Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 62))

Abstract

In this chapter, current trends and future prospects about the important applications of electron magnetic resonance (EMR) spectroscopy for characterization of metallic nanoparticles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alonso, F., Riente, P., Sirvent, J.A., Yus, M.: Nickel nanoparticles in hydrogen-transfer reductions: characterisation and nature of the catalyst. Appl. Catal. A: Gen. 378, 42 (2010)

    Article  Google Scholar 

  2. Ankamwar, B., Chaudhary, M., Mural, S.: Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Metal-Org. Nanometal. Chem. 35, 19–26 (2005)

    Article  Google Scholar 

  3. Ankamwar, B., Damle, C., Ahmad, A., Sastry, M.: Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J. Nanosci. Nanotechnol. 5(10), 1665–1671 (2005)

    Article  Google Scholar 

  4. Arias, R., Chu, P., Mills, D.: Dipole exchange spin waves and microwave response of ferromagnetic spheres. Phys. Rev. B 71, 224410 (2005)

    Article  Google Scholar 

  5. Arias, R., Mills, D.: Theory of collective spin-wave modes of interacting ferromagnetic spheres. Phys. Rev. B 70, 104425 (2004)

    Article  Google Scholar 

  6. Bhattacharya, R., Murkherjee, P.: Biological properties of “naked” metal nanoparticles. Adv. Drug Deliv. Rev. 60, 128–1306 (2008)

    Article  Google Scholar 

  7. Bhumkar, D.R., Joshi, H.M., Sastry, M., Pokharkar, V.B.: Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 24, 1415–1426 (2007)

    Article  Google Scholar 

  8. Bogunia-Kubik, K., Sugisaka, M.: From molecular biology to nanotechnology and nanomedicine. Biosystems 65, 123–138 (2002)

    Article  Google Scholar 

  9. Butera, A., Zhou, J.N., Barnard, J.: Ferromagnetic resonance in as-deposited and annealed Fe − SiO2 heterogeneous thin films. Phys. Rev. B 60, 12270 (1999)

    Article  Google Scholar 

  10. Cai, W., Gao, T., Hong, H., Sun, J.: Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl. 1, 17–32 (2008)

    Article  Google Scholar 

  11. Cao, C.-Y., Shen, Y.-Y., Wang, J.-D., Li, L., Liang, G.L.: Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci. Rep. 3, 1024 (2013)

    Google Scholar 

  12. Cao, G.: Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, london (2004)

    Book  Google Scholar 

  13. Chikazumi, S.: Physics of Ferromagnetism. Oxford University Press, Oxford (1997)

    Google Scholar 

  14. Cho, K.-H., Park, J.-E., Osaka, T., Park, S.G.: The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochim. Acta 51, 956–960 (2005)

    Article  Google Scholar 

  15. Chui, S.T., Hu, L.: Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites. Phys. Rev. B 65, 144407 (2002)

    Article  Google Scholar 

  16. Daniel, M.C., Astruc, D.: Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    Article  Google Scholar 

  17. Dixit, G., Singh, J.P., Srivastava, R.C., Agrawal, H.-M.: Magnetic resonance study of Ce and Gd doped NiFe2O4 nanoparticles. J. Magn. Magn. Mater. 324, 479–483 (2012)

    Article  Google Scholar 

  18. Duc, G.L., Roux, S., Paruta-Tuarez, A., Dufort, S., Brauer, E., Marais, A., Truillet, C., Sancey, L., Perriat, P., Lux, F., Tillement, O.: Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment. Cancer Nanotechnol. 5, 4 (2014)

    Article  Google Scholar 

  19. Duran, N., Marcato, D.P., De Souza, H.I., Alves, L.O., Espsito, E.: Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 3, 203–208 (2007)

    Article  Google Scholar 

  20. Ebels, U., Duvail, J.-L., Wigen, P.E., Piraux, L., Buda, L.D., Ounadjela, K.: Ferromagnetic resonance studies of Ni nanowire arrays. Phys. Rev. B 64, 144421 (2001)

    Article  Google Scholar 

  21. El-Sayed, I.H., Huang, X., El-Sayed, M.A.: Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006)

    Article  Google Scholar 

  22. Gao, S., Cao, M., Lia, W., Cao, R.: Palladium nanoparticles in situ generated in metal-organic films for catalytic applications. J. Mater. Chem. A 2, 12185–12193 (2014)

    Article  Google Scholar 

  23. Gubin, S.P., Koksharov, Y.A., Khomutov, G.B., Yurkov, G.Y.: Magnetic nanoparticles: preparation, structure and properties. Russ. Chem. Rev. 74, 489 (2005)

