Stem Cell-Based Therapy for Duchenne Muscular Dystrophy

  • Chapter
  • First Online:
Translational Research in Muscular Dystrophy

Abstract

In 1978, Partridge et al. first demonstrated that mouse myoblasts intramuscularly transplanted into recipient mice fuse with recipient myofibers. In 1989, the same research group showed that wild-type myoblasts successfully restored dystrophin expression in host mdx mice. Based on this report, several clinical trials of myoblast transfer for Duchenne muscular dystrophy (DMD) have been performed, but none has been successful in restoration of muscle function. Meanwhile, information about molecular regulation of satellite cells/myoblasts and cellular and molecular regulation of muscle regeneration has accumulated, and new types of stem cells with multipotency have been identified in skeletal muscle. The mesoangioblast is one such stem cell. Notably, mesoangioblasts have been demonstrated to be deliverable to damaged muscle by intra-arterial injection. In addition to skeletal muscle-resident stem cells, in 2007, Yamanaka and his colleagues reported the induction of embryonic stem (ES) cell-like pluripotent stem cells from human fibroblasts via the ectopic expression of SOX2, OCT3/4, KLF4, and c-MYC and named them “induced pluripotent stem cells (iPS cells).” The next year, generation of iPS cells from cells of patients with DMD was reported. To utilize iPS cells for regenerative medicine for muscular dystrophies, several protocols for derivation of skeletal muscle from human ES/iPS cells have been developed. Lastly, efficient genome-editing tools have emerged as a technology to obtain genetically corrected autologous cells. To make full use of these new tools in regenerative medicine, we need to understand how skeletal muscle stem cells are born, how they participate in regeneration of muscle fibers, and how the process is impaired in dystrophin-null muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Schultz E, Gibson MC, Champion T (1978) Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J Exp Zool 206:451–456

    Article  CAS  PubMed  Google Scholar 

  3. Blau HM, Webster C, Pavlath GK (1983) Defective myoblasts identified in Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 80:4856–4860

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Blau HM, Webster C, Pavlath GK, Chiu CP (1985) Evidence for defective myoblasts in Duchenne muscular dystrophy. Adv Exp Med Biol 182:85–110

    Article  CAS  PubMed  Google Scholar 

  5. Partridge TA, Grounds M, Sloper JC (1978) Evidence of fusion between host and donor myoblasts in skeletal muscle grafts. Nature 273:306–308

    Article  CAS  PubMed  Google Scholar 

  6. Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibers from dystrophin negative to dystrophin positive by injection of normal myoblasts. Nature 337:176–179

    Article  CAS  PubMed  Google Scholar 

  7. Law PK, Goodwin TG, Fang Q et al (1992) Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant 1:235–244

    CAS  PubMed  Google Scholar 

  8. Mendell JR, Kissel JT, Amato AA et al (1995) Myoblast transfer in the treatment of Duchenne muscular dystrophy. N Engl J Med 333:832–838

    Article  CAS  PubMed  Google Scholar 

  9. Tremblay JP, Malouin F, Roy R et al (1993) Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 2:99–112

    CAS  PubMed  Google Scholar 

  10. Mouly V, Aamiri A, Périé S et al (2005) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24:128–133

    CAS  PubMed  Google Scholar 

  11. Ikemoto M, Fukada S, Uezumi A et al (2007) Autologous transplantation of SM/C-2.6(+) satellite cells transduced with micro-dystrophin CS1 cDNA by lentiviral vector into mdx mice. Mol Ther 15:2178–2185

    Article  CAS  PubMed  Google Scholar 

  12. Collins CA, Olsen I, Zammit PS et al (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  13. Gilbert PM, Havenstrite KL, Magnusson KE et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–1081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Skuk D, Goulet M, Roy B et al (2007) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17:38–46

    Article  PubMed  Google Scholar 

  15. Skuk D, Goulet M, Trembley JP (2011) Transplanted myoblasts can migrate several millimeters to fuse with damaged myofibers in nonhuman primate skeletal muscle. J Neuropathol Exp Neurol 70:770–778

    Article  PubMed  Google Scholar 

  16. Périé S, Trollet C, Mouly V et al (2014) Autologous myoblast transplantation for oculopharyngeal muscular dystrophy: a phase I/IIa clinical study. Mol Ther 22:219–225

