd, John Wiley (1973)

    Google Scholar 

  12. Zhang, J., Wu, Y., **ng, M., Leghari, S.A.K., Sajjad, S.: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Ener. Environ. Sci. 3, 715–726 (2010)

    Article  Google Scholar 

  13. Ihara, T., Miyoshi, M., Iriyama, Y., Matsumoto, O., Sigihara, S.: Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen do**. Appl. Catal. B: Environ. 42, 403–409 (2003)

    Article  Google Scholar 

  14. Sato, S., Nakamura, R., Abe, S.: Visible-light sensitization of TiO2 photocatalysts by wet-method N do**. Appl. Catal. A 284, 131–137 (2005)

    Article  Google Scholar 

  15. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M., Azzola, M.S., Lo Presti, L., Cerrato, G., Falciola, L.: Role of Pr on the Semiconductor Properties of Nanotitania. An Experimental and First-Principles Investigation. J. Phys. Chem. C 116, 23083–23093 (2012)

    Google Scholar 

  16. Livraghi, S., Viotta, A., Paganini, M.C., Giamello, E.: The nature of paramagnetic species in nitrogen doped TiO2 active in visible light photocatalysis. Chem. Commun. 498–500 (2005)

    Google Scholar 

  17. Di Valentin, G., Pacchioni, G., Selloni, A., Livraghi, S., Giamello, E.: Characterization of paramagnetic species in N-Doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 109, 11414–11419 (2005)

    Article  Google Scholar 

  18. Joung, S.-K., Amamiya, T., Murabayashi, M., Itoh, K.: Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts. Appl. Catal. A: General 312, 20–26 (2006)

    Article  Google Scholar 

  19. Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Di Valentin, C., Pacchioni, G.: Origin of photoactivity of nitrogen-doped titanium dioxide under visible light. J. Am. Chem. Soc. 128, 15666–15671 (2006)

    Article  Google Scholar 

  20. Serpone, N.: Is the band gap of pristine TiO2 Narrowed by anion- and cation-do** of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 110, 24287–24293 (2006)

    Article  Google Scholar 

  21. Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Paganini, M.C., Giamello, E.: N-doped TiO2: theory and experiment. Chem. Phys. 339, 44–56 (2007)

    Article  Google Scholar 

  22. Reyes-Garcia, E.A., Sun, Y., Reyes-Gil, K., Raftery, D.: 15N solid state NMR and EPR characterization of N-Doped TiO2 photocatalysts. J. Phys. Chem. C 2007(111), 2738–2748 (2007)

    Article  Google Scholar 

  23. Sun, H., Bai, Y., Lin, H., Lin, W., Xu, N.: Photocatalytic decomposition of 4-chlorophenol over an efficient N-doped TiO2 under sunlight irradiation. J. Photochem. Photobiol. A: Chem. 201, 15–22 (2009)

    Article  Google Scholar 

  24. Emeline, A.V., Kuznetsov, V.N., Rybchuk, V.R., Serpone, N.: Visible-light-active titania photocatalysts: The case of N-doped TiO2s—properties and some fundamental issues. Intern. J. Photoenergy 2008, ID 258394, 1–19 (2008)

    Google Scholar 

  25. Bianchi, C.L., Cappelletti, G., Ardizzone, S., Gialamella, S., Naldoni, A., Oliva, C., Pirola, C.: N-doped TiO2 from TiCl3 for photodegradation of air pollutants. Catal. Today 144, 31–36 (2009)

    Article  Google Scholar 

  26. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Bianchi, C.L., Cappelli, S., Oliva, C., Scardi, P., Leoni, M., Fermo, P.: Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Appl. Catal. B: Environ. 96, 314–322 (2010)

    Article  Google Scholar 

  27. Meroni, D., Ardizzone, S., Cappelletti, G., Ceotto, M., Ratti, M., Annunziata, R., Benaglia, M., Raimondi, L.: Interplay between chemistry and texture in hydrophobic TiO2 hybrids. J. Phys. Chem. C 115, 18649–18658 (2011)

    Article  Google Scholar 

  28. Barolo, G., Livraghi, S., Chiesa, M., Paganini, M.C., Giamello, E.: Mechanism of the photoactivity under visible light of N-doped titanium dioxide. Charge carriers migration in irradiated N-TiO2 investigated by electron paramagnetic resonance. J. Phys. Chem. C 116, 20887–20894 (2012)

    Article  Google Scholar 

  29. Spadavecchia, F., Ardizzone, S., Cappelletti, G., Oliva, C., Cappelli, S.: Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrose sources. J. Nanoparticles Res. 14, 1301 (1–12) (2012)

    Google Scholar 

  30. Marchiori, C., Di Liberto, G., Soliveri, G., Loconte, L., Lo Presti, L., Meroni, D., Ceotto, M., Oliva, C., Cappelli, S., Cappelletti, G., Aieta, C., Ardizzone, S.: Unraveling the cooperative mechanism of visible-light absorption in bulk N,Nb codoped TiO2 powders of nanomaterials. Phys. Chem. C 118, 24152–24164 (2014)

    Google Scholar 

  31. Lo Presti, L., Ceotto, M., Spadavecchia, F., Cappelletti, G., Meroni, D., Acres, R.G., Ardizzone, S.: Role of the nitrogen source in determining structure and morphology of N-doped nanocrystalline TiO2. J. Phys. Chem. C 118, 4797–4807 (2014)

    Google Scholar 

  32. Yates, H.M., Nolan, M.G., Sheel, D.W., Pemble, M.E.: The role of nitrogen do** on the development of visible light-induced photocatalytic activity in thin TiO2 films grown on glass by chemical vapour deposition. J. Photochem. Photobiol., A 179, 213–223 (2006)

