Epigenetic Mechanisms in Plants: An Overview

  • Chapter
Plant Biology and Biotechnology

Abstract

Plant epigenetics has become one of the hottest topics of research not only as a subject of basic research but also as a possible new source of beneficial traits for plant breeding. In addition, epigenetic mechanisms are also crucial to appropriate plant reactions to stress. Given the sessile lifestyle and the late differentiation of the germ line, plants can perceive stresses during vegetative growth and also memorize them, possibly by epigenetic mechanisms. Plants use three systems to initiate and regulate epigenetic gene regulation, like other higher organisms, which include DNA methylation, histone modifications, and RNA interference. New concepts are being evolved to show how these epigenetic components interact and stabilize each other. The role of epigenetic mechanisms in hybrid vigor and epigenetic transgene silencing is also being explored. In this chapter, we have tried to highlight the epigenetic mechanisms that play key roles in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aina R, Sgorbati S, Santagostino A et al (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121(3):472–480

    Article  CAS  Google Scholar 

  • Akimoto K, Katakami H, Kim HJ, Ogawa E, Sano CM, Wada Y, Sano H (2007) Epigenetic inheritance in rice plants. Ann Bot 100(2):205–217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Allen R, Millgate A, Chitty J, Thisleton J, Miller J, Fist A, Gerlach W, Larkin P (2004) RNAi-mediated replacement of morphine with the nonnarcotic alkaloid reticuline in opium poppy. Nat Biotechnol 22:1559–1566

    Article  CAS  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50

    Article  CAS  PubMed  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S, Vaimanandveitia RA (2010) Perspective: heterosis. Plant Cell 22:2105–2112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird AP (1995) Gene number, noise reduction and biological complexity. Trends Genet 11:94–00

    Article  CAS  PubMed  Google Scholar 

  • Bird AP (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2007) Introduction perceptions of epigenetics. Nature 447:396–398

    Article  CAS  PubMed  Google Scholar 

  • Boscolo PR, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62(2):181–189

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao Y, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35(5):1714–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Brettell RI, Dennis ES (1991) Reactivation of a silent Ac following tissue culture is associated with heritable alterations in its methylation pattern. Mol Gen Genet 229(3):365–372

    Article  CAS  PubMed  Google Scholar 

  • Brink RA (1956) A genetic change associated with the R locus in maize which is directed and potentially reversible. Genetics 41:872–889

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  • Cerda S, Weitzman SA (1997) Influence of oxygen radical injury on DNA methylation. Mutat Res 386(2):141–152

    Article  CAS  PubMed  Google Scholar 

  • Chen F, He G, He H, Chen W, Zhu X, Liang M, Chen L, Deng XW (2010) Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol 52:971–980

    Article  CAS  PubMed  Google Scholar 

  • Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase like protein in tobacco plants. Mol Genet Genomics 277:589–600

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ, Goldberg RB, Jacobsen SE, Fischer RL (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in arabidopsis. Cell 110(1):33–42

    Article  CAS  PubMed  Google Scholar 

  • Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko JG et al (2009) KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461(7262):415–418

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho F, Gheyson G, Kushnir S, van Montagu M, Inzé D, Castresana C (1992) Suppression of 1,3-glucanase transgene expression in homozygous plants. EMBO J 11:2595–2602

    PubMed Central  PubMed  Google Scholar 

  • Engler P, Weng A, Storb U (1993) Influence of CpG methylation and target spacing on V(D)J recombination in a transgenic substrate. Mol Cell Biol 13(1):571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fedoroff N (1996) Epigenetic regulation of the maize Spm transposable element. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 575–592

    Google Scholar 

  • Feil R, Berger F (2007) Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 23:192–199

    Article  CAS  PubMed  Google Scholar 

  • Filek M, Keskinen R, Hartikainen H et al (2008) The protective role of selenium in rape seedlings subjected to cadmium stress. J Plant Physiol 165(8):833–844

    Article  CAS  PubMed  Google Scholar 

  • Fojtova M, Van Houdt H, Depicker A, Kovarik A (2003) Epigenetic switch from posttranscriptional to transcriptional silencing is correlated with promoter hypermethylation. Plant Physiol 133(3):1240–1250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferases Dnmt1 associates with histone deacetylase activity. Nat Genet 24:88–91