    Article  Google Scholar 

  24. Hennebel, T., De Corte, S., Verstraete, W., Boon, N.: Microbial production and environmental applications of Pd nanoparticles for treatment of halogenated compounds. Curr. Opin. Biotechnol. 23, 555–561 (2012)

    Article  Google Scholar 

  25. Hu, L, Choi, J.W., Yang, Y., Jeong, S., La Mantia, F., Cui, L.-F., Cui, Y.: Highly conductive paper for energy-storage devices. Proc. Nat. Acad. Sci. USA 106, 21490–21494, S21490/21491–S21490/21413 (2009)

    Google Scholar 

  26. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem. Commun. 927

    Google Scholar 

  27. Ionita, P., Conte, M., Gilbert, B.C., Chechik, V.: Gold nanoparticle-initiated free radical oxidations and halogen abstractions. Org. Biomol. Chem. 5, 3504–3509 (2007)

    Article  Google Scholar 

  28. Ionita, P., Wolowska, J., Chechik, V., Caragheorgheopol, A.: Ligand dynamics in spinlabeled Au nanoparticles. J. Phys. Chem. C 111, 16717 (2007)

    Article  Google Scholar 

  29. Jain, P., Pradeep, T.: Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol. Bioeng. 90, 59–63 (2005)

    Article  Google Scholar 

  30. Jensen, P.J., Pastor, G.: Scaling behavior of the dipole-coupling energy in two-dimensional disordered magnetic nanostructures. Phys. Rev. B 68, 184420 (2003)

    Article  Google Scholar 

  31. Jiang, Z., **e, J., Jiang, D., Wei, X., Chen, M.: Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. CrystEngComm 15, 560–569 (2013)

    Article  Google Scholar 

  32. Jung, S., Ketterson, J.B., Chandrasekhar, V.: Micromagnetic calculations of ferromagnetic resonance in submicron ferromagnetic particles. Phys. Rev. B 66, 132405 (2002)

    Article  Google Scholar 

  33. Karmhag, R., Tesfamichael, T., Wackelgard, E., Nikalsson, G., Nygren, M.: Oxidation kinetics of nickel particles: comparison between free particles and particles in an oxide matrix. Sol. Energy 68, 329 (2000)

    Article  Google Scholar 

  34. Klaus-Joerger, T., Joerger, R., Olsson, E., Granqvist, C.G.: Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19(1), 15–20 (2001)

    Article  Google Scholar 

  35. Kliava, J.: Electron magnetic resonance of nanoparticles: superparamagnetic resonance. In: Gubin, S.P. (ed.) Magnetic Nanoparticles. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009)

    Google Scholar 

  36. Korkusuz, H., Ulbrich, K., Welzel, K., Koeberle, V., Watcharin, W., Bahr, U., Chernikov, V., Knobloch, T., Petersen, S., Huebner, F., Ackermann, H., Gelperina, S., Kromen, W., Hammerstingl, R., Haupenthal, J., Gruenwald, F., Fiehler, J., Zeuzem, S., Kreuter, J., Vogl, T.J., Piiper, A.: Transferrin-coated gadolinium nanoparticles as MRI contrast agent. Mol. Imaging Biol. 15, 148–154 (2013)

    Article  Google Scholar 

  37. Kotthaus, S., Gunther, B.H., Hang, R., Schafer, H.: Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles. IEEE Trans. Compon. Packag. Technol. 20(1), 15–20 (1997)

    Article  Google Scholar 

  38. Kumar, V.K.R., Krishnakumar, S., Gopidas, K.R.: Synthesis, characterization and catalytic applications of palladium nanoparticle-cored dendrimers stabilized by metal-carbon bonds. Eur. J. Org. Chem. 2012, 3447–3458 (2012)

    Article  Google Scholar 

  39. Laroze, D., Vargas, P.: Dynamical behavior of two interacting magnetic nanoparticles. Physica B: Condens. Matter 372, 332–336 (2006)

    Article  Google Scholar 

  40. Lee, H.Y., Li, Z., Chen, K., Hsu, A.R., Xu, C., **e, J., Sun, S., Chen, X.: PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)-conjugated radiolabeled iron oxide nanoparticles. J. Nucl. Med. 49, 1371–1379 (2008)

