d-Serine Signaling and Schizophrenia

  • Chapter
  • First Online:
D-Amino Acids
  • 853 Accesses

Abstract

It has been widely accepted that the hypofunction of the N-methyl-d-aspartate-type glutamate receptor (NMDAR) may be implicated in the pathophysiology of both positive- and negative-cognitive symptomatologies of schizophrenia because NMDAR antagonists, including phencyclidine (PCP) and anti-NMDAR antibodies, mimic these respective antipsychotic-responsive and antipsychotic-resistant symptoms. d-Serine and other agonists for the glycine modulatory site of the NMDAR, which facilitate the receptor function, are found to not only inhibit behavioral models of schizophrenia and hyperdopaminergic transmission caused by schizophrenomimetics, PCP, and amphetamines, in experimental animals, but also ameliorate the entire extent of the above schizophrenic symptoms. Moreover, d-serine has been revealed to be a brain-enriched endogenous substance displaying an NMDAR-like distribution. At least, in the forebrain areas, the NMDAR function levels are under control of the extracellular d-serine concentrations that are regulated in a different manner from that of classical neurotransmitters by neuronal and glial activities, the calcium-permeable AMPA receptor, the Asc-1 neutral amino acid transporter, and the neuronal serine racemase, a d-serine synthesizing enzyme. These findings raise the possibility that insufficient extracellular d-serine signaling could be a part of a key factor that leads to the presumed hypofunction of the NMDAR in schizophrenia. Further investigations on the molecular and cellular mechanisms of the d-serine metabolism and their alterations in schizophrenia may contribute to the elucidation of the pathophysiology of and development of a novel therapeutic approach to this intractable mental disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abi-Dargham A, van de Giessen E, Slifstein M et al (2009) Baseline and amphetamine-stimulated dopamine activity are related in drug-naïve schizophrenic subjects. Biol Psychiatry 65(12):1091–1093

    Article  CAS  PubMed  Google Scholar 

  • Anis NA, Berry SC, Burton NR et al (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurons by N-methyl-aspartate. Br J Pharmacol 79:565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balla A, Sershen H, Serra M (2003) Subchronic continuous phencyclidine administration potentiates amphetamine-induced frontal cortex dopamine release. Neuropsychopharmacology 28(1):34–44

    Article  CAS  PubMed  Google Scholar 

  • Balla A, Schneider S, Sershen H et al (2012) Effects of novel, high affinity glycine transport inhibitors on frontostriatal dopamine release in a rodent model of schizophrenia. Eur Neuropsychopharmacol 22(12):902–910

    Article  CAS  PubMed  Google Scholar 

  • Balu DT, Li Y, Puhl MD et al (2013) Multiple risk pathways for schizophrenia converge in serine racemase knockout mice, a mouse model of NMDA receptor hypofunction. Proc Natl Acad Sci U S A 110(26):E2400–E2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendikov I, Nadri C, Amar S et al (2007) A CSF and postmortem brain study of d-serine metabolic parameters in schizophrenia. Schizophr Res 90(1–3):41–51

    Article  PubMed  Google Scholar 

  • Benneyworth MA, Basu AC, Coyle JT (2011) Discordant behavioral effects of psychotomimetic drugs in mice with altered NMDA receptor function. Psychopharmacology (Berlin) 213(1):143–153

    Article  CAS  Google Scholar 

  • Brouwer A, Luykx JJ, van Boxmeer L et al (2013) NMDA-receptor coagonists in serum, plasma, and cerebrospinal fluid of schizophrenia patients: a meta-analysis of case-control studies. Neurosci Biobehav Rev 37(8):1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Chumakov I, Blumenfeld M, Guerassimenko O et al (2002) Genetic and physiological data implicating the new human gene G72 and the gene for d-amino acid oxidase in schizophrenia. Proc Natl Acad Sci U S A 99(21):13675–13680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras PC (1990) d-serine antagonized phencyclidine- and MK-801-induced stereotyped behavior and ataxia. Neuropharmacology 29(3):291–293

    Article  CAS  PubMed  Google Scholar 

  • Depoortere R, Perrault G, Sanger DJ (1999) Prepulse inhibition of the startle reflex in rats: effects of compounds acting at various sites on the NMDA receptor complex. Behav Pharmacol 10(1):51–62

