Mosaics and Lamination in the Retina

  • Chapter
  • First Online:
Dendrites
  • 1274 Accesses

Abstract

The highly ordered architecture of the neural retina makes it an excellent system to study neuron spacing and dendrite organization. Adult retinal neurites and cell bodies are organized in a highly stereotyped manner in formation of the radial circuitry of the retina, from photoreceptors to retinal ganglion cells. The circuitry formed by these cells is functionally separated into ON and OFF pathways in the retinal outer plexiform layer. These pathways are then spatially divided within the retinal inner plexiform layer, in which coding for additional aspects of vision, such as movement and edge detection, are added. Many cell types and neural circuits in the retina are also spaced across the horizontal plane of the retina so as to sample these and other features of vision evenly across the visual field. The mechanisms and molecules underpinning organization of the retina have been the subjects of intensive study. These studies have found that retinal circuitry is largely hardwired by transmembrane receptors, many of them cell adhesion molecules, and their ligands, with activity hel** to further refine development. In this chapter, we focus on developmental mechanisms, such as programmed cell death, migration, and neurite refinement that increase organization of retinal cell bodies and neurites, as well as the molecules by which cells recognize and respond to appropriate contacts and domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Agene :

Vertebrate DNA or RNA sequence

APROTEIN:

Vertebrate protein

CAD:

Cadherin

CAR:

Cone arrestin

CBC:

Cone bipolar cell

ChAT:

Choline acetyltransferase

CNTN:

Contactin

DAC:

Dopaminergic amacrine cell

DCD:

Developmental cell death

DSCAM:

Down syndrome cell adhesion molecule

ECM:

Extracellular matrix

HC:

Horizontal cell

INL:

Inner nuclear layer

IPL:

Inner plexiform layer

ipRGC:

Intrinsically photoresponsive retinal ganglion cell

MEGF:

Multiple EGF-like domain protein

NGL2:

Netrin-G ligand 2/leucine-rich repeat-containing protein 4

ONL:

Outer nuclear layer

OPL:

Outer plexiform layer

PCDHG:

γ-Protocadehrin

PLXN:

Plexin

PR:

Photoreceptor

PTTG:

Pituitary tumor-transforming gene

RBC:

Rod bipolar cell

RGC:

Retinal ganglion cell

RGL:

Retinal ganglion layer

SAC:

Starburst amacrine cell

SDK:

Sidekick

SEMA:

Semaphorin

References

  • Anderson JR, Jones BW, Watt CB, Shaw MV, Yang JH, Demill D, Lauritzen JS, Lin Y, Rapp KD, Mastronarde D, Koshevoy P, Grimm B, Tasdizen T, Whitaker R, Marc RE (2011) Exploring the retinal connectome. Mol Vis 17:355–379

    PubMed  PubMed Central  Google Scholar 

  • Badea TC, Cahill H, Ecker J, Hattar S, Nathans J (2009) Distinct roles of transcription factors brn3a and brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bleckert A, Wong RO (2011) Identifying roles for neurotransmission in circuit assembly: insights gained from multiple model systems and experimental approaches. Bioessays 33:61–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Boycott BB, Hopkins JM (1991) Cone bipolar cells and cone synapses in the primate retina. Vis Neurosci 7:49–60

    Article  CAS  PubMed  Google Scholar 

  • Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  CAS  PubMed  Google Scholar 

  • Carter-Dawson LD, Lavail MM (1979) Rods and cones in the mouse retina. I. Structural analysis using light and electron microscopy. J Comp Neurol 188:245–262

    Article  CAS  PubMed  Google Scholar 

  • Chen SK, Chew KS, Mcneill DS, Keeley PW, Ecker JL, Mao BQ, Pahlberg J, Kim B, Lee SC, Fox MA, Guido W, Wong KY, Sampath AP, Reese BE, Kuruvilla R, Hattar S (2013) Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment. Neuron 77:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun MH, Grunert U, Martin PR, Wassle H (1996) The synaptic complex of cones in the fovea and in the periphery of the macaque monkey retina. Vision Res 36:3383–3395

    Article  CAS  PubMed  Google Scholar 

  • Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claes E, Seeliger M, Michalakis S, Biel M, Humphries P, Haverkamp S (2004) Morphological characterization of the retina of the CNGA3(-/-)Rho(-/-) mutant mouse lacking functional cones and rods. Invest Ophthalmol Vis Sci 45:2039–2048

    Article  PubMed  Google Scholar 

  • de Andrade GB, Long SS, Fleming H, Li W, Fuerst PG (2014) DSCAM localization and function at the mouse cone synapse. J Comp Neurol 522:2609–2633

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV (2011) Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71:820–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denes V, Witkovsky P, Koch M, Hunter DD, Pinzon-Duarte G, Brunken WJ (2007) Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 24:549–562

    Article  PubMed  PubMed Central  Google Scholar 

  • Ding Q, Chen H, **e X, Libby RT, Tian N, Gan L (2009) BARHL2 differentially regulates the development of retinal amacrine and ganglion neurons. J Neurosci 29:3992–4003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Krishnaswamy A, de la Huerta I, Sanes JR (2014) Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158:793–807

    Article  CAS  PubMed  Google Scholar 

  • Dunn FA, Della Santina L, Parker ED, Wong RO (2013) Sensory experience shapes the development of the visual system’s first synapse. Neuron 80:1159–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Famiglietti EV Jr (1983) On and off pathways through amacrine cells in mammalian retina: the synaptic connections of “starburst” amacrine cells. Vision Res 23:1265–1279

    Article  CAS  PubMed  Google Scholar 

  • Farajian R, Raven MA, Cusato K, Reese BE (2004) Cellular positioning and dendritic field size of cholinergic amacrine cells are impervious to early ablation of neighboring cells in the mouse retina. Vis Neurosci 21:13–22

    Article  PubMed  Google Scholar 

  • Fuerst PG, Koizumi A, Masland RH, Burgess RW (2008) Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451:470–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW (2009) DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the develo** mouse retina. Neuron 64:484–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galli-Resta L, Resta G, Tan SS, Reese BE (1997) Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. J Neurosci 17:7831–7838

    CAS  PubMed  Google Scholar 

  • Garrett AM, Weiner JA (2009) Control of CNS synapse development by {gamma}-protocadherin-mediated astrocyte-neuron contact. J Neurosci 29:11723–11731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrett AM, Schreiner D, Lobas MA, Weiner JA (2012) Gamma-protocadherins control cortical dendrite arborization by regulating the activity of a FAK/PKC/MARCKS signaling pathway. Neuron 74:269–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grzywacz NM, Amthor FR, Merwine DK (1998) Necessity of acetylcholine for retinal directionally selective responses to drifting gratings in rabbit. J Physiol 512(Pt 2):575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han J, Townes-Anderson E (2012) Cell specific post-translational processing of pikachurin, a protein involved in retinal synaptogenesis. PLoS ONE 7:e50552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins JM, Boycott BB (1992) Synaptic contacts of a two-cone flat bipolar cell in a primate retina. Vis Neurosci 8:379–384

    Article  CAS  PubMed  Google Scholar 

  • Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G, Huang ZJ, Wong RO (2009) Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nat Neurosci 12:35–43

    Article  CAS  PubMed  Google Scholar 

  • Jan YN, Jan LY (2010) Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci 11:316–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RE, Kerschensteiner D (2014) Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the develo** retina. Curr Biol 24:2301–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jongbloets BC, Pasterkamp RJ (2014) Semaphorin signalling during development. Development 141:3292–3297

    Article  CAS  PubMed  Google Scholar 

  • Kay JN, Roeser T, Mumm JS, Godinho L, Mrejeru A, Wong RO, Baier H (2004) Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 131:1331–1342

    Article  CAS  PubMed  Google Scholar 

  • Kay JN, Chu MW, Sanes JR (2012) MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483:465–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley PW, Sliff BJ, Lee SC, Fuerst PG, Burgess RW, Eglen SJ, Reese BE (2012) Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. J Comp Neurol 520:1349–1364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keeley PW, Luna G, Fariss RN, Skyles KA, Madsen NR, Raven MA, Poche RA, Swindell EC, Jamrich M, Oh EC, Swaroop A, Fisher SK, Reese BE (2013) Development and plasticity of outer retinal circuitry following genetic removal of horizontal cells. J Neurosci 33:17847–17862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley PW, Madsen NR, St John AJ, Reese BE (2014a) Programmed cell death of retinal cone bipolar cells is independent of afferent or target control. Dev Biol 394:191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley PW, Whitney IE, Madsen NR, St John AJ, Borhanian S, Leong SA, Williams RW, Reese BE (2014b) Independent genomic control of neuronal number across retinal cell types. Dev Cell 30:103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeley PW, Zhou C, Lu L, Williams RW, Melmed S, Reese BE (2014c) Pituitary tumor-transforming gene 1 regulates the patterning of retinal mosaics. Proc Natl Acad Sci U S A 111:9295–9300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kita EM, Bertolesi GE, Hehr CL, Johnston J, McFarlane S (2013) Neuropilin-1 biases dendrite polarization in the retina. Development 140:2933–2941

