Interaction of Dopamine and Glutamate Release in the Primate Prefrontal Cortex in Relation to Working Memory and Reward

  • Chapter
  • First Online:
The Prefrontal Cortex as an Executive, Emotional, and Social Brain
  • 1749 Accesses

Abstract

The prefrontal cortex (PFC) aggregates information widely from other brain areas. The PFC plays the role of a command center that determines actions related to higher cognitive functions, such as working memory (WM), planning, decision-making, and behavioral inhibition, for the sake of better adaptation to the outside environment. Activities related to the higher cognitive function observed in the PFC are regulated by several neurotransmitters such as dopamine (DA), glutamate, serotonin, norepinephrine, and gamma-aminobutyric acid (GABA). Abnormalities of neurotransmitters, i.e., when these substances are out of the suitable range, impair the human cognitive performance and sometimes cause psychiatric disorders. While there are many reports about changes in neurotransmitters in the PFC of the human and rodent, there are very few studies on the PFC of the nonhuman primate. In this chapter, we discuss the function of the PFC in relation to changes in neurotransmitters, especially DA and glutamate, and their interactions, referring to our studies in which we investigated changes in neurotransmitters in the primate PFC in relation to cognitive task performance and reward.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abekawa T, Ohmori T, Ito K, Koyama T (2000) D1 dopamine receptor activation reduces extracellular glutamate and GABA concentrations in the medial prefrontal cortex. Brain Res 867:250–254

    Article  CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Arnsten AF, Robbins TW (2002) Neurochemical modulation of prefrontal cortical function in humans and animals. In: Stuss DT, Knight RT (eds) Principles of frontal lobe function. Oxford University Press, Oxford, pp 51–84

    Chapter  Google Scholar 

  • Arnsten AFT, Cai JX, Murphy BL, Goldman-Rakic PS (1994) Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology 116:143–151

    Article  CAS  PubMed  Google Scholar 

  • Björklund A, Dunnett SB (2007) Dopamine neuron systems in the brain: an update. Trends Neurosci 30(5):194–202

    Article  PubMed  Google Scholar 

  • Botvinick MM, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546

    Article  PubMed  Google Scholar 

  • Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205(4409):929–932

    Article  CAS  PubMed  Google Scholar 

  • Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341

    Article  CAS  PubMed  Google Scholar 

  • Cools R, D’Esposito M (2011) Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry 69:e113–e125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Arco A, Mora F (1999) Effects of endogenous glutamate on extracellular concentrations of GABA, dopamine and dopamine metabolites in the prefrontal cortex of the freely moving rat: involvement of NMDA and AMPA/KA receptors. Neurochem Res 24:1027–1035

    Article  CAS  PubMed  Google Scholar 

  • Del Arco A, Martinez R, Mora F (1998) Amphetamine increases extracellular concentrations of glutamate in the prefrontal cortex of the awake rat: a microdialysis study. Neurochem Res 23:1153–1158

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara G (2016) https://ca.pittcon.org/Technical+Program/tpabstra16.nsf/Agenda+Time+Slots+Web/15BE89CBF2D44B5485257EC5004D3086?Opendocument/

  • Diamond A (1996) Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond Ser B Biol Sci 351:1483–1494

    Article  CAS  Google Scholar 

  • Diamond A, Ciaramitaro V, Donner E, Djali S, Robinson MB (1994) An animal model of early-treated PKU

    Google Scholar 

  • Dudkin KN, Kruchinin VK, Chueva IV (1996) Neurophysiological correlates of improvements in cognitive characteristics in monkeys during modification of NMDA-ergic structures of the prefrontal cortex. Neurosci Behav Physiol 26:545–551

    Article  CAS  PubMed  Google Scholar 

  • Feenstra MGP, Van der Weij W, Botterblom MHA (1995) Concentration-dependent dual action of locally applied N-methyl-D-aspartate on extracellular dopamine in the rat prefrontal cortex in vivo. Neurosci Lett 201:175–178

    Article  CAS  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1990) Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms. J Neurophysiol 63:814–831