    Article  CAS  PubMed  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    Article  CAS  PubMed  Google Scholar 

  • Gavilano LB, Coleman NP, Burnley LE, Bowman ML, Kalengamaliro NE et al (2006) Genetic engineering of Nicotiana tabacum for reduced nornicotine content. J Agric Food Chem 54:9071–9078

    Article  CAS  PubMed  Google Scholar 

  • Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goll MG, Bestor TH (2005) Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74:481–514

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Morales-Ruiz T, Ariza RR et al (2002) ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111:803–814

    Article  CAS  PubMed  Google Scholar 

  • Groszmann M, Greaves IK, Albert N, Fujimoto R, Helliwell CA et al (2011) Epigenetics in plants- vernalisation and hybrid vigour. Biochim Biophys Acta 1809:427–437

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Ingelbrecht I, van Houdt H, van Montagu M, Depicker A (1994) Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci U S A 91:10502–10506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • John MC, Amasino RM (1989) Extensive changes in DNA methylation patterns accompany activation of a silent T-DNA ipt gene in Agrobacterium tumefaciens- transformed plant cells. Mol Cell Biol 9:4298–4303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson L, Cao X, Jacobsen S (2002) Interplay between two epigenetic marks DNA methylation and histone H3 lysine 9 methylation. Curr Biol 12:1360–1367

    Article  CAS  PubMed  Google Scholar 

  • Jost JP, Siegmann M, Sun L, Leung R (1995) Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem 270:9734–9739

    Article  CAS  PubMed  Google Scholar 

  • Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43:1106–1111

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, Purugganan MD (2004) Epialleles via DNA methylation: consequences for plant evolution. Trends Ecol Evol 19:309–314

    Article  PubMed  Google Scholar 

  • Kim JM, Ishida TKTJ, Kawashima MM T, Toyoda AMT, Kimura H, Shinozaki K, Seki M (2008) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 49:1580–1588

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Grossniklaus U (2003) Apomixis: a developmental perspective. Annu Rev Plant Biol 54:547–574

    Article  CAS  PubMed  Google Scholar 

  • Kovalchuk I, Kovalchuk O, Kalck V, Boyko V, Filkowski J, Heinlein M, Hohn B (2003) Pathogen-induced systemic plant signal triggers DNA rearrangements. Nature 423:760–762

    Article  CAS  PubMed  Google Scholar 

  • Kumar SG, Campbell L, Puckhaber L, Stipanovic R, Rathore K (2006) Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci 103:18054–18059

    Article  CAS  Google Scholar 

  • Labra M, Grassi F, Imazio S et al (2004) Genetic and DNA-methylation changes induced by potassium dichromate in Brassica napus L. Chemosphere 54(8):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    Article  CAS  PubMed  Google Scholar 

  • Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E et al (2006) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242

    Article  CAS  PubMed  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AAHA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AHFM (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    Article  CAS  PubMed  Google Scholar 

  • Leonardi A, Damarval C, de Vienne D (1988) Organ-specific variability and inheritance of maize proteins revealed by two-dimensional electrophoresis. Genet Res 52:97–103

    Article  CAS  Google Scholar 

  • Leonardi A, Damerval C, Hebert Y, Gallais A, de Vienne D (1991) Association of protein amount polymorphism (PAP) among maize lines with performances of their hybrids. Theor Appl Genet 82:552–560

    Article  CAS  PubMed  Google Scholar 

  • Lindbo JA (2012) A historical overview of RNAi in plants. Methods Mol Biol 894:1–16

    CAS  PubMed  Google Scholar 

  • Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17(12):1723–1730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luff B, Pawlowski L, Bender J (1999) An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. Mol Cell 3:505–511

    Article  CAS  PubMed  Google Scholar 

  • Lukens LN, Zhan S (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10(3):317–322

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu X, Singh P, Cui Y, Zimmerli L, Wu K (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta 1819(2):129–136