    Article  CAS  PubMed  Google Scholar 

  • Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Cowgill EJ, Al-Nabulsi A, Quinn EJ, Evans SM, Reese BE (2011) Homotypic regulation of neuronal morphology and connectivity in the mouse retina. J Neurosci 31:14126–14133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre JL, Zhang Y, Meister M, Wang X, Sanes JR (2008) Gamma-protocadherins regulate neuronal survival but are dispensable for circuit formation in retina. Development 135:4141–4151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR (2012) Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liets LC, Eliasieh K, van der List DA, Chalupa LM (2006) Dendrites of rod bipolar cells sprout in normal aging retina. Proc Natl Acad Sci U S A 103:12156–12160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B, Wang SW, Masland RH (2004) Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43:475–485

    Article  CAS  PubMed  Google Scholar 

  • Marc RE, Jones BW, Anderson JR, Kinard K, Marshak DW, Wilson JH, Wensel T, Lucas RJ (2007) Neural reprogramming in retinal degeneration. Invest Ophthalmol Vis Sci 48:3364–3371

    Article  PubMed  PubMed Central  Google Scholar 

  • Marc RE, Jones BW, Watt CB, Vazquez-Chona F, Vaughan DK, Organisciak DT (2008) Extreme retinal remodeling triggered by light damage: implications for age related macular degeneration. Mol Vis 14:782–806

    PubMed  PubMed Central  Google Scholar 

  • Masland RH (2012) The neuronal organization of the retina. Neuron 76:266–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H, Katayama K, Kumar SR, Suto F, Chedotal A, Peachey NS, Nathans J, Yoshida Y, Giger RJ, Kolodkin AL (2011a) Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. Neuron 71:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chedotal A, Kolodkin AL (2011b) Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470:259–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka RL, Jiang Z, Samuels IS, Nguyen-Ba-Charvet KT, Sun LO, Peachey NS, Chedotal A, Yau KW, Kolodkin AL (2012) Guidance-cue control of horizontal cell morphology, lamination, and synapse formation in the mammalian outer retina. J Neurosci 32:6859–6868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka RL, Sun LO, Katayama K, Yoshida Y, Kolodkin AL (2013) Sema6B, Sema6C, and Sema6D expression and function during mammalian retinal development. PLoS ONE 8:e63207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Franke A, Kaplan MR, Pfrieger FW, Barres BA (1995) Characterization of the signaling interactions that promote the survival and growth of develo** retinal ganglion cells in culture. Neuron 15:805–819

    Article  CAS  PubMed  Google Scholar 

  • Michalakis S, Schaferhoff K, Spiwoks-Becker I, Zabouri N, Koch S, Koch F, Bonin M, Biel M, Haverkamp S (2012) Characterization of neurite outgrowth and ectopic synaptogenesis in response to photoreceptor dysfunction. Cell Mol Life Sci 70(10):1831–1847

    Article  PubMed  CAS  Google Scholar 

  • Morgan JL, Dhingra A, Vardi N, Wong RO (2006) Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci 9:85–92

    Article  CAS  PubMed  Google Scholar 

  • Morris VB (1970) Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor. J Comp Neurol 140:359–398

    Article  CAS  PubMed  Google Scholar 

  • Nelson R, Famiglietti EV Jr, Kolb H (1978) Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in cat retina. J Neurophysiol 41:472–483

    CAS  PubMed  Google Scholar 

  • Nevin LM, Taylor MR, Baier H (2008) Hardwiring of fine synaptic layers in the zebrafish visual pathway. Neural Dev 3:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Normann RA, Perlman I, Kolb H, Jones J, Daly SJ (1984) Direct excitatory interactions between cones of different spectral types in the turtle retina. Science 224:625–627

    Article  CAS  PubMed  Google Scholar 

  • Okawa H, Hoon M, Yoshimatsu T, Della Santina L, Wong RO (2014) Illuminating the multifaceted roles of neurotransmission in sha** neuronal circuitry. Neuron 83:1303–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omori Y, Araki F, Chaya T, Kajimura N, Irie S, Terada K, Muranishi Y, Tsujii T, Ueno S, Koyasu T, Tamaki Y, Kondo M, Amano S, Furukawa T (2012) Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells. J Neurosci 32:6126–6137