    CAS  PubMed  Google Scholar 

  • Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD (2007) Aberrant “default mode” functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    Article  PubMed  Google Scholar 

  • Ghoneim MM, Hinrichs JV, Mewaldt SP, Petersen RC (1985) Ketamine: behavioral effects of subanesthetic doses. J Clin Psychopharmacol 5:70–77

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Mountcastle V (eds) Handbook of physiology, the nervous system, Higher function of the brain, vol 5. Bethesda, American Physiological Society, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1999) The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry 46:650–661

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1997) Function and anatomical aspects of prefrontal pathology in schizophrenia. Schizophr Bull 23:437–458

    Article  CAS  PubMed  Google Scholar 

  • Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    Article  CAS  PubMed  Google Scholar 

  • Harrison BJ, Yucel M, Pujol J, Pantelis C (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91:82–86

    Article  PubMed  Google Scholar 

  • Hata N, Nishikawa T, Umino A, Takahashi K (1990) Evidence for involvement of N-methyl-D-aspartate receptor in tonic inhibitory control of dopaminergic transmission in rat medial frontal cortex. Neurosci Lett 120:101–104

    Article  CAS  PubMed  Google Scholar 

  • Holroyd CB, Coles MG, Nieuwenhuis S (2002) Medial prefrontal cortex and error potentials. Science 296:1610–1611

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Mikami A, Ando I, Tsukada H (2004) Functional brain map** of the macaque related to spatial working memory as revealed by PET. Cereb Cortex 14:106–119

    Article  PubMed  Google Scholar 

  • Jedema HP, Moghaddam B (1996) Characterization of excitatory amino acid modulation of dopamine release in the prefrontal cortex of conscious rats. J Neurochem 66:1448–1453

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmuller B (1980) Low cerebrospinal fluid glutamate in schizophrenia patients and a new hypothesis on schizophrenia. Neurosci Lett 20:379–382

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Honda Y, Watanabe M, Hikosaka K (2002a) Release of neurotransmitters in the monkey frontal cortex is related to level of attention. Psychiatry Clin Neurosci 56(3):341–342

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Hikosaka K, Watanabe M (2002b) Differential changes in glutamate concentration in the primate prefrontal cortex during delayed spatial alteration and sensory-guided tasks. Exp Brain Res 145(2):133–141

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Hikosaka K, Honda Y, Kojima T, Watanabe M (2014) Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex. Behav Brain Res 266:104–107

    Article  CAS  PubMed  Google Scholar 

  • Kodama T, Hikosaka K, Honda Y, Kojima T, Tsutsui K, Watanabe M (2015, November) Dopamine and glutamate release in the anterior default system during rest: a monkey microdialysis study. Behav Brain Res 294:194–197

    Article  CAS  PubMed  Google Scholar 

  • Kojima T, Onoe H, Hikosaka K, Tsutsui K, Tsukada H, Watanabe M (2009) Default mode of brain activity demonstrated by positron emission tomography imaging in awake monkeys: higher rest-related than working memory-related activity in medial cortical areas. J Neurosci 29(46):14463–14471

    Article  CAS  PubMed  Google Scholar 

  • Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner J, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Arch Gen Psychiatry 51:199–214

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg T1, Apicella P, Schultz W (1991) Responses of monkey midbrain dopamine neurons during delayed alternation performance. Brain Res 567(2):337–341

    Article  CAS  PubMed  Google Scholar 

  • Luciana M, Collins PF (1997) Dopaminergic modulation of working memory for spatial but not object cues in normal humans. J Cogn Neurosci 9:330–347

    Article  CAS  PubMed  Google Scholar 

  • Malenka RC, Nestler EJ, Hyman SE (2009) Chapter 6: widely projecting systems: monoamines, acetylcholine, and orexin. In: Sydor A, Brown RY (eds) Molecular neuropharmacology: a foundation for clinical neuroscience, 2nd edn. McGraw-Hill Medical, New York, pp 147–148