    Article  Google Scholar 

  33. Ma, X., Wu, Y., Lu, Y., Xu, J., Wang, Y., Zhu, Y.: Effect of compensated codo** on the photoelectrochemical properties of anatase TiO2 photocatalyst. J. Phys. Chem. C 115, 16963–16968 (2011)

    Article  Google Scholar 

  34. Zhao, Z., Liu, Q.: Designed highly effective photocatalyst of anatase TiO2 codoped with nitrogen and vanadium under visible-light irradiation using first-principles. Catal. Lett. 124, 111–117 (2008)

    Article  Google Scholar 

  35. Gai, Y., Li, J., Li, S.-S., ** approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009)

    Article  Google Scholar 

  36. Kuvarega, A.T., Krause, R.W.M., Mamba, B.B.: Nitrogen/palladium-codoped TiO2 for efficient visible light photocatalytic dye degradation. J. Phys. Chem. C 115, 22110–22120 (2011)

    Article  Google Scholar 

  37. Wang, X., Tang, Y., Leiw, M.-Y., Lim, T.-T.: Solvothermal synthesis of Fe–C codoped TiO2 nanoparticles for visible-light photocatalytic removal of emerging organic contaminants in water. Appl. Catal. A 409–410, 257–266 (2011)

    Article  Google Scholar 

  38. Thind, S.S., Wu, G., Chen, A.: Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl. Catal. B 111–112, 38–45 (2012)

    Article  Google Scholar 

  39. Marquez, A.M., Plata, J.J., Ortega, Y., Sanz, J., Colon, G., Kubacka, A., Fernandez-Garcia, M.: Making photo-selective TiO2 materials by cation-anion codo**: from structure and electronic properties to photoactivity. J. Phys. Chem. C 116, 18759–18767 (2012)

    Article  Google Scholar 

  40. Gu, D.-E., Yang, B.-C., Hu, Y.-D.: V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal. Commun. 9, 1472–1476 (2008)

    Article  Google Scholar 

  41. Cong, Y., Zhang, J., Chen, F., Anpo, M., He, D.: Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and Iron (III). J. Phys. Chem. C 111, 10618–10623 (2007)

    Article  Google Scholar 

  42. Breault, T.M., Bartlett, B.M.: Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye. J. Phys. Chem. C 116, 5986–5994 (2012)

    Article  Google Scholar 

  43. Breault, T.M., Bartlett, B.M.: Composition dependence of TiO2:(Nb, N)-x compounds on the rate of photocatalytic methylene blue dye degradation. J. Phys. Chem. C 117, 8611–8618 (2013)

    Article  Google Scholar 

  44. Cottineau, T., Béalu, N., Gross, P.-A., Pronkin, S.N., Keller, N., Savinova, E.R., Keller, V.: One step synthesis of niobium doped titania nanotube arrays to form (N, Nb) co-doped TiO2 with high visible light photoelectrochemical activity. J. Mater. Chem. A 1, 2151 (2013)

    Article  Google Scholar 

  45. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M., Falciola, L.: Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. J. Phys. Chem. C 115, 6381–6391 (2011)

    Article  Google Scholar 

  46. Spadavecchia, F., Cappelletti, G., Ardizzone, S., Ceotto, M., Falciola, L.: Electronic structure of pure and N-doped TiO2 nanocrystals by electrochemical experiments and first principles calculations. J. Phys. Chem. C 115, 6381–6391 (2011)

    Article  Google Scholar 

  47. De Tritio, L., Buonsanti, L., Schimf, A.M., Lordes, A., Gamelin, D.R., Simonutti, R., Milliron, D.J.: Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chem. Mater. 25, 3383–3390 (2013)

    Article  Google Scholar 

  48. Mukovozov, I.E., Ezerets, A.M., Vishniakov, A.V., Forni, L., Oliva, C.: Structural effects of interaction between lanthanum cuprate and cerium dioxide. J. Mater. Sci. 32, 4991–4997 (1997)

    Article  Google Scholar 

  49. Oliva, C., Forni, L., Ezerets, A.M., Mukovozov, I.E., Vishniakov, A.V.: EPR characterization of (CeO2)1-y (La2 CuO4)y oxide mixtures and their activity for NO reduction by CO. J.C.S. Faraday Trans. 94, 587–592 (1998)

    Article  Google Scholar 

  50. Oliva, C., Cappelli, S., Kryukov, A., Chiarello, G.L., Vishniakov, A.V., Forni, L.: EMR charaterisation of La1.8M0.2CuO4 and La0.9M0.1CoO3 (M = Pr, Sm, Tb) catalysts for methane flameless combustion. J. Mol. Catal. A Chem. 247, 248–252 (2006)

    Article  Google Scholar 

  51. Abragam, A., Bleaney, B.: Electron paramagnetic resonance of transition ions. Oxford University Press, New York (1970)

    Google Scholar 

  52. Baker, J.M., Eaton, G.R., Eaton, S.S., Salikhov, K.M. (eds.): Foundations of Modern EPR, Chapter B3. World Scientific, Singapore (1998)

    Google Scholar 

  53. Bagguley, D.M., Bleaney, B.: Ferromagnetic resonance at the Clarendon Laboratory, Oxford. A tribute to J. H. E. Griffiths (1908–1981). Contemp. Phys. 31, 35–42 (1990)

    Article  Google Scholar 

  54. Forni, L., Rossetti, I.: Catalytic combustion of hydrocarbons over perovskites. Appl. Catal. B: Environ. 38, 29–37 (2002)

    Article  Google Scholar 

  55. Oliva, C., Cappelli, S., Rossetti, I., Kryukov, A., Bonoldi, L., Forni, L.: Effect of M ion oxidation state in Sr1-xMxTiO3±d perovskites in methane catalytic flameless combustion. J. Mol. Catal. A: Chem. 245, 55–61 (2006)

    Article  Google Scholar 

  56. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect A 32, 751–767 (1976)

