Invariant Differential Operators for Non-compact Lie Groups: The Sp(n, IR) Case

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

  • 1779 Accesses

Abstract

In the present paper we continue the project of systematic construction of invariant differential operators on the example of the non-compact algebras sp(n, I​R), in detail for n = 6. Our choice of these algebras is motivated by the fact that they belong to a narrow class of algebras, which we call “conformal Lie algebras”, which have very similar properties to the conformal algebras of Minkowski space-time. We give the main multiplets and the main reduced multiplets of indecomposable elementary representations for n = 6, including the necessary data for all relevant invariant differential operators. In fact, this gives by reduction also the cases for n < 6, since the main multiplet for fixed n coincides with one reduced case for n + 1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For explicit expressions for singular vectors we refer to [22, 23].

  2. 2.

    Generically, the Knapp–Stein operators can be normalized so that indeed \(G_{KS} \circ G_{KS} =\mathrm{ Id}_{\mathcal{C}_{\chi }}\,\). However, this usually fails exactly for the reducible ERs that form the multiplets, cf., e.g., [1517].

  3. 3.

    For a different use of E 7( − 25), see, e.g., [28].

References

  1. Terning, J.: Modern supersymmetry: Dynamics and duality. In: International Series of Monographs on Physics, vol. 132, Oxford University Press, Oxford (2005)

    Google Scholar 

  2. Dobrev, V.K.: Rev. Math. Phys. 20, 407–449 (2008) [hep-th/0702152]

    Article  MathSciNet  MATH  Google Scholar 

  3. Dobrev, V.K.: J. Phys. A Math. Theor. 42, 285203 (2009) (ar**v:0812.2690 [hep-th])

    Google Scholar 

  4. Faraut, J., Korányi, A.: Analysis on symmetric cones. In: Oxford Mathematical Monographs. Clarendon Press, Oxford (1994)

    Google Scholar 

  5. Gunaydin, M.: Mod. Phys. Lett. A8, 1407–1416 (1993)

    MathSciNet  Google Scholar 

  6. Mack, G., de Riese, M.: J. Math. Phys. 48, 052304 (2007) [hep-th/0410277v2]

    Article  MathSciNet  Google Scholar 

  7. Dobrev, V.K.: Rept. Math. Phys. 25, 159–181 (1988) [first as ICTP Trieste preprint IC/86/393 (1986)]

    Google Scholar 

  8. Langlands, R.P.: On the classification of irreducible representations of real algebraic groups. In: Mathematical Surveys and Monographs, vol. 31. American Mathematical Society (1988) [first as IAS Princeton preprint (1973)]

    Google Scholar 

  9. Zhelobenko, D.P.: Harmonic Analysis on Semisimple Complex Lie Groups. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  10. Knapp, A.W., Zuckerman, G.J.: Classification theorems for representations of semisimple groups. In: Lecture Notes in Mathematics, vol. 587. Springer, Berlin (1977); Classification of irreducible tempered representations of semisimple groups. Ann. Math. 116, 389–501 (1982)

    Google Scholar 

  11. Harish-Chandra, Discrete series for semisimple Lie groups: II. Ann. Math. 116, 1–111 (1966)

    Google Scholar 

  12. Enright, T., Howe, R., Wallach, W.: A classification of unitary highest weight modules. In: Trombi, P. (ed.) Representations of Reductive Groups, pp. 97–143. Birkhäuser, Boston (1983)

    Chapter  Google Scholar 

  13. Dobrev, V.K.: J. Phys. A Math. Theor. 41, 425206 (2008) [ar**v:0712.4375]

    Article  MathSciNet  Google Scholar 

  14. Grosse, H., Prešnajder, P., Wang, Zh.: J. Math. Phys. 53, 013508 (2012)

    Article  MathSciNet  Google Scholar 

  15. Dobrev, V.K., Mack, G., Petkova, V.B., Petrova, S.G., Todorov, I.T.: Harmonic analysis on the n-dimensional Lorentz group and its applications to conformal quantum field theory. In: Lecture Notes in Physics, vol. 63. Springer, Berlin (1977)