    Article  CAS  PubMed  Google Scholar 

  • Mahmoudi T, Verrijzer CP (2001) Chromatin silencing and activation by Polycomb and trithorax group proteins. Oncogene 20:3055–3066

    Article  CAS  PubMed  Google Scholar 

  • Malagnac F, Bartee L, Bender J (2002) An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. EMBO J 21:6842–6852

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mann JR (2001) Imprinting in the germline. Stem Cells 19:289–294

    Article  Google Scholar 

  • Martienssen RA (1996) Epigenetic silencing of Mu transposable elements in maize. In: Russo VEA, Martienssen RA, Riggs AD (eds) Epigenetic mechanisms of gene regulation. Cold Spring Harbor Laboratory Press, New York, pp 593–610

    Google Scholar 

  • Mathieu O, Reinders J, Caikovski M, Smathajitt C, Paszkowski J (2007) Transgenerational stability of the Arabidopsis epigenome is coordinated by CG methylation. Cell Res 130:851–862

    CAS  Google Scholar 

  • Matzke MA, Matzke A (1995) How and why do plants inactivate homologous (trans)genes? Plant Physiol 107(3):679–685

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matzke MA, Matzke AJ (2004) Planting the seeds of a new paradigm. PLoS Biol 2:582–586

    Article  CAS  Google Scholar 

  • Matzke M, Primig M, Trnovsky J, Matzke A (1989) Reversible methylation and inactivation of marker genes in sequentially transformed plants. EMBO J 8:643–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF, Matzke AJ (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677(1–3):129–141

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1951) Chromosome organization and genic expression. Cold Spring Harb Symp Quant Biol 16:13–47

    Article  CAS  PubMed  Google Scholar 

  • Meaney MJ, Ferguson-Smith AC (2010) Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 13(11):1313–1318

    Article  CAS  PubMed  Google Scholar 

  • Melquist S, Luff B, Bender J (1999) Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics 153:401–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morel JB, Mourrain P, Beclin C, Vaucheret H (2000) DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr Biol 10:1591–1594

    Article  CAS  PubMed  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Huck-Hui NG, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2:279–289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narlikar GJ, Fan HY, Kingston RW (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487

    Article  CAS  PubMed  Google Scholar 

  • Neuhuber F, Park YD, Matzke AJ, Matzke MA (1994) Susceptibility of transgene loci to homology-dependent gene silencing. Mol Gen Genet 244(3):230–241

    Article  CAS  PubMed  Google Scholar 

  • Park Y-D, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM, Matzke MA (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194

    Article  CAS  PubMed  Google Scholar 

  • Paszkowski J, Whitham SA (2001) Gene silencing and DNA methylation processes. Curr Opin Plant Biol 4:123–129

    Article  CAS  PubMed  Google Scholar 

  • Peschke VM, Phillips RL, Gengenbach BG (1991) Genetic and molecular analysis of tissue-culture-derived Ac elements. Theor Appl Genet 82(2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense. Mol Biol Evol 15:880–891

    Article  CAS  Google Scholar 

  • Reyes JC, Grossniklaus U (2003) Diverse functions of Polycomb group proteins during plant development. Semin Cell Dev Biol 14:77–84

    Article  CAS  PubMed  Google Scholar 

  • Richards EJ (1997) DNA methylation and plant development. Trends Genet 13:319–323

    Article  CAS  PubMed  Google Scholar 

  • Sha AH, Lin XH, Huang JB, Zhang DP (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    Article  CAS  PubMed  Google Scholar 

  • Shen H, He H, Li J, Chen W, Wang X et al (2012) Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24:875–892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siritunga D, Sayre RT (2003) Generation of cyanogen-free transgenic cassava. Planta 217(3):367–373

    Article  CAS  PubMed  Google Scholar 

  • Smith C, Watson C, Bird C, Ray J, Schuch W et al (1990) Expression of a truncated tomato polygalacturonase gene inhibits expression of the endogenous gene in transgenic plants. Mol Gen Genet 224:477–548

    Article  CAS  PubMed  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Upregulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    Article  CAS  PubMed  Google Scholar 

  • Song R, Messing J (2003) Gene expression of a gene family in maize based on noncollinear haplotypes. Proc Natl Acad Sci U S A 100(15):9055–9060

