The Research for the Mechanism of Chronically Intractable Pain Based on the Functions of Microglia as Brain Immunocompetent Cell

  • Chapter
  • First Online:
Chronic Inflammation

Abstract

Injury to the nervous system often causes a debilitating chronic pain syndrome, termed neuropathic pain. Neuropathic pain is refractory to currently available analgesics. Accumulating evidence indicates that spinal microglia react and undergo a series of changes that influence directly establishing the pain. P2X4 receptor (P2X4R), a subtype of ionotropic ATP receptors, is upregulated in spinal microglia after nerve injury by several factors including the CC chemokine CCL21 derived from damaged neurons, CC chemokine receptor CCR2, the extracellular matrix protein fibronectin in the spinal cord, and the transcription factor interferon regulatory factor 8 and 5 expressed in microglia. The inhibition of the function of P2X4R and P2X4R-regulating molecules suppresses the excitability of dorsal horn neurons and neuropathic pain. These findings indicate that microglia overexpressing P2X4R are a central player in neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 263.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 263.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Beggs S, Liu XJ, Kwan C et al (2010) Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol Pain 6:74

    Article  PubMed  PubMed Central  Google Scholar 

  • Biber K, Tsuda M, Tozaki-Saitoh H et al (2011) Neuronal CCL21 up-regulates microglia P2X4 expression and initiates neuropathic pain development. EMBO J 30:1864–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavaliere F, Florenzano F, Amadio S et al (2003) Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience 120:85–98

    Article  CAS  PubMed  Google Scholar 

  • Costigan M, Scholz J, Woolf CJ (2009) Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 32:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coull JA, Beggs S, Boudreau D et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Davalos D, Grutzendler J, Yang G et al (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8:752–758

    Article  CAS  PubMed  Google Scholar 

  • Echeverry S, Shi XQ, Rivest S et al (2011) Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 31:10819–10828

    Article  CAS  PubMed  Google Scholar 

  • Ferrini F, Trang T, Mattioli TA et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl(−) homeostasis. Nat Neurosci 16:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ginhoux F, Greter M, Leboeuf M et al (2010) Fate map** analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo LH, Schluesener HJ (2005) Lesional accumulation of P2X(4) receptor(+) macrophages in rat CNS during experimental autoimmune encephalomyelitis. Neuroscience 134:199–205

    Article  CAS  PubMed  Google Scholar 

  • Guo LH, Trautmann K, Schluesener HJ (2004) Expression of P2X4 receptor in rat C6 glioma by tumor-associated macrophages and activated microglia. J Neuroimmunol 152:67–72

    Article  CAS  PubMed  Google Scholar 

  • Horiuchi M, Wakayama K, Itoh A et al (2012) Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 9:227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue K (2006) The function of microglia through purinergic receptors: neuropathic pain and cytokine release. Pharmacol Ther 109:210–226

    Article  CAS  PubMed  Google Scholar 

  • Katsura H, Obata K, Mizushima T et al (2006) Activation of Src-family kinases in spinal microglia contributes to mechanical hypersensitivity after nerve injury. J Neurosci 26:8680–8690

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf K, Erny D, Goldmann T, Sander V et al (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16:273–280

    Article  CAS  PubMed  Google Scholar 

  • Masuda T, Tsuda M, Yoshinaga R et al (2012) IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 1:334–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon SB, Malcangio M (2009) Current challenges in glia-pain biology. Neuron 64:46–54

    Article  CAS  PubMed  Google Scholar 

  • Minten C, Terry R, Deffrasnes C et al (2012) IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7, e49851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasu-Tada K, Koizumi S, Tsuda M et al (2006) Possible involvement of increase in spinal fibronectin following peripheral nerve injury in upregulation of microglial P2X(4), a key molecule for mechanical allodynia. Glia 53:769–775

    Article  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Pocock JM, Kettenmann H (2007) Neurotransmitter receptors on microglia. Trends Neurosci 30:527–535

    Article  CAS  PubMed  Google Scholar 

  • Ren K, Dubner R (2010) Interactions between the immune and nervous systems in pain. Nat Med 16:1267–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328

    Article  CAS  PubMed  Google Scholar 

  • Schwab JM, Guo L, Schluesener HJ (2005) Spinal cord injury induces early and persistent lesional P2X4 receptor expression. J Neuroimmunol 163:185–189

    Article  CAS  PubMed  Google Scholar 

  • Suter MR, Wen YR, Decosterd I et al (2007) Do glial cells control pain? Neuron Glia Biol 3:255–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura T, Yanai H, Savitsky D et al (2008) The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26:535–584

    Article  CAS  PubMed  Google Scholar 

  • Trang T, Beggs S, Wan X et al (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Inoue K, Salter MW (2005) Neuropathic pain and spinal microglia: a big problem from molecules in “small” glia. Trends Neurosci 28:101–107

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Toyomitsu E, Komatsu T et al (2008a) Fibronectin/integrin system is involved in P2X(4) receptor upregulation in the spinal cord and neuropathic pain after nerve injury. Glia 56:579–585

    Article  PubMed  Google Scholar 

  • Tsuda M, Tozaki-Saitoh H, Masuda T et al (2008b) Lyn tyrosine kinase is required for P2X(4) receptor upregulation and neuropathic pain after peripheral nerve injury. Glia 56:50–58

    Article  PubMed  Google Scholar 

  • Tsuda M, Kuboyama K, Inoue T et al (2009a) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Masuda T, Kitano J et al (2009b) IFN-gamma receptor signaling mediates spinal microglia activation driving neuropathic pain. Proc Natl Acad Sci U S A 106:8032–8037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Toyomitsu E, Kometani M et al (2009c) Mechanisms underlying fibronectin-induced upregulation of P2XR expression in microglia: distinct roles of PI3K-Akt and MEK-ERK signaling pathways. J Cell Mol Med 13:3251–3259

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsuda M, Tozaki-Saitoh H, Inoue K (2012) Purinergic system, microglia and neuropathic pain. Curr Opin Pharmacol 12:74–79

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Masuda T, Tozaki-Saitoh H et al (2013) Microglial regulation of neuropathic pain. J Pharmacol Sci 121:89–94

    Article  CAS  PubMed  Google Scholar 

  • Ulmann L, Hatcher JP, Hughes JP et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268

    Article  CAS  PubMed  Google Scholar 

  • Ulmann L, Levavasseur F, Avignone E et al (2013) Involvement of P2X4 receptors in hippocampal microglial activation after status epilepticus. Glia 61:1306–1319

    Article  PubMed  Google Scholar 

  • Watkins LR, Milligan ED, Maier SF (2001) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  CAS  PubMed  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1769

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhang Z, Artelt M et al (2007) Dexamethasone attenuates early expression of three molecules associated with microglia/macrophages activation following rat traumatic brain injury. Acta Neuropathol (Berl) 113(6):675–682

    Article  CAS  Google Scholar 

  • Zhang Z, Zhang Z, Fauser U et al (2008) Mechanical allodynia and spinal up-regulation of P2X4 receptor in experimental autoimmune neuritis rats. Neuroscience 152:495–501

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhide Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Inoue, K., Tsuda, M. (2016). The Research for the Mechanism of Chronically Intractable Pain Based on the Functions of Microglia as Brain Immunocompetent Cell. In: Miyasaka, M., Takatsu, K. (eds) Chronic Inflammation. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56068-5_48

Download citation

Publish with us

Policies and ethics

Navigation