    Google Scholar 

  57. Oliva, C., Bonoldi, L., Cappelli, S., Fabbrini, L., Rossetti, I., Forni, L.: Effect of preparation parameters on SrTiO3 ± d catalyst for the flameless combustion of methane. J. Mol. Catal. A: Chem. 226, 33–40 (2005)

    Article  Google Scholar 

  58. Meriaudeau, P., Védrine, J.C.: Electron paramagnetic investigation of oxygen photoadsorption and its reactivity with carbon monoxide and titanium dioxide: the O 3-3 species. J. Chem. Soc., Faraday Trans. II 72, 472–480 (1976)

    Google Scholar 

  59. Gonzalez-Elipe, A.R., Munuera, G., Soria, J.: Photo-adsorption and photo-desorption of oxygen on highly hydroxylated TiO2 surfaces. J. Chem. Soc., Faraday Trans. I 75, 748–761 (1979)

    Google Scholar 

  60. Takita, Y., Iwamoto, M., Lunsford, J.: Surface reactions of oxygen ions. 4. Oxidation of alkenes by O3—on magnesium oxide. J. Phys. Chem. 84, 1710–1712 (1980)

    Article  Google Scholar 

  61. Attwood, A.L., Murphy, D.M., Edwards, J.L., Egerton, T.A., Harrison, R.W.: An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces. Res. Chem. Intermed. 29, 449–465 (2003)

    Article  Google Scholar 

  62. Howe, R.F., Timmer, W.C.: ESR Studies of O -2 adsorbed on silica gel: photoformation and rotational dynamics. J. Chem. Phys. 85, 6129–6135 (1986)

    Article  Google Scholar 

  63. Dyrek, K., Adamski, A., Sojka, Z.: EPR study of the mobility of paramagnetic species on the surface and in the bulk of solids. Spectrochim. Acta A 54, 2337–2348 (1998)

    Article  Google Scholar 

  64. Bleaney, B.: Electron Spin resonance of paramagnetic impurities in antiferromagnetic compounds. Proc. R. Soc. Lond. A 433, 461–468 (1991)

    Article  Google Scholar 

  65. Shames, A.I., Rozenberg, E., Markovich, V., Auslender, M.I., Yakubovsky, A., Maignan, A., Martin, C., Raveau, B., Gorodetsky, G.: FMR probing of ‘spontaneous’ and Ru-do** induced ferromagnetism in Sm0.2Ca0.8Mn1-x Ru x O3 (x = 0.08) manganites. Solid State Commun. 126, 395–399 (2003)

    Article  Google Scholar 

  66. Smit, J.: Mechanism for the direct exchange interaction of europium in compounds with rocksalt structure. J. Appl. Phys. 37, 1455–1457 (1966)

    Article  Google Scholar 

  67. Nagaev, E.L.: Physics of Magnetic Semiconductors. MIR, Moscow (1983)

    Google Scholar 

  68. Suzuki, E., Nakashiro, K.: Ono, Y.: Hydroxylation of Benzene with nitrogen monoxide over H-ZSM-5 Zeolite. Chem. Lett. 953–956 (1988)

    Google Scholar 

  69. Gubelmann, M.H., Tirel, P.J.: France Patent No. 2630735 (1988)

    Google Scholar 

  70. Kharitonov, A.S., Aleksandrova, T.N., Vostrikova, L.A., Sobolev, V.I., Ione, K.G., Panov, G.I.: USSR Patent No. 1805127 (1988)

    Google Scholar 

  71. Panov, G.I.: Advances in oxidation catalysis; oxidation of benzene to phenol by nitrous oxide. CATTech 4, 18–31 (2000)

    Article  Google Scholar 

  72. Ribera, A., Arends, I.W.C.E., de Vries, S., Perez-Ramirez, J., Sheldon, R.A.: Preparation, characterization, and performance of FeZSM-5 for the selective oxidation of benzene to phenol with N2O. J. Catal. 195, 287–297 (2000)

    Article  Google Scholar 

  73. Kotasthane, A.N., Shiralkar, V.P., Hegde, S.G., Kulkarni, S.B.: Synthesis and characterization of alumino and ferrisilicate pentasil zeolites. Zeolites 6, 253–260 (1986)

    Article  Google Scholar 

  74. Volodin, A.M., Dubkov, K.A., Lund, A.: Direct ESR detection of S = 3/2 states for nitrosyl iron complexes in FeZSM-5 zeolites. Chem. Phys. Lett. 333, 41–44 (2001)

    Article  Google Scholar 

  75. Calis, G., Frenken, P., de Boer, E., Swolfs, A., Hefni, M.A.: Synthesis and spectroscopic studies of Fe3+ substituted ZSM-5 zeolite. Zeolites 7, 319–326 (1987)

    Article  Google Scholar 

  76. Kucherov, A.V., Slinkin, A.A.: Introduction Fe(III) ions in cationic positions of HZSM-5 by a solid-state reaction, Fe(III) cations in HZSM-5, and Fe(III) lattice ions in ferrisilicate. Zeolites 8, 110–116 (1988)

    Article  Google Scholar 

  77. Lin, D.H., Coudurier, G., Vedrine, J.C.: In: Jacobs, P.A., van Santen, R.A. (eds.) Zeolites: Facts, Figures, Future. Elsevier, Amsterdam (1989)

    Google Scholar 

  78. Bruckner, A., Luck, R., Wieker, W., Fahlke, B., Mehner, H.: E.p.r. study on the incorporation of Fe(III) ions in ZSM-5 zeolites in dependence on the preparation conditions. Zeolites 12, 380–385 (1992)

    Article  Google Scholar 

  79. Goldfarb, D., Bernardo, M., Strohmaier, K.G., Vaughan, D.E.W., Thomann, H.: Characterization of Iron in Zeolites by X-band and Q-Band ESR, Pulsed ESR, and UV-Visible Spectroscopies. J. Am. Chem. Soc. 116, 6344–6353 (1994)