    Article  CAS  PubMed  Google Scholar 

  • Poche RA, Kwan KM, Raven MA, Furuta Y, Reese BE, Behringer RR (2007) Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J Neurosci 27:14099–14107

    Article  CAS  PubMed  Google Scholar 

  • Poche RA, Raven MA, Kwan KM, Furuta Y, Behringer RR, Reese BE (2008) Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. Eur J Neurosci 27:1607–1614

    Article  PubMed  PubMed Central  Google Scholar 

  • Randlett O, Poggi L, Zolessi FR, Harris WA (2011) The oriented emergence of axons from retinal ganglion cells is directed by laminin contact in vivo. Neuron 70:266–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randlett O, MacDonald RB, Yoshimatsu T, Almeida AD, Suzuki SC, Wong RO, Harris WA (2013) Cellular requirements for building a retinal neuropil. Cell Rep 3:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raven MA, Reese BE (2003) Mosaic regularity of horizontal cells in the mouse retina is independent of cone photoreceptor innervation. Invest Ophthalmol Vis Sci 44:965–973

    Article  PubMed  Google Scholar 

  • Reese BE, Galli-Resta L (2002) The role of tangential dispersion in retinal mosaic formation. Prog Retin Eye Res 21:153–168

    Article  PubMed  Google Scholar 

  • Reese BE, Keeley PW (2014) Design principles and developmental mechanisms underlying retinal mosaics. Biol Rev Camb Philos Soc 90(3):854–876

    Article  Google Scholar 

  • Reese BE, Necessary BD, Tam PP, Faulkner-Jones B, Tan SS (1999) Clonal expansion and cell dispersion in the develo** mouse retina. Eur J Neurosci 11:2965–2978

    Article  CAS  PubMed  Google Scholar 

  • Reese BE, Raven MA, Giannotti KA, Johnson PT (2001) Development of cholinergic amacrine cell stratification in the ferret retina and the effects of early excitotoxic ablation. Vis Neurosci 18:559–570

    Article  CAS  PubMed  Google Scholar 

  • Riccomagno MM, Sun LO, Brady CM, Alexandropoulos K, Seo S, Kurokawa M, Kolodkin AL (2014) Cas adaptor proteins organize the retinal ganglion cell layer downstream of integrin signaling. Neuron 81:779–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi C, Strettoi E, Galli-Resta L (2003) The spatial order of horizontal cells is not affected by massive alterations in the organization of other retinal cells. J Neurosci 23:9924–9928

    CAS  PubMed  Google Scholar 

  • Samuel MA, Zhang Y, Meister M, Sanes JR (2011) Age-related alterations in neurons of the mouse retina. J Neurosci 31:16033–16044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samuel MA, Voinescu PE, Lilley BN, de Cabo R, Foretz M, Viollet B, Pawlyk B, Sandberg MA, Vavvas DG, Sanes JR (2014) LKB1 and AMPK regulate synaptic remodeling in old age. Nat Neurosci 17:1190–1197

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, Miyata K, Funabiki K, Koyasu T, Kajimura N, Miyoshi T, Sawai H, Kobayashi K, Tani A, Toda T, Usukura J, Tano Y, Fujikado T, Furukawa T (2008) Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nat Neurosci 11:923–931

    Article  CAS  PubMed  Google Scholar 

  • Satz JS, Philp AR, Nguyen H, Kusano H, Lee J, Turk R, Riker MJ, Hernandez J, Weiss RM, Anderson MG, Mullins RF, Moore SA, Stone EM, Campbell KP (2009) Visual impairment in the absence of dystroglycan. J Neurosci 29:13136–13146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sernagor E, Eglen SJ, Wong RO (2001) Development of retinal ganglion cell structure and function. Prog Retin Eye Res 20:139–174

    Article  CAS  PubMed  Google Scholar 

  • Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D (2013) NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. J Neurosci 33:11949–11959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stacy RC, Wong RO (2003) Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. J Comp Neurol 456:154–166

    Article  PubMed  Google Scholar 

  • Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178

    Article  CAS  PubMed  Google Scholar 

  • Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady CM, Matsuoka RL, Yau KW, Feller MB, Kolodkin AL (2013) On and off retinal circuit assembly by divergent molecular mechanisms. Science 342:1241974