    Article  CAS  PubMed  Google Scholar 

  • Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 60(2):106–114

    Article  CAS  PubMed  Google Scholar 

  • Deutch AY, Tam SY, Freeman AS et al (1987) Mesolimbic and mesocortical dopamine activation induced by phencyclidine: contrasting pattern to striatal response. Eur J Pharmacol 134(3):257–264

    Article  CAS  PubMed  Google Scholar 

  • Ermilov M, Gelfin E, Levin R et al (2013) A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophr Res 150(2–3):604–605

    Article  PubMed  Google Scholar 

  • Fukasawa Y, Segawa H, Kim JY et al (2000) Identification and characterization of a Na(+)-independent neutral amino acid transporter that associates with the 4F2 heavy chain and exhibits substrate selectivity for small neutral d- and l-amino acids. J Biol Chem 275(13):9690–9698

    Article  CAS  PubMed  Google Scholar 

  • Gliddon CM, Shao Z, LeMaistre JL et al (2009) Cellular distribution of the neutral amino acid transporter subtype ASCT2 in mouse brain. J Neurochem 108(2):372–383

    Article  CAS  PubMed  Google Scholar 

  • Goltsov AY, Loseva JG, Andreeva TV et al (2006) Polymorphism in the 5′-promoter region of serine racemase gene in schizophrenia. Mol Psychiatry 11:325–326

    Article  CAS  PubMed  Google Scholar 

  • Gouzoulis-Mayfrank E, Heekeren K, Neukirch A et al (2005) Psychological effects of (S)-ketamine and N, N-dimethyltryptamine (DMT): a double-blind, cross-over study in healthy volunteers. Pharmacopsychiatry 38(6):301–311

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T et al (1991) d-Alanine inhibits methamphetamine-induced hyperactivity in rats. Eur J Pharmacol 202:105–107

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Hayashi T et al (1992a) The presence of free d-serine in rat brain. FEBS Lett 296:33–36

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T et al (1992b) Determination of free amino acid enantiomers in rat brain and serum by high performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l-cysteine and o-phthaldialdehyde. J Chromatogr 582:41–48

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Oka T et al (1993a) Endogenous d-serine in rat brain: N-Methyl-d-aspartate receptor-related distribution and aging. J Neurochem 60:783–786

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Kumashiro S, Nishikawa T et al (1993b) Embryonic development and postnatal changes in free d-aspartate and d-serine in the human prefrontal cortex. J Neurochem 61:348–351

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Nishikawa T, Konno R et al (1993c) Free d-serine, d-aspartate and d-alanine in central nervous system and serum in mutant mice lacking d-amino acid oxidase. Neurosci Lett 152:33–36

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995a) Extracellular concentration of endogenous free d-serine in the rat brain as revealed by in vivo microdialysis. Neuroscience 66(3):635–643

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto A, Oka T, Nishikawa T (1995b) Anatomical distribution and postnatal changes in endogenous free d-aspartate and d-serine in rat brain and periphery. Eur J Neurosci 7:1657–1663

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Fujita Y, Horio M et al (2009) Co-administration of a d-amino acid oxidase inhibitor potentiates the efficacy of d-serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 65(12):1103–1106

    Article  CAS  PubMed  Google Scholar 

  • Hata N, Nishikawa T, Umino A et al (1990) Evidence for involvement of N-methyl-d-aspartate receptor in tonic inhibitory control of dopaminergic transmission in rat medial frontal cortex. Neurosci Lett 120(1):101–104

    Article  CAS  PubMed  Google Scholar 

  • Hayashi F, Takahashi K, Nishikawa T (1997) Uptake of l- and d-serine in C6 glioma cells. Neurosci Lett 239:85–88

    Article  CAS  PubMed  Google Scholar 

  • Henneberger C, Papouin T, Oliet SH et al (2010) Long-term potentiation depends on release of d-serine from astrocytes. Nature 463(7278):232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heresco-Levy U, Javitt DC, Ebstein R et al (2005) d-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry 57(6):577–585

    Article  CAS  PubMed  Google Scholar 

  • Horio M, Kohno M, Fujita Y et al (2011) Levels of d-serine in the brain and peripheral organs of serine racemase (Srr) knock-out mice. Neurochem Int 59(6):853–859