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soppe WJJ, Jasencakova Z, Houben A, Kakutani T, Meister A, Huang MS, Jacobsen SE, Schubert I, Fransz PF (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J 21:6549–6559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Sun SL, Zhong JQ, Li SH, Wang XJ (2013) Tissue culture-induced somaclonal variation of decreased pollen viability in torenia (Torenia fournieri Lind). Bot Stud 54:36

    Article  Google Scholar 

  • Tam PL, Zhou SX, Tan SS (1994) X-chromosome activity of the mouse primordial germ cells revealed by the expression of an X-linked lac Z transgene. Development 120:2925–2932

    CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  • Tani E, Polidoros AN, Nianiou-Obeidat I, Tsaftaris AS (2005) DNA methylation patterns are differently affected by planting density in maize inbreds and their hybrids. Maydica 50:19–23

    Google Scholar 

  • Tariq M, Paszkowski J (2004) DNA and histone methylation in plants. Trends Genet 20:244–251

    Article  CAS  PubMed  Google Scholar 

  • Tariq M, Saze H, Probst AV, Lichota J, Habu Y, Paszkowski J (2003) Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin. Proc Natl Acad Sci U S A 100(15):8823–8827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsaftaris AS, Kafka M (1998) Mechanisms of heterosis in crop plants. J Crop Prod 1:95–111

    Article  Google Scholar 

  • Tsaftaris AS, Polidoros AN (1993) Studying the expression of genes in maize parental inbreds and their heterotic and non-heterotic hybrids. In: Bianchi A, Lupotto E, Motto M (eds) Proceedings of XVI Eucarpia Maize and Sorghum Conference, Bergamo, pp 283–292

    Google Scholar 

  • Tsaftaris AS, Polidoros AN (2000) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    CAS  Google Scholar 

  • Tsaftaris AS, Polidoros AN, Koumproglou R, Tani E, Kovacevic NM, Abatzidou E (2005) Epigenetic mechanisms in plants and their implications in plant breeding. In: Tuberosa R, Philips R, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution. Avenue Media, Bologna, pp 157–171

    Google Scholar 

  • Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  • Vairapandi M, Duker NJ (1993) Enzymic removal of 5-methylcytosine from DNA by a human DNA-glycosylase. Nucleic Acids Res 21(23):5323–5327

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Blokland R, van der Geest N, Mol J, Kooter J (1994) Transgene-mediated suppression of chalcone synthase expression in Petunia hybrida results from an increase in RNA turnover. Plant J 6:861–877

    Article  CAS  Google Scholar 

  • Van der Krol A, Mur L, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, **a Y, Ladunga I, Avramova Z, Fromm M (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:238

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vanyushin BF (2005) Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry (Mosc) 70(5):488–499

    Article  CAS  Google Scholar 

  • Wada Y, Miyamoto K, Kusano T, Sano H (2004) Association between up-regulation of stress-responsive genes and hypomethylation of genomic DNA in tobacco plants. Mol Genomics Genet 271:658–666

    Article  CAS  Google Scholar 

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Wolffe AP, Matzke MA (1999) Epigenetics: regulation through repression. Science 286:481–486

    Article  CAS  PubMed  Google Scholar 

  • Yang JL, Liu LW, Gong YQ et al (2007) Analysis of genomic DNA methylation level in radish under cadmium stress by methylation sensitive amplified polymorphism technique. J Plant Physiol Mol Biol 33(3):219–222

    CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13(8):335–340

    Article  CAS  PubMed  Google Scholar 

  • Zadeh AH, Foster GD (2004) Transgenic resistance to tobacco ringspot virus. Acta Virol 48(3):145–152

    CAS  PubMed  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006) Genome-wide high-resolution map** and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhou DX (2009) Regulatory mechanism of histone epigenetic modifications in plants. Epigenetics 4(1):15–18

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Munshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Munshi, A., Ahuja, Y.R., Bahadur, B. (2015). Epigenetic Mechanisms in Plants: An Overview. In: Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K. (eds) Plant Biology and Biotechnology. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2283-5_12

Download citation

Publish with us

Policies and ethics

Navigation