    Article  Google Scholar 

  80. Bordiga, S., Buzzoni, R., Geobaldo, F., Lamberti, C., Giamello, E., Zecchina, A., Leofanti, G., Petrini, G., Tozzola, G., Vlaic, G.: Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. J. Catal. 158, 486–501 (1996)

    Article  Google Scholar 

  81. Weckhuysen, B.M., Wang, D.J., Rosynek, M.P., Lunsford, J.H.: Structure and reactivity of framework and extra framework Iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Angew. Chem. Int. Ed. 36, 2374–2376 (1997)

    Article  Google Scholar 

  82. Brabec, L., Jeschke, M., Klik, R., Novakova, J., Kubelkova, L., Meusinger, J.J.: Appl. Catal. A: Fe in MFI metallosilicates, characterization and catalytic activity. General 170, 105–116 (1998)

    Google Scholar 

  83. Kucherov, A.V., Kucherova, T.N., Slinkin, A.A.: Modification of zeolites by multi-charged cations by the use of in-situ formed “active gas-phase species”. Microporous Mesoporous Mater. 26, 1–10 (1998)

    Article  Google Scholar 

  84. Kucherov, A.V., Montreuil, C.N., Kucherova, T.N., Shelef, M.: In situ high-temperature ESR characterization of FeZSM-5 and FeSAPO-34 catalysts in flowing mixtures of NO, C3H6, and O2. Catal. Lett. 56, 173–181 (1998)

    Article  Google Scholar 

  85. Volodin, A.M., Sobolev, V.I., Zhidomirov, G.M.: The in situ ESR study of the state of irons in Fe-ZSM-5 zeolites. Kinet. Catal. 39, 775–787 (1998)

    Google Scholar 

  86. El-Malki, E.M., van Santen, R.A., Sachtler, W.M.H.: Introduction of Zn, Ga, and Fe into HZSM-5 cavities by sublimation: identification of acid sites. J. Phys. Chem. 103, 4611–4622 (1999)

    Article  Google Scholar 

  87. Long, R.Q., Yang, R.T.: Characterization of Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia. J. Catal. 194, 80–90 (2000)

    Article  Google Scholar 

  88. El-Malki, E.M., van Santen, R.A., Sachtler, W.M.H.: Active sites in Fe/MFI catalysts for NOx reduction and oscillating N2O decomposition. J. Catal. 196, 212–223 (2000)

    Article  Google Scholar 

  89. Fejes, P., Nagy, J.B., Lázar, K., Halász, J.: Heat-treatment of isomorphously substituted ZSM-5 (MFI) zeolites. An ESR and Mössbauer spectroscopy and kinetic study. Appl. Catal. A: General 190, 117–135 (2000)

    Article  Google Scholar 

  90. Chen, H.Y., El-Malki, E.M., Wang, X., van Santen, R.A., Sachtler, W.M.H.: Identification of active sites and adsorption complexes in Fe/MFI catalysts for NOx reduction. J. Mol. Catal. A. Chem. 162, 159–174 (2000)

    Article  Google Scholar 

  91. Kucherov, A.V., Nissenbaum, V.D., Kucherova, T.N., Kustov, L.M.: Catalytic oxidation of methane by nitrous oxide on H[Al]ZSM-5 zeolite, silicalite, and amorphous SiO2 modified by iron, silver, and gadolinium ions. Kinet. Catal. 43, 711–723 (2002)

    Article  Google Scholar 

  92. Kubanek, P., Wichterlova, B., Sobalik, Z.: Nature of active sites in the oxidation of benzene to phenol with N2O over H-ZSM-5 with low Fe concentrations. J. Catal. 211, 109–118 (2002)

    Google Scholar 

  93. Berlier, G., Spoto, G., Fisicaro, P., Bordiga, S., Zecchina, A., Giamello, E., Lamberti, C.: Co-ordination and oxidation changes undergone by iron species in Fe-silicalite upon template removal, activation and interaction with N2O: an in situ X-ray absorption study. Microchem. J. 71, 101–116 (2002)

    Article  Google Scholar 

  94. Weil, J.A., Bolton, J.R., Wertz, J.E.: Electron Paramagnetic Resonance. Wiley, New York (1994)

    Google Scholar 

  95. Pilbrow, J.R.: Transition Ion electron paramagnetic resonance. Clarendon Press, Oxford (1990)

    Google Scholar 

  96. Ferretti, A.M., Oliva, C., Forni, L., Berlier, G., Zecchina, A., Lamberti, C.: Evolution of extraframework iron species in Fe-silicalite: 2. Effect of steaming. J. Catal. 208, 83–88 (2002)

    Article  Google Scholar 

  97. Le Caër, G., Brand, R. A.: General models for the distributions of electric field gradients in disordered solids. J. Phys.-Condens. Matter 10, 10715–10774 (1998)

    Google Scholar 

  98. Ferretti, A.M., Barra, A.-L., Forni, L., Schweiger, A., Ponti, A.: Electron paramagnetic resonance spectroscopy of iron(III)-doped MFI zeolite. 1. multifrequency CW-EPR. J. Phys. Chem. B 108, 1999–2005 (2004)

    Article  Google Scholar 

  99. Ferretti, A.M., Forni, L., Oliva, C., Ponti, A.: EPR study of iron-doped MFI zeolite and silicalite catalysts: effect of treatments after synthesis. Res. Chem. Interm. 28, 101–116 (2002)

    Article  Google Scholar 

  100. Dorman, J.L., Fiorani, D., Tronc, E., Prigogine, I., Rice, S.A. (eds.): Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997)

    Google Scholar 

  101. Ibrahim, M.M., Edwards, G., Seehra, M.S., Ganguly, B., Huffman, G.P.: Magnetism and spin dynamics of nanoscaie FeOOH particles. J. Appl. Phys. 75, 5873–5875 (1994)

    Article  Google Scholar 

  102. Hagiwara, M., Nagata, K., Nagata, K.: Magnetism and magnetic interaction in a complex oxide glass system containing deposited clusters of magnetite at the superparamagnetic state. J. Phys. Soc. Japan 67, 3590–3600 (1998)

    Article  Google Scholar 

  103. Berger, R., Kliava, J., Bissey, J.C.: Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed glass. J. Appl. Phys. 87, 7389–7396 (2000)

    Article  Google Scholar 

  104. Oliva, C., Forni, L.: EPR investigation of superparamagnetism in nanometric-size LaFeO3 ± d and La2NiO4 ± d. Perovskites. Appl. Magn. Reson. 20, 531–538 (2001)

    Article  Google Scholar 

  105. Sharma, V.K., Wakdner, F.: Superparamagnetic and ferrimagnetic resonance of ultrafine Fe304 particles in ferrofluids. J. Appl. Phys. 48, 4298–4301 (1977)

    Article  Google Scholar 

  106. Cannas, C., Gatteschi, D., Musinu, A., Piccaluga, G., Sangregorio, C.: Structural and magnetic properties of Fe2O3 nanoparticles dispersed over a silica matrix. J. Phys. Chem. 102, 7721–7726 (1998)

    Article  Google Scholar 

  107. Berger, R., Kliava, J., Bissey, J.C., Baietto, V.: Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed glass. J. Appl. Phys. 87, 7389–7396 (2000)

    Article  Google Scholar 

  108. A.I.P. Hanbook, Sect.5g, 1963; Landolt-Bornstein, vol. 2, pt9, 6th ed. (1962)

    Google Scholar 

  109. Meloni, D., Monaci, R., Solinas, V., Berlier, G., Bordiga, S., Rossetti, I., Oliva, C., Forni, L.: Activity and deactivation of Fe-MFI catalysts for benzene hydroxylation to phenol by N2O. J. Catal. 214, 169–178 (2003)

    Article  Google Scholar 

  110. Bonneviot, L., Olivier, D.: Ferromagnetic resonance. In: Imelik, B., Védrine, J.C. (eds.) Catalyst characterization. Physical Techniques for Solid Materials (1994)

    Google Scholar 

  111. Sharma, V.K., Waldner, F.: Superparamagnetic and ferrimagnetic resonance of ultrafine Fe3O4 particles in ferrofluids. J. Appl. Phys. 48, 4298–4302 (1977)

    Article  Google Scholar 

  112. Raikher, Y.L., Stepanov, V.I.: Ferromagnetic resonance in a suspension of single-domain particles. Phys. Rev. B 50, 6250–6259 (1994)

    Article  Google Scholar 

  113. Berger, R., Kliava, J., Bissey, J.-C., Baietto, V.: Magnetic resonance of superparamagnetic iron-containing nanoparticles in annealed glass. J. Appl. Phys. 87, 7389–7396 (2000)

    Article  Google Scholar 

  114. Koksharov, Yu.A, Pankratov, D.A., Gubin, S.P., Kosobudsky, I.D., Beltran, M., Khodorkovsky, Y., Tishin, A.M.: Electron paramagnetic resonance of ferrite nanoparticles. J. Appl. Phys. 89, 2293–2319 (2001)

    Google Scholar 

  115. Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of transition ions, pp. 308–312. Dover Publications, New York (1986)

    Google Scholar 

  116. Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions, Chapter 18. Dover Publications, New York (1986)

    Google Scholar 

  117. Bagguley, D.M.S., Vella-Coleiro, G.: Pulsed field Zeeman studies of Ce3+ in LaCl3. J. Phys. C: Solid State Phys. 2, 2310–2319 (1969)

    Article  Google Scholar 

  118. Birgenau, R.J.: Magnetic moment reduction via the orbit-lattice interaction for Ce3+ in rare-earth ethyl sulfates. Phys. Rev. Lett. 19, 160–162 (1967)

    Article  Google Scholar 

  119. Judd, B.R.: The magnetic and spectroscopic properties of certain rare-earth double nitrates. Proc. R. Soc., A 232, 458–474 (1955)

    Google Scholar 

  120. Kreissl, J.: Electron paramagnetic resonance of Ce3+ in SrS powder. Phys. Stat. Sol. (b), 180, 441–443 (1993)

    Google Scholar 

  121. Kindo, K., Shibata, T., Inoue, T., Haga, Y., Suzuki, T., Chiba, Y., Date, M.: Oscillatory high-field magnetization in LaP doped with Ce. J. Phys. Soc. Japan. 62, 4190–4193 (1993)

    Article  Google Scholar 

  122. Inaba, H., Tagawa, H.: Ceria-based solid electrolytes. Sol. State Ionics 83, 1–16 (1996)

    Article  Google Scholar 

  123. Steel, B.C.H.: In: Tuller, H.L., Schoonman, J., Riess, I. (eds.) Oxygen Ion and Mixed Conductors and their Technological Applications. NATO ASI Series, Serie E, Applied Sciences, vol. 368, pp. 323–345 (1997)

    Google Scholar 

  124. Hwang, J.-H., Mason, O.: Defect chemistry and transport properties of nanocrystalline cerium oxide. Z. Physikalische Chemie. 207, 21–38 (1998)

    Article  Google Scholar 

  125. Chiang, Y.-M., Lavik, E.B., Kosacki, I., Tuller, H.L., Ying, J.Y.: Defect and transport properties of nanocrystalline CeO2-x. Appl. Phys. Lett. 69, 185–187 (1996)