    Article  CAS  PubMed  Google Scholar 

  • Irifune M, Sato T, Kamata Y et al (1998) Inhibition by diazepam of ketamine-induced hyperlocomotion and dopamine turnover in mice. Can J Anaesth 45(5 Pt 1):471–478

    Article  CAS  PubMed  Google Scholar 

  • Ishimaru M, Kurumaji A, Toru M (1994) Increases in strychnine-insensitive glycine binding sites in cerebral cortex of chronic schizophrenics: evidence for glutamate hypothesis. Biol Psychiatry 35:84–95

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S, Ogata S, Umino A et al (2013a) Increasing effects of S-methyl-l-cysteine on the extracellular d-serine concentrations in the rat medial frontal cortex. Amino Acids 44(5):1391–1395

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S, Umino A, Umino M et al (2013b) Modulation of extracellular d-serine content by calcium permeable AMPA receptors in rat medial prefrontal cortex as revealed by in vivo microdialysis. Int J Neuropsychopharmacol 16(6):1395–1406

    Article  CAS  PubMed  Google Scholar 

  • Ishiwata S, Umino A, Balu DT et al (2015) Neuronal serine racemase regulates extracellular d-serine levels in the adult mouse hippocampus. J Neural Transm 122(8):1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531

    Article  CAS  PubMed  Google Scholar 

  • Kanahara N, Shimizu E, Ohgake S et al (2008) Glycine and D: −serine, but not D: −cycloserine, attenuate prepulse inhibition deficits induced by NMDA receptor antagonist MK-801. Psychopharmacology (Berlin) 198(3):363–374

    Article  CAS  Google Scholar 

  • Kane JM, Honigfeld G, Singer J et al (1988) Clozapine in treatment-resistant schizophrenics. Psychopharmacol Bull 24(1):62–67

    Google Scholar 

  • Kanematsu S, Ishii S, Umino A et al (2006) Evidence for involvement of glial cell activity in the control of extracellular d-serine contents in the rat brain. J Neural Transm 113:1717–1721

    Article  CAS  PubMed  Google Scholar 

  • Kantrowitz JT, Malhotra AK, Cornblatt B et al (2010) High dose d-serine in the treatment of schizophrenia. Schizophr Res 121(1–3):125–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Kantrowitz JT, Woods SW, Petkova E et al (2015) d-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry 2(5):403–412

    Article  PubMed  Google Scholar 

  • Kartvelishvily E, Schleper M, Balan L et al (2006) Neuron-derived d-serine release provides a novel means to activate N-Methyl-d-aspartate receptors. J Biol Chem 281:14151–14162

    Article  CAS  PubMed  Google Scholar 

  • Kashiwa A, Nishikawa T, Nishijima K et al (1995) Dizocilpine (MK-801) elicits a tetrodotoxin-sensitive increase in extracellular release of dopamine in rat medial frontal cortex. Neurochem Int 26(3):269–279

    Article  CAS  PubMed  Google Scholar 

  • Kim PM, Aizawa H, Kim PS et al (2005) Serine racemase: activation by glutamate neurotransmission via glutamate receptor interacting protein and mediation of neuronal migration. Proc Natl Acad Sci U S A 102(6):2105–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kishimoto H, Simon JR, Aprison MH (1981) Determination of the equilibrium dissociation constants and number of glycine binding sites in several areas of the rat central nervous system, using a sodium-independent system. J Neurochem 37(4):1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Kleckner NW, Dingledine R (1988) Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science 241(4867):835–837

    Article  CAS  PubMed  Google Scholar 

  • Kumashiro S, Hashimoto A, Nishikawa T (1995) Free d-serine in post-mortem brains and spinal cords of individuals with and without neuropsychiatric diseases. Brain Res 681:117–125

    Article  CAS  PubMed  Google Scholar 

  • Labrie V, Fukumura R, Rastogi A et al (2009) Serine racemase is associated with schizophrenia susceptibility in humans and in a mouse model. Hum Mol Genet 18(17):3227–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane HY, Chang YC, Liu YC et al (2005) Sarcosine or d-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 62(11):1196–1204

    Article  CAS  PubMed  Google Scholar 

  • Lane HY, Lin CH, Huang YJ et al (2010) A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and d-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol 13(4):451–460

    Article  CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93(17):9235–9240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, He L (2007) G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics 175(2):917–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Chang HT, Chen YJ et al (2014) Distinctively higher plasma G72 protein levels in patients with schizophrenia than in healthy individuals. Mol Psychiatry 19(6):636–637

    Article  CAS  PubMed  Google Scholar 

  • Lipina T, Labrie V, Weiner I et al (2005) Modulators of the glycine site on NMDA receptors, d-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology (Berlin) 179(1):54–67

    Article  CAS  Google Scholar 

  • López-Gil X, Babot Z, Amargós-Bosch M et al (2007) Clozapine and haloperidol differently suppress the MK-801-increased glutamatergic and serotonergic transmission in the medial prefrontal cortex of the rat. Neuropsychopharmacology 32(10):2087–2097

    Article  PubMed  CAS  Google Scholar 

  • Madeira C, Freitas ME, Vargas-Lopes C et al (2008) Increased brain d-amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101(1–3):76–83

    Article  PubMed  Google Scholar 

  • Martin P, Carlsson ML, Hjorth S (1998) Systemic PCP treatment elevates brain extracellular 5-HT: a microdialysis study in awake rats. Neuroreport 9(13):2985–2988

    Article  CAS  PubMed  Google Scholar 

  • Matoba M, Tomita U, Nishikawa T (1997) Characterization of 5, 7-dichlorokynurenate-insensitive [3H] d-serine binding to synaptosomal fraction isolated from rat brain tissues. J Neurochem 69:399–405

    Article  CAS  PubMed  Google Scholar 

  • Matsui T, Sekiguchi M, Hasimoto A et al (1995) Functional comparison of d-serine and glycine in rodents: the effects on cloned NMDA receptors and the extracellular concentration. J Neurochem 65:454–458

    Article  CAS  PubMed  Google Scholar 

  • Metzner L, Kottra G, Neubert K et al (2005) Serotonin, l-tryptophan, and tryptamine are effective inhibitors of the amino acid transport system PAT1. FASEB J 19(11):1468–1473

    Article  CAS  PubMed  Google Scholar 

  • Morita Y, Ujike H, Tanaka Y et al (2007) A genetic variant of the serine racemase gene is associated with schizophrenia. Biol Psychiatry 61(10):1200–1203

    Article  CAS  PubMed  Google Scholar 

  • Mothet JP, Parent AT, Wolosker H et al (2000) d-serine is an endogenous ligand for the glycine site of the N-methyl-d-aspartate receptor. Proc Natl Acad Sci U S A 97(9):4926–4931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mothet JP, Pollegioni L, Ouanounou G et al (2005) Glutamate receptor activation triggers a calcium-dependent and SNARE protein-dependent release of the gliotransmitter d-serine. Proc Natl Acad Sci U S A 102(15):5606–5611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishijima K, Kashiwa A, Nishikawa T (1994) Preferential stimulation of extracellular release of dopamine in rat frontal cortex to striatum following competitive inhibition of the N-methyl-d-aspartate receptor. J Neurochem 63(1):375–378

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Kashiwa A, Hashimoto A et al (1996) Differential effects of phencyclidine and methamphetamine on dopamine metabolism in rat frontal cortex and striatum as revealed by in vivo dialysis. Synapse 22(4):304–312

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa T (2011) Analysis of free d-serine in mammals and its biological relevance. J Chromatogr B Anal Technol Biomed Life Sci 879:3169–3183

    Article  CAS  Google Scholar 

  • O’Brien KB, Miller RF, Bowser MT (2005) d-Serine uptake by isolated retinas is consistent with ASCT-mediated transport. Neurosci Lett 385(1):58–63

    Article  PubMed  CAS  Google Scholar 

  • Pan HC, Chou YC, Sun SH (2015) P2X7 R-mediated Ca(2+) -independent d-serine release via pannexin-1 of the P2X7 R-pannexin-1 complex in astrocytes. Glia 63(5):877–893

    Article  PubMed  Google Scholar 

  • Panatier A, Theodosis DT, Mothet JP et al (2006) Glia-derived d-serine controls NMDA receptor activity and synaptic memory. Cell 125(4):775–784

