Initiation Process of Starch Biosynthesis

  • Chapter
Starch

Abstract

Plants have developed the metabolic system in which a great amount of starch can be synthesized and store them into granules with semicrystalline structure in the plastid. The fine structure of amylopectin, a major component of starch, is a highly organized distinct structure composed of a unit structure called cluster. Thus, it is highly possible that plants have a specific starch biosynthesis initiation different from that of the well-known glycogen biosynthesis initiation found in animals, fungi, and bacteria. Based on a working hypothesis that the starch biosynthesis initiation has two events, i.e., the initiation of amylopectin synthesis and that of starch granule formation, the possible roles of enzymes which are potentially involved in these events and mechanisms underlying the regulation of amylopectin synthesis from simple sugars and starch granule formation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Brust H, Orzechowski S, Fettke J et al (2013) Starch synthesizing reactions and paths: in vitro and in vivo studies. J Appl Glycosci 60:2–20

    Article  Google Scholar 

  • Brust H, Lehman T, D’Hulst C et al (2014) Analysis of the functional interaction of Arabidopsis starch synthase and branching enzyme isoforms reveals that the cooperative action of SSI and BEs results in glucans with polymodal chain length distribution similar to amylopectin. PLoS One 9:e102364

    Article  PubMed Central  PubMed  Google Scholar 

  • Cao Y, Skurat AV, DePaoli-Roach AA et al (1993) Initiation of glycogen synthesis. Control of glycogenin by glycogen phosphorylase. J Biol Chem 268:21717–21721

    CAS  PubMed  Google Scholar 

  • Chatterjee M, Berbezy P, Vyas D et al (2005) Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves. Plant Sci 168:501–509

    Article  CAS  Google Scholar 

  • Cheng C, Mu J, Farkas I et al (1995) Requirement of the self-glucosylating initiator proteins Glg1p and Glgp2 for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640

    PubMed Central  CAS  PubMed  Google Scholar 

  • Commuri PD, Keeling PL (2001) Chain-length specificities of maize starch synthase I enzyme: studies of glucan affinity and catalytic properties. Plant J 25:475–486

    Article  CAS  PubMed  Google Scholar 

  • Crumpton-Taylor M, Pike M, Lu K et al (2013) Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol 200:1064–1075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dauvillée D, Chochois V, Steup M et al (2006) Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48:274–285

    Article  PubMed  Google Scholar 

  • Delgado IJ, Wang Z, de Rocher A et al (1998) Cloning and characterization of AtRGP1. Plant Physiol 116:1339–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denyer K, Waite D, Motawia S et al (1999) Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochem J 340:183–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Hulst C, Merida Á (2010) The priming of storage glucan synthesis from bacteria to plants: current knowledge and new developments. New Phytol 188:12–21

    Google Scholar 

  • D’Hulst C, Merida Á (2012) Once upon a prime: inception of the understanding of starch initiation in plants. In: Tetlow I (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. The Society for Experimental Biology, London, pp 55–76

    Google Scholar 

  • Farkas I, Hardy TA, Goebl MG et al (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 266:15602–15607

    CAS  PubMed  Google Scholar 

  • Fettke J, Albrecht T, Hejazi M et al (2010) Glucose 1-phosphate is efficiently taken up by potato (Solanum tuberosum) tuber parenchyma cells and converted to reserve starch granules. New Phytol 185:663–675

    Article  CAS  PubMed  Google Scholar 

  • Fettke J, Leifels L, Brust H et al (2012) Two carbon fluxes to reserve starch in potato (Solanum tuberosum L.) tuber cells are closely interconnected but differently modulated by temperature. J Exp Bot 63:3011–3029

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujita N, Nakamura Y (2012) Distinct and overlap** functions of starch synthase isoforms. In: Tetlow I (ed) Starch: origins, structure and metabolism, vol 5, Essential reviews in experimental biology. The Society for Experimental Biology, London, pp 115–140

    Google Scholar 

  • Gámez-Arjona FM, Li J, Raynaud S et al (2011) Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol J 9:1049–1060

    Article  PubMed  Google Scholar 

  • Hwang S, Nishi A, Satoh H et al (2010) Rice endosperm-specific plastidial α-glucan phosphorylase is important for synthesis of short-chain malto-oligosaccharides. Arch Biochem Biophys 495:82–92

    Article  CAS  PubMed  Google Scholar 

  • Imparl-Radosevich JM, Gameon JR, McKean A et al (2003) Understanding catalytic properties and functions of maize starch synthase isozymes. J Appl Glycosci 50:177–182

    Article  CAS  Google Scholar 

  • Jeon JS, Ryoo N, Hahn TR et al (2010) Starch biosynthesis in cereal endosperm. Plant Physiol Biochem 48:383–392

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Yunokawa H, Mitsuie S et al (1982) Study on polysaccharide by the fluorescence method. II. Micro-Brownian motion and conformational change of amylose in aqueous solution. Polym J 14:93–99

    Article  CAS  Google Scholar 

  • Langeveld SMJ, Vennik M, Kottenhagen M et al (2002) Glucosylation activity and complex formation of two classes of reversibly glycosylated polypeptides. Plant Physiol 129:278–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leterrier M, Holappa L, Broglie KE et al (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

    Article  PubMed Central  PubMed  Google Scholar 

  • Lomako J, Lomako W, Whelan W (1988) A self-glucosylating protein is the primer for rabbit muscle glycogen biosynthesis. FASEB J 2:3097–3103

    CAS  PubMed  Google Scholar 

  • Mu J, Cheng C, Roach PJ (1996) Initiation of glycogen synthesis in yeast. J Biol Chem 271:26554–26560