    Article  Google Scholar 

  126. Oliva, C., Scavini, M., Ballabio, O., Sin, A., Zaopo, A., Dubitsky, Y.: Percolative Small-polarons conduction regime in Ce1-xGdxO(4-x)/2 probed by EPR spectral intensity of Gd3+. J. Solid State Chem. 177, 4104–4111 (2004)

    Article  Google Scholar 

  127. Bonneviot, L., Olivier, D.: Ferromagnetic resonance. In: Imelik B., Védrine, J.C. (eds.) Catalyst Characterization. Physical Techniques for Solid Materials (1994)

    Google Scholar 

  128. Guskos, N., Likodimos, V., Typek, J., Wabia, M., Fuks, H.: EPR spectra of Gd3+ ions and localized paramagnetic centers in La0.5Gd0.5Ba3Cu2O6+?. Physica C 341–348, 573–574 (2000)

    Article  Google Scholar 

  129. Guskos, N., Triberis, G.P., Lykodimos, V., Windsch, W., Metz, H., Koufoudakis, A., Mitros, C., Gamari-Seale, H., Niarchos, D.: Temperature dependence of the EPR spectra of Gd0.5RE0.5 Ba2Cu3O7-d compounds in the orthorhombic and tetragonal phases. Phys. Stat. Sol. (b) 166, 233–244 (1991)

    Google Scholar 

  130. Guskos, N., Kuriata, J., Salikhov, I.H.: The anomalous electric field effect in the EPR of CdF2: Gd3+. J. Phys. C: Solid State Phys. 17, 2175–2180 (1984)

    Article  Google Scholar 

  131. Triberis, G.P., Friedman, L.R.: A percolation treatment of the conductivity for the high temperature small-polaron hop** regime in disordered systems. J. Phys. C: Solid State Phys. 14, 4631–4639 (1981)

    Article  Google Scholar 

  132. Ohashi, T., Yamazaki, S., Tokunaga, T., Arita, Y., Matsui, T., Harami, T., Kobayashi, K.: EXAFS study of Ce1-x Gd x O2-x/2. Solid State Ionics 113–115, 559–564 (1998)

    Article  Google Scholar 

  133. Nakagawa, T., Osuki, T., Yamamoto, T.A., Kitauji, Y., Kano, M., Katsura, M., Emura, S.: Study on local structure around Ce and Gd atoms in CeO2–Gd2O3 binary system. J. Synchrotron Rad. 8, 740–742 (2001)

    Article  Google Scholar 

  134. Oliva, C., Orsini, F., Cappelli, S., Arosio, P., Allieta, M., Coduri, M., Scavini, M.: Electron spin resonance and atomic force microscopy study on gadolinium doped ceria. J. Spectrosc. 491840, 1–6 (2015). doi:10.1155/2015/491840

    Article  Google Scholar 

  135. Scavini, M., Coduri, M., Allieta, M., Masala, P., Cappelli, S., Oliva, C., Brunelli, M., Orsini, F., Ferrero, C.: Percolation hierarchical defect structures drive phase transformation in Ce1-xGdxO2-x/2: a total scattering study. IUCrJ 2, 511–522 (2015)

    Article  Google Scholar 

  136. Oliva, C., Allieta, M., Scavini, M., Biffi, C., Rossetti, I., Forni, L.: EPR analysis of La1-xMxMnO3 + d (M = Ce, Sr) perovskite-like nanostructured catalysts. Inorg. Chem. 51, 8433–8440 (2012)

    Article  Google Scholar 

  137. Allieta, M., Scavini, M., Lo Presti, L., Coduri, M., Loconte, L., Cappelli, S., Oliva, C., Ghigna P., Pattison, P., Scagnoli, V.: Charge ordering transition in GdBaCo2O5: Evidence of reentrant behavior. Phys. Rev. B 88, 1–10 (2013)

    Google Scholar 

  138. Allieta, M., Oliva, C., Scavini, M., Cappelli, S., Pomjakushina, E., Scagnoli, V.: The nature of spin-lattice interaction in the insulator to metal transition of GdBaCo2O5 + d. Phys. Rev. B 84, 1–7 (2011)

    Article  Google Scholar 

  139. Sugawara, K., Huang, C.Y.: Electron paramagnetic resonance of Gd3+ in Yttrium-Group VA intermetallic compounds. J. Phys. Soc. Japan 39, 643–646 (1975)

    Article  Google Scholar 

  140. Bejjitt, L., Haddad, M.: Oxygen content dependence of the EPR line shape in GdBa2Cu307-y single crystal. Appl. Magn. Reson. 22, 415–419 (2002)

    Article  Google Scholar 

  141. Urbano, R.R., Pagliuso, P.G., Rettori, C., Schlottmann, P., Fisk, Z., Chapler, B., Oseroff, S.B.: Gd 3+ and Eu 2+ local environment in Ca1–xEuxB6 (0.0001 = x = 0.30) and Ca1–xGdxB6 (0.0001 = x = 0.01). Phys. Status Solidi (a) 203, 1550–1555 (2006)

    Google Scholar 

  142. Oliva, C., Scavini, M., Ballabio, O., Sin, A., Zaopo, A., Dubitsky, Yu.: Percolative small-polarons conduction regime in Ce1-xGdxO(4-x)/2 probed by EPR spectral intensity of Gd3+. J. Solid State Chem. 177, 4104–4111 (2004)

    Article  Google Scholar 

  143. Kaplan, J.I., Reuben, J.: Electron spin resonance line shapes of paramagnetic species on surfaces. J. Phys. Chem. 86, 4465–4466 (1982)

    Article  Google Scholar 

  144. Skakle, M.S.: Crystal chemical substitutions and do** of YBa2Cu3Ox and related superconductors. Mater. Sci. Eng. R 23, 1–40 (1998). and references therein