    Article  PubMed  CAS  Google Scholar 

  • Szel A, Rohlich P, Caffe AR, Juliusson B, Aguirre G, van Veen T (1992) Unique topographic separation of two spectral classes of cones in the mouse retina. J Comp Neurol 325:327–342

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M, Shirayoshi Y, Hatta K, Nose A (1986) Cadherins: their morphogenetic role in animal development. Prog Clin Biol Res 217B:17–27

    CAS  PubMed  Google Scholar 

  • Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH, Ribich SA, Cramer P, Wu Q, Axel R, Maniatis T (2002) Promoter choice determines splice site selection in protocadherin alpha and gamma pre-mRNA splicing. Mol Cell 10:21–33

    Article  CAS  PubMed  Google Scholar 

  • Wassle H, Riemann HJ (1978) The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond B Biol Sci 200:441–461

    Article  CAS  PubMed  Google Scholar 

  • Wassle H, Boycott BB, Peichl L (1978) Receptor contacts of horizontal cells in the retina of the domestic cat. Proc R Soc Lond B Biol Sci 203:247–267

    Article  CAS  PubMed  Google Scholar 

  • Wassle H, Puller C, Muller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29:106–117

    Article  PubMed  CAS  Google Scholar 

  • Wei W, Hamby AM, Zhou K, Feller MB (2011) Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469:402–406

    Article  CAS  PubMed  Google Scholar 

  • White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD (1998) Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J Neurosci 18:1428–1439

    CAS  PubMed  Google Scholar 

  • Whitney IE, Keeley PW, Raven MA, Reese BE (2008) Spatial patterning of cholinergic amacrine cells in the mouse retina. J Comp Neurol 508:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitney IE, Keeley PW, St John AJ, Kautzman AG, Kay JN, Reese BE (2014) Sox2 regulates cholinergic amacrine cell positioning and dendritic stratification in the retina. J Neurosci 34:10109–10121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williams RR, Cusato K, Raven MA, Reese BE (2001) Organization of the inner retina following early elimination of the retinal ganglion cell population: effects on cell numbers and stratification patterns. Vis Neurosci 18:233–244

    Article  CAS  PubMed  Google Scholar 

  • Wong RO (1990) Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Neurol 294:109–132

    Article  CAS  PubMed  Google Scholar 

  • Wong RO, Hughes A (1987) Role of cell death in the topogenesis of neuronal distributions in the develo** cat retinal ganglion cell layer. J Comp Neurol 262:496–511

    Article  CAS  PubMed  Google Scholar 

  • **ao T, Staub W, Robles E, Gosse NJ, Cole GJ, Baier H (2011) Assembly of lamina-specific neuronal connections by slit bound to type IV collagen. Cell 146:164–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HP, Chen H, Ding Q, **e ZH, Chen L, Diao L, Wang P, Gan L, Crair MC, Tian N (2010) The immune protein CD3zeta is required for normal development of neural circuits in the retina. Neuron 65:503–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata M, Sanes JR (1995) Lamina-specific cues guide outgrowth and arborization of retinal axons in the optic tectum. Development 121:189–200

    CAS  PubMed  Google Scholar 

  • Yamagata M, Sanes JR (2008) Dscam and sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:465–469

    Article  CAS  PubMed  Google Scholar 

  • Yamagata M, Sanes JR (2010) Synaptic localization and function of sidekick recognition molecules require MAGI scaffolding proteins. J Neurosci 30:3579–3588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata M, Sanes JR (2012) Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J Neurosci 32:14402–14414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata M, Herman JP, Sanes JR (1995) Lamina-specific expression of adhesion molecules in develo** chick optic tectum. J Neurosci 15:4556–4571

    CAS  PubMed  Google Scholar 

  • Yamagata M, Weiner JA, Sanes JR (2002) Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110:649–660

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:771–780

    Article  CAS  PubMed  Google Scholar 

  • Zhang DQ, Wong KY, Sollars PJ, Berson DM, Pickard GE, Mcmahon DG (2008) Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons. Proc Natl Acad Sci U S A 105:14181–14186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter G. Fuerst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Fuerst, P.G. (2016). Mosaics and Lamination in the Retina. In: Emoto, K., Wong, R., Huang, E., Hoogenraad, C. (eds) Dendrites. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56050-0_10

Download citation

Publish with us

Policies and ethics

Navigation