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y (2014) Mutagenesis and transformation of starch biosynthesis of rice and the production of novel starches. In: Tomlekova N, Kozgar I, Wani R (eds) Mutagenesis: exploring novel genes and pathways. Wageningen Academic, Wageningen, pp 251–278

    Chapter  Google Scholar 

  • Nakamura Y, Francisco PB Jr, Hosaka Y et al (2005) Essential amino acids of starch synthase IIa differentiate amylopectin structure and starch quality between japonica and indica rice varieties. Plant Mol Biol 58:213–227

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Fujita N, Utsumi Y et al (2009) Revealing the complex system of starch biosynthesis in higher plants using rice mutants and transformants. In: Shu Q (ed) Induced mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 165–167

    Google Scholar 

  • Nakamura Y, Utsumi Y, Sawada T et al (2010) Characterization of the reactions of starch branching enzymes from rice endosperm. Plant Cell Physiol 51:776–794

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ono M, Utsumi Y et al (2012) Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins. Plant Cell Physiol 53:869–878

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Aihara S, Crofts N et al (2014) In vitro studies of enzymatic properties of starch synthases and interactions between starch synthase I and starch branching enzymes from rice. Plant Sci 224:1–8

    Article  CAS  PubMed  Google Scholar 

  • Ohdan T, Francisco PB Jr, Hosaka Y et al (2005) Expression profiling of genes involved in starch synthesis in sink and source organs of rice. J Exp Bot 56:3229–3244

    Article  CAS  PubMed  Google Scholar 

  • Pitcher J, Smythe C, Cohen P (1988) Glycogenin is the priming glucosyltransferase required for the initiation of glycogen biogenesis in rabbit skeletal muscle. Eur J Biochem 176:391–395

    Article  CAS  PubMed  Google Scholar 

  • Putaux JL, Potocki-Véronèse G, Remaud-Simeon M et al (2006) α-D-Glucan-based dendritic nanoparticles prepared by in vitro enzymatic chain extension of glycogen. Biomacromolecules 7:1720–1728

    Article  CAS  PubMed  Google Scholar 

  • Qi Y, Kawano N, Yamauchi Y et al (2005) Identification and cloning of a submergence-induced gene OsGGT (glycogenin glucosyltransferase) from rice (Oryza sativa L.) by suppression subtractive hybridization. Planta 221:437–445

    Article  CAS  PubMed  Google Scholar 

  • Roach PJ, Depaoli-Roach AA, Hurley TD et al (2012) Glycogen and its metabolism: some new developments and old themes. Biochem J 441:763–787

    Article  CAS  PubMed  Google Scholar 

  • Roldán L, Wattebled F, Lucas MM et al (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J 49:492–504

    Article  PubMed  Google Scholar 

  • Romero JM, Issoglio FM, Carrizo ME et al (2008) Evidence for glycogenin autoglucosylation cessation by inaccessibility of the acquired maltosaccharide. Biochem Biophys Res Commun 374:704–708

    Article  CAS  PubMed  Google Scholar 

  • Rothschild A, Tandecarz JS (1994) UDP-glucose: protein transglucosylase in develo** maize endosperm. Plant Sci 97:119–127

    Article  CAS  Google Scholar 

  • Sandhu APS, Randhawa GS, Dhugga KS (2009) Plant cell wall matrix polysaccharide biosynthesis. Mol Plant 2:840–850

    Article  CAS  PubMed  Google Scholar 

  • Satoh H, Shibahara K, Tokunaga T et al (2008) Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20:1833–1849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sawada T, Nakamura Y, Ohdan T et al (2014) Diversity of reaction characteristics of glucan branching enzymes and the fine structure of α-glucan from various sources. Arch Biochem Biophys 562:9–21

    Article  CAS  PubMed  Google Scholar 

  • Schupp N, Ziegler P (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol 45:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Singh DG, Lomako J, Lomako WM et al (1995) [beta]-Glucosylarginine: a new glucose-protein bond in a self-glucosylating protein from sweet corn. FEBS Lett 376:61–64

    Article  CAS  PubMed  Google Scholar 

  • Szydlowsky N, Ragel P, Raynaud S et al (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell 21:2443–2457

    Article  Google Scholar 

  • Szydlowsky N, Ragel P, Hennen-Bierwagen TA et al (2011) Integrated functions among multiple starch synthases determine both amylopectin chain length and branch linkage location in Arabidopsis leaf starch. J Exp Bot 62:4547–4559

    Article  Google Scholar 

  • Toyosawa Y, Kawagoe Y, Matsushima R, et al. (2015) Deficiency of starch synthase IIIa and IVb leads to dramatic changes in starch granule morphology in rice endosperm (submitted)

    Google Scholar 

  • Ugalde JE, Parodi AJ, Ugalde RA (2003) DE novo synthesis of bacterial glycogen: Agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proc Natl Acad Sci U S A 100:10659–10663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson WA, Roach PJ, Montero M et al (2010) Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 34:952–985

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M et al (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuguchi Y, Hashimoto K, Yamamoto K et al (2013) Extension of branched chain of amylopectin by enzymatic reaction and its structural characterization. J Appl Glycosci 60:131–135

    Article  CAS  Google Scholar 

  • Yun M, Kawagoe Y (2010) Septum formation in amyloplasts produces compound granules in the rice endosperm and is regulated by plastid division proteins. Plant Cell Physiol 51:1469–1479

    Article  CAS  PubMed  Google Scholar 

  • Yun M, Umemoto T, Kawagoe Y (2011) Rice debranching enzyme isoamylase3 facilitates starch metabolism and affects plastid morphogenesis. Plant Cell Physiol 52:1068–1082

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasunori Nakamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Nakamura, Y. (2015). Initiation Process of Starch Biosynthesis. In: Nakamura, Y. (eds) Starch. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55495-0_9

Download citation

Publish with us

Policies and ethics

Navigation