    Article  Google Scholar 

  145. Tolentino, H., Baudelet, F., Fontaine, A., Gourieux, T., Krill, G., Henry, J.Y., Rossat-Mignod, J.: Sequence and symmetry of hole injection in YBa2Cu3O6+x in situ and extra situ experiments on powders and single crystals using X-ray absorption spectroscopy. Physica C 192, 115–130 (1992)

    Article  Google Scholar 

  146. Guillaume, M., Allenspach, P., Henggeler, W., Mesot, J., Roessli, B., Staub, U., Fischer, P., Furrer, A., Trounov, V.: A systematic low-temperature neutron diffraction study of the RBazCu30x (R = yttrium and rare earths; x: = 6 and 7) compounds. J. Phys.: Condens. Matter 6, 7963–7976 (1994)

    Google Scholar 

  147. Licci, F., Gauzzi, A., Marezio, M., Radaelli, G.P., Masini, R., Chatillout-Boougerol, C.: Structural and electronic effects of Sr substitution for Ba in Y(Ba1-xSrx)2Cu3Ow at varying w. Phys. Rev. B 58, 15208–15217 (1998)

    Article  Google Scholar 

  148. Scavini, M., Bianchi, R.: Structure of Al defect in high-temperature superconductor, Al-doped Sm-123: an electron density study. J. Sol. State. Chem. 161, 396–401 (2001)

    Article  Google Scholar 

  149. Scavini, M., Daldosso, M., Cappelli, S., Oliva, C., Brunelli, M., Ferrero, C., Lascialfari, A.: Unravelling the role of Cu-O chain length on the superconducting properties of SmBa2Cu3O6 + d via Al do** and clustering. Europhys. Lett. 76, 443–449 (2006)

    Article  Google Scholar 

  150. Dupree, R., Gencten, A., Paul, D.M.: A 89Y NMR study of substitution for copper in YBa2 (Cu1-xMx)3O7. Physica C 193, 81–89 (1992)

    Google Scholar 

  151. Guo, Y., Langlois, J.-M., Goddard III, W.A.: Electronic structure and valence-bond band structure of cuprate superconducting materials. Science 239, 896–899 (1988)

    Article  Google Scholar 

  152. Likodimos, V., Guskos, N., Gamari-Seale, H., Koufoudakis, A., Wabia, M., J.Typek, J, Fuks, H.: Copper magnetic centers in oxygen deficient RBa2Cu3O6+x  (R = Nd, Sm): an EPR and magnetic study. Phys. Rev. B. 54, 12342–12352 (1996)

    Google Scholar 

  153. Eremin, M.V., Sigmund, F.: On the importance of anisotropic exchange coupling on to the structure of spin-polarized clusters in layered cuprates. Solid State Commun. 90, 795–797 (1994)

    Article  Google Scholar 

  154. Thomann, H., Klemm, R.A., Johnston, D.C., Tindall, P.J., Goshorn, D.P., **, H.: Observation of triplet hole pairs and glassy spin waves in La2-x-zSrxCuO4-y by electron spin resonance. Phys. Rev. B 38, 6552–6560 (1988)

    Google Scholar 

  155. Forni, L., Oliva, C., Vatti, F.P., Kandala, M.A., Ezerets, A.M., Vishniakov, A.V.: La-Ce-Co perovskites as catalysts for exhaust gas depollution. Appl. Catal. B: Environ. 7, 269–284 (1996)

    Google Scholar 

  156. Forni, L., Oliva, C., Barzetti, T., Selli, E., Ezerets, A.M., Vishniakov, A.V.: FT-IR and EPR spectroscopic analysis of La1-xCexCoO3 perovskite-like catalysts for NO reduction by CO. Appl. Catal. B: Environ. 13, 35–43 (1997)

    Article  Google Scholar 

  157. Leanza, R., Rossetti, I., Fabbrini, L., Oliva, C., L.Forni, L.: Perovskite catalysts for the catalytic flameless combustion of methane Preparation by flame-hydrolysis and characterisation by TPD-TPR-MS and EPR Appl. Catal. B: Envirnon. 28, 55–64 (2000)

    Google Scholar 

  158. Oliva, C., Forni, L., D’Ambrosio, A., Navarrini, F., Stepanov, A.D., Kagramanov, Z.D., Mikhailichenko, A.I.: Characterisation by EPR and other techniques of La1-xCexCoO3 + d perovskite-like catalysts for methane flameless combustion. Appl. Catal. A: General 205, 245–252 (2001)

    Article  Google Scholar 

  159. Abragam, A., Bleaney, B.: Electron Paramagnetic Resonance of Transition Ions, Chaps. 9 and 10. Dover, New York (1986)

    Google Scholar 

  160. Oliva, C., Forni, L., Formaro, L.: Effect of thermal treatment on the EPR spectra and on catalytic properties of pure Co3O4. Appl. Spectrosc. 50, 1395–1398 (1996)

    Article  Google Scholar 

  161. Oliva, C., Cappelli, S., Kryukov, A., Chiarello, G.L., Vishniakov, A.V., Forni, L.: Effect of preparation parameters on the properties of La0.9Ce0.1CoO3 catalysts: an EMR investigation. J. Mol. Catal. A Chem. 255, 36–40 (2006)

    Article  Google Scholar 

  162. Chiarello, G.L., Rossetti, I., Forni, L.: Flame-spray pyrolysis preparation of perovskites for methane catalytic combustion. J. Catal. 236, 251–261 (2005)

    Article  Google Scholar 

  163. Angelov, S., Zhecheva, E., Stoyanova, R., Atanasov, M.: Bulk defects in Co3O4, pure and slightly doped with lithium, revealed by EPR of the tetrahedral Co2+ ions. J. Phys. Chem. Solids 51, 1157–1161 (1990)

    Article  Google Scholar 

  164. Roth, W.L.: The magnetic structure of Co3O4. J. Phys. Chem. Solids 25, 1–10 (1964)

    Article  Google Scholar 

  165. Tanaka, H., Mizuno, N., Misono, M.: Catalytic activity and structural stability of La0.9Ce0.1Co1-xFe x O3 perovskite catalysts for automotive emissions control. Appl. Catal. A: General 244, 371–382 (2003)