    Google Scholar 

  • Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D, Breier A (1996) NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 14:301–307

    Article  CAS  PubMed  Google Scholar 

  • Mantini D, Gerits A, Nelissen K, Durand JB, Joly O, Simone L, Sawamura H, Wardak C, Orban GA, Buckner RL, Vanduffel W (2011) Default mode of brain function in monkeys. J Neurosci 31:12954–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1:59–65

    Article  CAS  PubMed  Google Scholar 

  • Mishkin M (1957) Effects of small frontal lesions on delayed alternation in monkey. J Neurophysiol 20:615–622

    CAS  PubMed  Google Scholar 

  • Moghaddam B, Adams B, Verma A, Daly D (1997) Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci 17:2921–2927

    CAS  PubMed  Google Scholar 

  • Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH (1996a) Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci U S A 93(3):1325–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy BL, Arnsten AF, Jentsch JD, Roth RH (1996b) Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 16:7768–7775

    CAS  PubMed  Google Scholar 

  • Nishijima K, Kashiwa A, Nishikawa T (1994) Preferential stimulation of extracellular release of dopamine in rat frontal cortex to striatum following competitive inhibition of the N-methyl-D-aspartate receptor. J Neurochem 63:375–378

    Article  CAS  PubMed  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    Article  CAS  PubMed  Google Scholar 

  • Okubo Y, Suhara T, Suzuki K, Kobayashi K, Inoue O, Terasaki O, Someya Y, Sassa T, Sudo Y, Matsushima E, Iyo M, Tateno Y, Toru M (1997) Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385(6617):634–636

    Article  CAS  PubMed  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52(12):998–1007

    Article  CAS  PubMed  Google Scholar 

  • Oye I, Paulsen O, Maurset A (1992) Effects of ketamine on sensory perception: evidence for a role of N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 260:1209–1213

    CAS  PubMed  Google Scholar 

  • Passani MB, Bacciottini L, Mannaioni PF, Blandina P (2000) Central histaminergic system and cognition. Neurosci Biobehav Rev 24(1):107–113

    Article  CAS  PubMed  Google Scholar 

  • Phillips AG1, Ahn S, Floresco SB (2004) Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 24(2):547–553

    Article  CAS  PubMed  Google Scholar 

  • Porras A, Sanz B, Mora F (1997) Dopamine-glutamate interaction in the prefrontal cortex of the conscious rat: studies on ageing. Mech Ageing Dev 99:9–17

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Rothbart MK, Sheese BE, Tang Y (2007) The anterior cingulate gyrus and the mechanism of self-regulation. Cogn Affect Behav Neurosci 7:391–395

    Article  PubMed  Google Scholar 

  • Preuss TM (1995) Do rats have prefrontal cortex? The rose-woolsey-akert program reconsidered. J Cogn Neurosci 7(1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916

    CAS  PubMed  Google Scholar 

  • Rao SG, Williams GV, Goldman-Rakic PS (2000) Destruction and creation of spatial tuning by disinhibition: GABAA blockade of prefrontal cortical neurons engaged by working memory. J Neurosci 20:485–494

    CAS  PubMed  Google Scholar 

  • Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306:443–447

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Lange KW, Kornhuber J, Danielczyk W (1992) Glutamatergic-dopaminergic balance in the brain: its importance in motor disorders and schizophrenia. Drug Res 42:265–268

    CAS  Google Scholar 

  • Robbins TW, Arnsten AF (2009) The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu Rev Neurosci 32:267–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbins TW, Roberts AC (2007) Differential regulation of fronto-executive function by the monoamines and acetylcholine. Cereb Cortex 17(Suppl 1):i151–i160

    Article  PubMed  Google Scholar 

  • Romanides AJ, Duffy P, Kalivas PW (1999) Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 92:97–106

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Noonan NP, Boorman ED, Walton ME, Behrens TE (2001) Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–1069

    Article  Google Scholar 

  • Santiago M, Machado A, Cano J (1993) Regulation of the prefrontal dopamine release by GABAA and GABAB receptor agonists and antagonists. Brain Res 630:28–31