    Google Scholar 

  16. Dobrev, V.K., Mack, G., Petkova, V.B., Petrova, S.G., Todorov, I.T.: Rep. Math. Phys. 9, 219–246 (1976)

    Article  MATH  Google Scholar 

  17. Dobrev, V.K., Petkova, V.B.: Rep. Math. Phys. 13, 233–277 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Knapp, A.W.: Representation Theory of Semisimple Groups (An Overview Based on Examples). Princeton University Press, Princeton (1986)

    MATH  Google Scholar 

  19. Dobrev, V.K.: Lett. Math. Phys. 9, 205–211 (1985); J. Math. Phys. 26, 235–251 (1985)

    Google Scholar 

  20. Bernstein, I.N., Gel’fand, I.M., Gel’fand, S.I.: Structure of representations generated by highest weight vectors. Funkts. Anal. Prilozh. 5(1), 1–9 (1971) [English translation: Funct. Anal. Appl. 5, 1–8 (1971)]

    Google Scholar 

  21. Dixmier, J.: Envelo** Algebras. North Holland, New York (1977)

    Google Scholar 

  22. Dobrev, V.K.: Lett. Math. Phys. 22, 251–266 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chair, N., Dobrev, V.K., Kanno, H.: Phys. Lett. 283B, 194–202 (1992)

    MathSciNet  Google Scholar 

  24. Satake, I.: Ann. Math. 71, 77–110 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  25. Harish-Chandra, Representations of semisimple Lie groups: IV, V. Am. J. Math. 77, 743–777 (1955); 78, 1–41 (1956)

    Google Scholar 

  26. Bourbaki, N.: Groupes at algèbres de Lie, Chapitres 4, 5 et 6. Hermann, Paris (1968)

    Google Scholar 

  27. Knapp, A.W., Stein, E.M.: Intertwining operators for semisimple groups. Ann. Math. 93, 489–578 (1971); II: Inv. Math. 60, 9–84 (1980)

    Google Scholar 

  28. Cacciatori, S.L., Cerchiai, B.L., Marrani, A.: Magic Coset Decompositions [ar**v:1201.6314], CERN-PH-TH/2012-020

    Google Scholar 

  29. Dobrev, V.K.: Invited lectures at 5th meeting on modern mathematical physics, Belgrade, 6–17 July 2008. In: Dragovich, B., Rakic, Z. (eds.) Proceedings, pp. 95–124. Institute of Physics, Belgrade (2009) (ar**v:0812.2655 [math-ph])

    Google Scholar 

  30. Dobrev, V.K.: Invariant Differential Operators for Non-Compact Lie Groups: the Main SU(n,n) Cases, Plenary talk at SYMPHYS XV (Dubna, 12–16.7.2011). In: Pogosyan, G., et al. (eds.) Proceedings, Physics of Atomic Nuclei.

    Google Scholar 

  31. Witten, E.: Conformal Field Theory in Four and Six Dimensions [ar**v:0712.0157]

    Google Scholar 

  32. Dobrev, V.K., Petkova, V.B.: Phys. Lett. B162, 127–132 (1985); Lett. Math. Phys. 9, 287–298 (1985); Fortsch. Phys. 35, 537–572 (1987)

    Google Scholar 

  33. Dobrev, V.K.: Phys. Lett. B186, 43–51 (1987); J. Phys. A35, 7079–7100 (2002) [hep-th/0201076]; Phys. Part. Nucl. 38, 564–609 (2007) [hep-th/0406154]

    Google Scholar 

  34. Dobrev, V.K., Ganchev, A.Ch.: Mod. Phys. Lett. A3, 127–137 (1988)

    MathSciNet  Google Scholar 

  35. Dobrev, V.K.: J. Math. Phys. 33, 3419–3430 (1992); J. Phys. A26, 1317–1334 (1993) [first as Göttingen University preprint (July 1991)];  J. Phys. A27, 4841–4857 (1994) [Erratum-ibid. A27, 6633–6634 (1994) (hep-th/9405150)];   Phys. Lett. B341, 133–138 (1994) [Erratum-ibid. B346, 427 (1995)]

    Google Scholar 

  36. Dobrev, V.K., Moylan, P.J.: Phys. Lett. B315, 292–298 (1993)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Bulgarian National Science Fund, grant DO 02-257. The author thanks the Theory Division of CERN for hospitality during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Dobrev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Dobrev, V.K. (2013). Invariant Differential Operators for Non-compact Lie Groups: The Sp(n, IR) Case. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_22

Download citation

Publish with us

Policies and ethics

Navigation