    Article  Google Scholar 

  166. Choi, Y.M., Lynch, M.E., Lin, M.C., Liu, M.: Prediction of O2 dissociation kinetics on LaMnO3-based cathode materials for solid oxide fuel cells. J. Phys. Chem. C 113, 7290–7297 (2009)

    Article  Google Scholar 

  167. Kaddouri, A., Gelin, P., Dupont, N.: Methane catalytic combustion over La–Ce–Mn–O– perovskite prepared using dielectric heating. Catal. Commun. 10, 1085–1089 (2009)

    Article  Google Scholar 

  168. Li, Y., Xue, L., Fan, L., Yan, Y.: The effect of citric acid to metal nitrates molar ratio on sol–gel combustion synthesis of nanocrystalline LaMnO3 powders. J. Alloys Compd. 478, 493–497 (2009)

    Article  Google Scholar 

  169. Rossetti, I., Buchneva, O., Biffi, C., Rizza, R.: Effect of sulphur poisoning on perovskite catalysts prepared by flame-pyrolysis. Appl. Catal. B: Environ. 89, 383–390 (2009)

    Google Scholar 

  170. Peña, M.A., Fierro, J.L.G.: Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001)

    Article  Google Scholar 

  171. Tsai, Y.T., Chang, W.J., Wuang, S.W., Lin, J.-Y., Lee, J.Y., Chen, J.M., Wu, K.H., Uen, T.M., Gou, Y.S., Juang, J.Y.: Temperature-dependent X-ray absorption near edge spectroscopy of doped LaMnO3: ion-size and the Jahn-Teller distortion effects. Phys. B 404, 1404–1408 (2009)

    Article  Google Scholar 

  172. Oliva, C., Forni, L., Pasqualin, P., D’Ambrosio, A., Vishniakov, A.V.: EPR analysis of La1-x Mx MnO3+y (M = Ce, Eu, Sr) perovskitic catalysis for methane oxidation. Phys. Chem. Chem. Phys. 1, 355–360 (1999)

    Article  Google Scholar 

  173. Ivanshin, V.A., Deisenhofer, J., Krug von Nidda, H.A., Loidl, A., Mukhin, A.A., Balbashov, A.M., Eremin, M.V.: ESR study in light doped La1-x Sr x MnO3. Phys. Rev. B 61, 6213–6219 (2000)

    Google Scholar 

  174. Noginova, N., Bah, R., Bitok, D., Atsarkin, V.A., Demidov, V.V., Gudenko, S.V.: Effect of diamagnetic dilution and non-stoichiometry on ESR spectra of manganites. J. Phys.: Condens. Matter 17, 1259–1269 (2005)

    Google Scholar 

  175. Mitchell, J.F., Argyriou, D.N., Potter, C.D., Hinks, D.G., Jorgensen, J.D., Bader, S.D.: Structural phase diagram of La1-x Sr x MnO3+d : relationship to magnetic and transport properties. Phys. Rev. B 54, 6172–6183 (1996)

    Article  Google Scholar 

  176. Rodrìguez-Carvajal, J., Hennion, M., Moussa, F., Moudden, A.H., Pinsard, L., Revcolevschi, A.: Neutron-diffraction study of the Jahn-Teller transition in stoichiometric LaMnO3. Phys. Rev. B 57, R3189–R3192 (1998)

    Article  Google Scholar 

  177. Oliva, C., Forni, L.: EPR and XRD as probes for activity and durability of LaMnO3 perovskite-like catalysts. Catal. Commun. 1, 5–8 (2000)

    Article  Google Scholar 

  178. Strobel, R., Pratsinis, S.E.: Flame aerosol synthesis of smart nanostructured materials. J. Mater. Chem. 17, 4743–4756 (2007)

    Article  Google Scholar 

  179. Chiarello, G.L., Rossetti, I., Forni, L., Lopinto, P., Migliavacca, G.: Solvent nature effect in preparation of perovskites by flame-pyrolysis 1. Carboxylic acids. Appl. Catal. B: Environ. 72, 218–226 (2007) and: Solvent nature effect in preparation of perovskites by flame-pyrolysis 2. Alcohols and alcohols + propionic acid mixtures. Appl. Catal. B: Environm. 72, 227–232 (2007)

    Google Scholar 

  180. Feher, G., Kip, A.F.: Electron spin resonance absorption in metals. I. Exp. Phys. Rev. 98, 337–348 (1955)

    Article  Google Scholar 

  181. Dyson, F.J.: Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev. 98, 349–359 (1955)

    Article  Google Scholar 

  182. Moskvin, A.S.: Pseudo-Jahn-Teller-centers and phase separation in the strongly correlated oxides with the nonisovalent substitution. Cuprates and manganites. Physica B 252, 186–197 (1998)

    Article  Google Scholar 

  183. Moskvin, A.S., Avvakumov, I.D.: Doped manganites beyond conventional double-exchange model. Phys. B 322, 371–389 (2002)

    Article  Google Scholar 

  184. Moskvin, A.S.: Disproportionation and electronic phase separation in parent manganite LaMnO3. Phys. Rev. B 79, 115102-1-19 (2009)

    Google Scholar 

  185. Asamitsu, A., Moritomo, Y., Tomioka, Y., Arima, T., Tokura, Y.: A structural phase transition induced by an external magnetic field. Nature 373, 407–409 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Oliva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Oliva, C., Scavini, M. (2017). Electron Spin Resonance Applied to Nanosized-Doped Oxides. In: Shukla, A. (eds) EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Advanced Structured Materials, vol 62. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3655-9_5

Download citation

Publish with us

Policies and ethics

Navigation