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Goldman-Rakic PS (1991) D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251:947–950

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M (1985) Laminar distributions of neurons sensitive to acetylcholine, noradrenaline and dopamine in the dorsolateral prefrontal cortex of the monkey. Neurosci Res 2:255–273

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1988) Delayed response deficit in monkeys by locally disturbed prefrontal neuronal activity by bicuculline. Behav Brain Res 31:193–198

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1989) Delayed response deficits produces by local injection of bicuculline into the dorsolateral prefrontal cortex in Japanese macaque monkeys. Exp Brain Res 75:457–469

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990a) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1385–1400

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Matsumura M, Kubota K (1990b) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401–1412

    CAS  PubMed  Google Scholar 

  • Schultz W (1992) Activity of dopamine neurons in the behaving primate. Semin Neurosci 4:129–139

    Article  Google Scholar 

  • Smiley JF, Goldman-Rakic PS (1993) Heterogeneous targets of dopamine synapses in monkey prefrontal cortex demonstrated by serial section electron microscopy: a laminar analysis using the silver-enhanced diaminobenzidine sulfide (SEDS) immunolabeling technique. Cereb Cortex 3:223–238

    Article  CAS  PubMed  Google Scholar 

  • Smiley JF, Williams SM, Szigeti K, Goldman-Rakic PS (1992) Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex. J Comp Neurol 321:325–335

    Article  CAS  PubMed  Google Scholar 

  • Spencer KM, Nestor PG, Perlmutter R, Niznikiewicz MA, Klump MC, Frumin M, Shenton ME, McCarley RW (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. PNAS 101(49):17288–17293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi R, Moghaddam B (1998) Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex. J Neurochem 71:1443–1449

    Google Scholar 

  • Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, McNaughton BL, Fernández G (2006) Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study Proc. Natl Acad Sci U S A 103:756–761

    Article  CAS  Google Scholar 

  • Thakkar MM (2011) Histamine in the regulation of wakefulness. Sleep Med Rev 15(1):65–74

    Article  PubMed  Google Scholar 

  • Verma A, Moghaddam B (1996) NMDA receptor antagonists impair prefrontal cortex function as assessed via spatial delayed alternation performance in rats: modulation by dopamine. J Neurosci 16:373–379

    CAS  PubMed  Google Scholar 

  • Watanabe M (1996) Reward expectancy in primate prefrontal neurons. Nature 382(6592):629–632

    Article  CAS  PubMed  Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S (2002) Coding and monitoring of motivational context in the primate prefrontal cortex. J Neurosci 22:2391–2400

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kodama T, Hikosaka K (1997) Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 78:2795–2798

    CAS  PubMed  Google Scholar 

  • Wedzony K, Klimek V, Golembiowska K (1993) MK-801 elevates the extracellular concentration of dopamine in the rat prefrontal cortex and increases the density of striatal dopamine D1 receptors. Brain Res 622:325–329

    Article  CAS  PubMed  Google Scholar 

  • Williams GV, Castner SA (2000) Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience 139:263–276

    Article  Google Scholar 

  • Williams SM, Goldman-Rakic PS (1993) Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. Cereb Cortex 13(3):199–222

    Article  Google Scholar 

  • Wilson FA, O’Scalaidhe SP, Goldman-Rakic PS (1994) Functional synergism between putative gamma-aminobutyrate-containing neurons and pyramidal neurons in prefrontal cortex. Proc Natl Acad Sci U S A 91:4009–4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonezawa Y, Kuroki T, Kawahara T, Tashiro N, Uchimura H (1998) Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the me- dial prefrontal cortex. Eur J Pharmacol 341:45–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tohru Kodama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Kodama, T., Watanabe, M. (2017). Interaction of Dopamine and Glutamate Release in the Primate Prefrontal Cortex in Relation to Working Memory and Reward. In: Watanabe, M. (eds) The Prefrontal Cortex as an Executive, Emotional, and Social Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56508-6_5

Download citation

Publish with us

Policies and ethics

Navigation