    Article  CAS  PubMed  Google Scholar 

  • Petersen RC, Stillman RC (1978) Phencyclidine (PCP) abuse: an appraisal. In: Petersen RC, Stillman RC (eds) NIDA research monograph 21. Superintendent of Documents, US Government Printing Office, Washington, DC, pp 1–17

    Google Scholar 

  • Pilowsky LS, Bressan RA, Stone JM et al (2006) First in vivo evidence of an NMDA receptor deficit in medication-free schizophrenic patients. Mol Psychiatry 11(2):118–119

    Article  CAS  PubMed  Google Scholar 

  • Rao TS, Kim HS, Lehmann J et al (1989) Differential effects of phencyclidine (PCP) and ketamine on mesocortical and mesostriatal dopamine release in vivo. Life Sci 45(12):1065–1072

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro CS, Reis M, Panizzutti R et al (2002) Glial transport of the neuromodulator d-serine. Brain Res 929(2):202–209

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg D, Kartvelishvily E, Shleper M et al (2010) Neuronal release of d-serine: a physiological pathway controlling extracellular d-serine concentration. FASEB J 24(8):2951–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg D, Artoul S, Segal AC et al (2013) Neuronal d-serine and glycine release via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 33(8):3533–3544

    Article  CAS  PubMed  Google Scholar 

  • Rutter AR, Fradley RL, Garrett EM et al (2007) Evidence from gene knockout studies implicates Asc-1 as the primary transporter mediating d-serine reuptake in the mouse CNS. Eur J Neurosci 25(6):1757–1766

    Article  PubMed  Google Scholar 

  • Schell MJ, Molliver ME, Snyder SH (1995) d-serine, an endogenous synaptic modulator: localization to astrocytes and glutamate-stimulated release. Proc Natl Acad Sci U S A 92(9):3948–3952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–427

    Article  PubMed Central  CAS  Google Scholar 

  • Shi J, Badner JA, Gershon ES (2008) Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis. Schizophr Res 98(1–3):89–97

    Article  PubMed  Google Scholar 

  • Shimazu D, Yamamoto N, Umino A et al (2006) Inhibition of d-serine accumulation to the Xenopus Oocyte by expression of the rat ortholog of human 3′-phosphoadenosine 5′-phosphosulfate transporter gene isolated from the neocortex as d-serine modulator-1. J Neurochem 96:30–42

    Article  CAS  PubMed  Google Scholar 

  • Shinkai T, De Luca V, Hwang R (2007) Association analyses of the DAOA/G30 and D-amino-acid oxidase genes in schizophrenia: further evidence for a role in schizophrenia. Neuromolecular 9(2):169–177

    Article  CAS  Google Scholar 

  • Singh SP, Singh V (2011) Meta-analysis of the efficacy of adjunctive NMDA receptor modulators in chronic schizophrenia. CNS Drugs 25(10):859–885

    Article  CAS  PubMed  Google Scholar 

  • Smith SM, Uslaner JM, Yao L et al (2009) The behavioral and neurochemical effects of a novel d-amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and d-serine. J Pharmacol Exp Ther 328(3):921–930

    Article  CAS  PubMed  Google Scholar 

  • Steffek AE, Haroutunian V, Meador-Woodruff JH (2006) Serine racemase protein expression in cortex and hippocampus in schizophrenia. Neuroreport 17(11):1181–1185

    Article  CAS  PubMed  Google Scholar 

  • Stehberg J, Moraga-Amaro R et al (2012) Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala. FASEB J 26(9):3649–3657

    Article  CAS  PubMed  Google Scholar 

  • Sullivan SJ, Miller RF (2010) AMPA receptor mediated d-serine release from retinal glial cells. J Neurochem 115(6):1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan SJ, Miller RF (2012) AMPA receptor-dependent, light-evoked d-serine release acts on retinal ganglion cell NMDA receptors. J Neurophysiol 108(4):1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Hayashi F, Nishikawa T (1997) In vivo evidence for the link between l- and d-serine metabolism in rat cerebral cortex. J Neurochem 69:1286–1290

    Article  CAS  PubMed  Google Scholar 

  • Tanii Y, Nishikawa T, Umino A et al (1990) Phencyclidine increases extracellular dopamine metabolites in rat medial frontal cortex as measured by in vivo dialysis. Neurosci Lett 112(2–3):318–323

    Article  CAS  PubMed  Google Scholar 

  • Tanii Y, Nishikawa T, Hashimoto A et al (1991a) Stereoselective inhibition by d- and l-alanine of phencyclidineinduced locomotor stimulation in the rat. Brain Res 563:281–284

    Article  CAS  PubMed  Google Scholar 

  • Tanii Y, Nishikawa T, Hibino H et al (1991b) Effects of allosteric agonists for the N-methyl d-aspartate receptor and their derivatives on phencyclidine-induced abnormal behavior in the rat. Brain Sci Ment Disord 2:497–502

    Google Scholar 

  • Tanii Y, Nishikawa T, Hashimoto A et al (1994) Stereoselective antagonism by enantiomers of alanine and serine of phencyclidine-induced hyperactivity, stereotypy and ataxia in the rat. J Pharmacol Exp Ther 269:1040–1048

    CAS  PubMed  Google Scholar 

  • Tokutomi N, Kaneda M, Akaike N (1989) What confers specificity on glycine for its receptor site? Br J Pharmacol 97(2):353–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai GE, Lin PY (2010) Strategies to enhance N-methyl-d-aspartate receptor-mediated neurotransmission in schizophrenia, a critical review and meta-analysis. Curr Pharm Des 16(5):522–537

    Article  CAS  PubMed  Google Scholar 

  • Tsai G, Yang P, Chung LC et al (1998) d-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 44(11):1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Tsai GE, Yang P, Chung LC (1999) d-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry 156(11):1822–1825

    CAS  PubMed  Google Scholar 

  • Tuominen HJ, Tiihonen J, Wahlbeck K (2006) Glutamatergic drugs for schizophrenia. Cochrane Database Syst Rev 19(2):CD003730

    Google Scholar 

  • Umino A, Takahashi K, Nishikawa T (1998) Characterization of phencyclidine-induced increase in prefrontal cortical dopamine metabolism in the rat. Br J Pharmacol 124:377–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verrall L, Walker M, Rawlings N et al (2007) d-Amino acid oxidase and serine racemase in human brain: normal distribution and altered expression in schizophrenia. Eur J Neurosci 26(6):1657–1669

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiser M, Heresco-Levy U, Davidson M et al (2012) A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry 73(6):e728–e734

    Article  CAS  PubMed  Google Scholar 

  • White WF, Brown KL, Frank DM (1989) Glycine binding to rat cortex and spinal cord: binding characteristics and pharmacology reveal distinct populations of sites. J Neurochem 53(2):503–512

    Article  CAS  PubMed  Google Scholar 

  • Whitton PS, Biggs CS, Pearce BR (1992) MK-801 increases extracellular 5-hydroxytryptamine in rat hippocampus and striatum in vivo. J Neurochem 58(4):1573–1575

    Article  CAS  PubMed  Google Scholar 

  • Yamada K, Ohnishi T, Hashimoto K et al (2005) Identification of multiple serine racemase (SRR) mRNA isoforms and genetic analyses of SRR and DAO in schizophrenia and d-serine levels. Biol Psychiatry 57(12):1493–1503

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Tomita U, Umino A et al (2001) Uptake of D-serine by synaptosomal P2 fraction isolated from rat brain. Synapse 42:84–86

    Article  CAS  PubMed  Google Scholar 

  • Yan QS, Reith ME, Jobe PC et al (1997) Dizocilpine (MK-801) increases not only dopamine but also serotonin and norepinephrine transmissions in the nucleus accumbens as measured by microdialysis in freely moving rats. Brain Res 765(1):149–158

    Article  CAS  PubMed  Google Scholar 

  • Yonezawa Y, Kuroki T, Kawahara T (1998) Involvement of gamma-aminobutyric acid neurotransmission in phencyclidine-induced dopamine release in the medial prefrontal cortex. Eur J Pharmacol 341(1):45–56

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Nishikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Nishikawa, T. (2016). d-Serine Signaling and Schizophrenia. In: Yoshimura, T., Nishikawa, T., Homma, H. (eds) D-Amino Acids. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56077-7_6

Download citation

Publish with us

Policies and ethics

Navigation