    Article  Google Scholar 

  41. Lee, S.I., Lee, N., Park, J., Kim, B.H., Yi, Y., Kim, T., Kim, T.K., Lee, I.H., Paik, S.R., Hyeon, T.: Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine tagged proteins. J. Am. Chem. Soc. 128, 10658 (2006)

    Article  Google Scholar 

  42. Li, Q., Mahendra, S., Lyon, D., Brunet, L., Liga, M., Li, D., Alvarez, P.: Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602 (2008)

    Article  Google Scholar 

  43. Liu, X., Dai, Q., Austin, L., Coutts, J., Knowles, G., Zou, J., Chen, H., Huo, Q.: A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J. Am. Chem. Soc. 130, 2780–2782 (2008)

    Article  Google Scholar 

  44. Llamazares, S.R., Merchan, J., Olmedo, I., Marambio, H.P., Munoz, J.P., Jara, P., Sturm, J.C., Chornik, B., Pena, O., Yutronic, N., Kogan, M.J.: Ni/Ni oxides nanoparticles with potential biomedical applications obtained by displacement of a nickel-organometallic complex. J. Nanosci. Nanotechnol. 8, 3820 (2008)

    Article  Google Scholar 

  45. Medley, C.D., Smith, J.E., Tang, Z., Wu, Y., Bamrungsap, S., Tan, W.: Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 80, 1067–1072 (2008)

    Article  Google Scholar 

  46. Mitrikas, G., Deligiannakis, Y., Trapalis, C.C., Boukos, N., Kordas, G.: CW and pulsed EPR study of silver nanoparticles in a SiO2 matrix. J. Sol-Gel. Sci. Technol. 13, 503 (1998)

    Article  Google Scholar 

  47. Mitsumata, C., Tomita, S., Hagiwara, M., Akamatsu, K.: Electron magnetic resonance in interacting ferromagnetic-metal nanoparticle systems: experiment and numerical simulation. J. Phys.: Condens. Matter 22, 016005 (2010)

    Google Scholar 

  48. Mukherjee, P., Bhattacharya, R., Bone, N., Lee, Y.K., Patra, C.R., Wang, S., Lu, L., Secreto, C., Banerjee, P.C., Yaszemski, M.J., Kay, N.E., Mukhopadhyay, D.: Potential therapeutic application of gold nanoparticles in β-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J. Nanobiotechnol. 5, 4 (2007)

    Article  Google Scholar 

  49. Nikolaou, K.: Emissions reduction of high and low polluting new technology vehicles equipped with a CeO2 catalytic system. Sci. Total Environ. 235, 71–76 (1999)

    Article  Google Scholar 

  50. Panigrahi, S., Kundu, S., Ghosh, S., Nath, S., Pal, T.: General method of synthesis for metal nanoparticles. J. Nanopart. Res. 6, 411–414 (2004)

    Article  Google Scholar 

  51. Park, J.Y., Baek, M.J., Choi, E.S., Woo, S., Kim, J.H., Kim, T.J., Jung, J.C., Chae, K.S., Chang, Y., Lee, G.H.: Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3, 3663–3669 (2009)

    Article  Google Scholar 

  52. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Google Scholar 

  53. Pissuwan, D., Valenzuela, S.M., Cortie, M.B.: Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24, 62–67 (2006)

    Article  Google Scholar 

  54. Puntes, V.F., Gorostiza, P., Aruguete, D.M., Bastus, N.G., Alivisatos, A.P.: Collective behaviour in two-dimensional cobalt nanoparticle assemblies observed by magnetic force microscopy. Nat. Mater. 3, 263–268 (2004)

    Article  Google Scholar 

  55. Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., Roullet, J.B.: Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J. Antimicrob. Chemother. 61, 869–876 (2008)

    Article  Google Scholar 

  56. Salado, J., Insausti, M., Lezama, L., de Muro, I.G., Goikolea, E., Rojo, T.: Preparation and characterization of monodisperse Fe3O4 nanoparticles: an electron magnetic resonance study. Chem. Mater. 23, 2879–2885 (2011)

    Article  Google Scholar 

  57. Salata, O.: Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 2, 3 (2004)

    Article  Google Scholar 

  58. Shahverdi, R.A., Fakhimi, A., Shahverdi, H.R., Minaian, S.: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphyloccocus aureus and Escherichia coli. Nanomed.: Nanotechnol. Biol. Med. 3, 168–171 (2007)

    Google Scholar 

  59. Shukla, A.K.: Electron magnetic resonance (EMR) technique and nanoparticle characterization. In: Lungu, M. et al. (ed.) Nanoparticles’ Promises and Risks. Springer International Publishing Switzerland, pp. 235–244 (2015)

    Google Scholar 

  60. Singh, V., Seehra, M.S.: Temperature and size dependence of electron magnetic resonance spectra of Ni nanoparticles embedded in an amorphous SiO2 matrix. J. Phys.: Condens. Matter 21, 456001 (2009)

    Google Scholar 

  61. Smirnov, A.I.: EPR studies of nanomaterials. In: Misra, S.K. (ed.) Multifrequency Electron Paramagnetic Resonance: Theory and Applications, p. 825. Wiley, New York (2011)

    Chapter  Google Scholar 

  62. Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  Google Scholar 

  63. Sperling, R.A., Gil, P.R., Zhang, F., Zanella, M., Parak, W.J.: Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008)

    Article  Google Scholar 

  64. Su, H.L., Chou, C.C., Hung, D.J., Lin, S.H., Pao, I.C., Lin, J.H., Huang, F.L., Dong, R.X., Lin, J.-J.: The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30, 5979–5987 (2009)

    Article  Google Scholar 

  65. Tan, M., Wang, G., Ye, Z., Yuan, J.: Synthesis and characterization of titania-based monodisperse fluorescent europium nanoparticles for biolabeling. J. Lumin. 117, 20–28 (2006)

    Article  Google Scholar 

  66. Tang, D., Yuan, R., Chai, Y.: Biochemical and immunochemical characterization of the antigen-antibody reaction on a non-toxic biomimetic interface immobilized red blood cells of crucian carp and gold nanoparticles. Biosens. Bioelectron. 22, 1116–1120 (2007)

    Article  Google Scholar 

  67. Teranishi, T., Hori, H., Miyake, M.: ESR study on palladium nanoparticles. J. Phys. Chem. B 101, 5774–5776 (1997)

    Article  Google Scholar 

  68. Tomita, S., Hagiwara, M., Kashiwagi, T., Tsuruta, C., Matsui, Y., Fujii, M., Hayashi, S.: Ferromagnetic resonance study of diluted Fe nanogranular films. J. Appl. Phys. 95, 8194 (2004)

    Google Scholar 

  69. Tseng, W., Chen, C.: Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41, 1213 (2006)

    Article  Google Scholar 

  70. Tseng, W.L., Huang, M.F., Huang, Y.F., Chang, H.-T.: Nanoparticle-filled capillary electrophoresis for the separation of long DNA molecules in the presence of hydrodynamic and electrokinetic forces. Electrophoresis 26, 3069–3075 (2005)

    Article  Google Scholar 

  71. Usselman, R.J., Russek, S.E., Klem, M.T., Allen, M.A., Douglas, T., Young, M., Idzerda, Y.U., Singel, D.J.: Temperature dependence of electron magnetic resonance spectra of iron oxide nanoparticles mineralized in Listeria innocua protein cages. J. Appl. Phys. 112, 084701 (2012)

    Article  Google Scholar 

  72. Veerakumar, P., Chen, S.M., Madhu, R., Veeramani, V., Hung, C.T., Liu, S.B.: Nickel nanoparticle-decorated porous carbons for highly active catalytic reduction of organic dyes and sensitive detection of Hg(II) ions. ACS Appl. Mater. Interfaces 7, 24810–24821 (2015)

    Article  Google Scholar 

  73. Wu, X., **ngW, Zhang L., Zhuo, S., Zhou, J., Wang, G., Qiao, S.: Nickel nanoparticles prepared by hydrazine hydrate reduction and their application in supercapacitor. Powder Technol. 224, 162–167 (2012)

    Article  Google Scholar 

  74. Xu, X., Zhu, W., Wang, Z., Witkamp, G.J.: Distributions of rare earths and heavy metals in field-grown maize after application of rare earth-containing fertilizer. Sci. Total Environ. 293, 97–105 (2002)

    Article  Google Scholar 

  75. Zhang, W., Wang, G.: Research and development for antibacterial materials of silver nanoparticle. New Chem. Mater. 31(2), 42–44 (2003)

    Google Scholar 

  76. Zharov, V.P., Kim, J.-W., Curiel, D.T., Everts, M.: Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomed. Nanotechnol. Biol. Med. 1, 326–345 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siavash Iravani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer (India) Pvt. Ltd.

About this chapter

Cite this chapter

Iravani, S. (2017). EMR of Metallic Nanoparticles. In: Shukla, A. (eds) EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Advanced Structured Materials, vol 62. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3655-9_4

Download citation

Publish with us

Policies and ethics

Navigation