    Article  PubMed Central  PubMed  Google Scholar 

  17. De Angelis L, Berghella L, Coletta M et al (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147:869–878

    Article  PubMed Central  PubMed  Google Scholar 

  18. Dellavalle A, Sampaolesi M, Tonlorenzi R et al (2007) Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells. Nat Cell Biol 9:255–267

    Article  CAS  PubMed  Google Scholar 

  19. Sampaolesi M, Torrente Y, Innocenzi A et al (2003) Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science 301:487–492

    Article  CAS  PubMed  Google Scholar 

  20. Sampaolesi M, Blot S, D'Antona G et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444:574–579

    Article  CAS  PubMed  Google Scholar 

  21. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  22. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  23. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  24. Park IH, Arora N, Huo H et al (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86:5434–5438

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Rao L, Tang W, Wei Y et al (2012) Highly efficient derivation of skeletal myotubes from human embryonic stem cells. Stem Cell Rev 8:1109–1119

    Article  PubMed  Google Scholar 

  27. Tanaka A, Woltjen K, Miyake K et al (2013) Efficient and reproducible myogenic differentiation from human iPS cells: prospects for modeling Miyoshi Myopathy in vitro. PLoS One 8, e61540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Buckingham M, Rigby PW (2014) Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell 28:225–238

    Article  CAS  PubMed  Google Scholar 

  29. Darabi R, Arpke RW, Irion S et al (2012) Human ES- and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Hosoyama T, McGivern JV, Van Dyke JM et al (2014) Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture. Stem Cells Transl Med 3:564–574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Cao J, Li X, Lu X, Zhang C, Yu H, Zhao T (2014) Cells derived from iPSC can be immunogenic – yes or no? Protein Cell 5:1–3

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lisa Li H, Nakano T, Hotta A (2014) Genetic correction using engineered nucleases for gene therapy applications. Dev Growth Differ 56:63–77

    Article  CAS  Google Scholar 

  33. Arpke RW, Darabi R, Mader TL et al (2013) A new immuno-, dystrophin-deficient model, the NSG-mdx(4Cv) mouse, provides evidence for functional improvement following allogeneic satellite cell transplantation. Stem Cells 31:1611–1620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Koyanagi-Aoi M, Ohnuki M, Takahashi K et al (2013) Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. Proc Natl Acad Sci U S A 110:20569–20574

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kuroda T, Yasuda S, Kusakawa S et al (2012) Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells. PLoS One 7, e37342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ben-David U, Benvenisty N (2014) Chemical ablation of tumor-initiating human pluripotent stem cells. Nat Protoc 9:729–740

    Article  CAS  PubMed  Google Scholar 

  37. Goudebege S, Lamarre Y, Dumont N et al (2010) Laminin-111: a potential therapeutic agent for Duchenne muscular dystrophy. Mol Ther 18:2155–2163

    Article  Google Scholar 

  38. Joe AW, Yi L, Natarajan A, Le Grand F, So L et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Judson RN, Zhang RH, Rossi FM (2013) Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs? FEBS J 280:4100–4108

    Article  CAS  PubMed  Google Scholar 

  40. Uezumi A, Fukada S, Yamamoto N et al (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 12:143–152

    Article  CAS  PubMed  Google Scholar 

  41. Uezumi A, Ito T, Morikawa D et al (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124:3654–3664

    Article  CAS  PubMed  Google Scholar 

  42. Motohashi N, Uezumi A, Yada E et al (2008) Muscle CD31(−) CD45(−) side population cells promote muscle regeneration by stimulating proliferation and migration of myoblasts. Am J Pathol 173:781–791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Tedesco FS, Gerli MF, Perani L et al (2012) Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 4:140ra89

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

YS and ST are supported by grants from the Research Center Network for Realization of Regenerative Medicine (Japan Science and Technology Agency), Intramural Research Grants for Neurological and Psychiatric Disorders of NCNP(24–9), and Grants-in-Aid for Scientific Research (C) (24590497) (Japan Society for the Promotion of Science).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Miyagoe-Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Miyagoe-Suzuki, Y., Takeda, S. (2016). Stem Cell-Based Therapy for Duchenne Muscular Dystrophy. In: Takeda, S., Miyagoe-Suzuki, Y., Mori-Yoshimura, M. (eds) Translational Research in Muscular Dystrophy. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55678-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55678-7_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55677-0

  • Online ISBN: 978-4-431-55678-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation