Collagen and Other Proteins of the Nucleus Pulposus, Annulus Fibrosus, and Cartilage End Plates

  • Chapter
  • First Online:
The Intervertebral Disc

Abstract

Characterized by the presence of at least one triple-helical domain, members of the collagen family are the most abundant proteins in the animal kingdom. From a phylogenetic perspective, while the triple-helical domain is present in bacteria and fungi and even some viruses, collagen and collagen-like proteins have been identified in all metazoa. With the appearance of the phylum Chordata, the notochord provided a “first” skeleton which enabled the organism to assume a longitudinal shape and provided support for the digestive tube and the nerve cord. This notochordal structure is sheathed in collagen; postembryonic remnants of the notochord in vertebrates form the nucleus pulposus of the intervertebral discs. Zhang et al. (2009) have put forward the hypothesis that the vertebrate chondrocytes that all express the type II gene may have evolved from notochordal cells. In vertebrates, collagen fibrils formed the template for deposition of mineral and the development of bone and cartilage of the axial and appendicular skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 128.39
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aigner T, Gresk-Otter KR, Fairbank JC, von der Mark K, Urban JP (1998) Variation with age in the pattern of type X collagen expression in normal and scoliotic human intervertebral discs. Calcif Tissue Int 63:263–268

    Article  PubMed  CAS  Google Scholar 

  • Anderson ET, Fletcher L, Severin A, Murphy E, Baker SM, Matsuka YV (2004) Identification of factor XIIIA-reactive glutamine acceptor and lysine donor sites within fibronectin-binding protein (FnbA) from Staphylococcus aureus. Biochemistry 43(37):11842–11852, PubMed PMID: 15362870

    Article  PubMed  CAS  Google Scholar 

  • Anderson DG, Markova D, Adams SL, Pacifici M, An HS, Zhang Y (2010) Fibronectin splicing variants in human intervertebral disc and association with disc degeneration. Spine 35:1581–1588

    Article  PubMed  Google Scholar 

  • Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003

    Article  PubMed  CAS  Google Scholar 

  • Athanasou NA, Kokubun S, West L, Sallie B, Puddle B (1995) Glycosaminoglycans in intervertebral disc amyloid deposits. Eur Spine J 4:308–312

    Article  PubMed  CAS  Google Scholar 

  • Benjamin M, Ralphs JR (2004) Biology of fibrocartilage cells. Int Rev Cytol 233:1–45

    Article  PubMed  CAS  Google Scholar 

  • Berg RA, Prockop DJ (1973) The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem Biophys Res Commun 52:115–120

    Article  PubMed  CAS  Google Scholar 

  • Boos N, Nerlich AG, Wiest I, von der Mark K, Aebi M (1997) Immunolocalization of type X collagen in human lumbar intervertebral discs during ageing and degeneration. Histochem Cell Biol 108:471–480

    Article  PubMed  CAS  Google Scholar 

  • Bottomley MJ, Batten MR, Lumb RA (2001) Quality control in the endoplasmic reticulum: PDI mediates the ER retention of unassembled procollagen C-propeptides. Curr Biol 11:1114–1118

    Article  PubMed  CAS  Google Scholar 

  • Boyd LM, Richardson WJ, Allen KD, Flahiff C, **g L, Li Y, Chen J, Setton LA (2008) Early-onset degeneration of the intervertebral disc and vertebral end plate in mice deficient in type IX collagen. Arthritis Rheum 58:164–171

    Article  PubMed  CAS  Google Scholar 

  • Bywaters EGL, Dorling J (1970) Amyloid deposits in articular cartilage. Ann Rheum Dis 29:294–306

    Article  PubMed  CAS  Google Scholar 

  • Chiquet M, Fambrough DM (1984) Chick myotendinous antigen. II. A novel extracellular glycoprotein complex consisting of large disulfide-linked subunits. J Cell Biol 98:1937–1946

    Article  PubMed  CAS  Google Scholar 

  • Cloyd JM, Elliott DM (2007) Elastin content correlates with human disc degeneration in the annulus fibrosus and nucleus pulposus. Spine 32:1826–1831

    Article  PubMed  Google Scholar 

  • Day JM, Olin AI, Murdoch AD, Canfield A, Sasaki T, Timpl R, Hardingham TE, Aspberg A (2004) Alternative splicing in the aggrecan G3 domain influences binding interactions with tenascin-C and other extracellular matrix proteins. J Biol Chem 279:12511–12518

    Article  PubMed  CAS  Google Scholar 

  • Demers CN, Antoniou J, Mwale F (2004) Value and limitations of using the bovine tail as a model for the human lumbar spine. Spine 29(24):2793–2799

    Article  PubMed  Google Scholar 

  • Doyle SA, Smith BD (1998) Role of the pro-alpha2(I) COOH-terminal region in assembly of type I collagen: disruption of two intramolecular disulfide bonds in pro-alpha2(I) blocks assembly of type I collagen. J Cell Biochem 71(2):233–242

    Article  PubMed  CAS  Google Scholar 

  • Erickson HP, Inglesias JL (1984) A six-armed oligomer isolated from cell surface fibronectin preparations. Nature 311:267–269

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR (1979) Biochemistry of the intervertebral disc. Int Rev Connect Tissue Res 8:227–291

    PubMed  CAS  Google Scholar 

  • Eyre DR, Muir H (1976) Types I and II collagens in intervertebral disc. Interchanging radial distributions in annulus fibrosus. Biochem J 157:267–270

    PubMed  CAS  Google Scholar 

  • Eyre DR, Dickson IR, Van Ness K (1988) Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J 252(2):495–500

    PubMed  CAS  Google Scholar 

  • Eyre DR, Koob TJ, Van Ness KP (1984) Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid chromatography. Anal Biochem 137:380–388

    Article  PubMed  CAS  Google Scholar 

  • Eyre DR, Matsui Y, Wu JJ (2002) Collagen polymorphisms of the intervertebral disc. Biochem Soc Trans 30(Pt 6):844–848

    PubMed  CAS  Google Scholar 

  • Feng H, Danfelter M, Stromqvist B, Heinegard D (2006) Extracellular matrix in disc degeneration. J Bone Joint Surg Am 88(Suppl 2):25–29

    Article  PubMed  Google Scholar 

  • Gruber HE, Ingram JA, Hanley EN Jr (2002) Tenascin in the human intervertebral disc: alterations with aging and disc degeneration. Biotech Histochem 77:37–41

    PubMed  CAS  Google Scholar 

  • Gruber HE, Ingram JA, Hanley EN Jr (2006) Immunolocalization of thrombospondin in the human and sand rat intervertebral disc. Spine 31:2556–2561

    Article  PubMed  Google Scholar 

  • Grynpas MD, Eyre DR, Kirschner DA (1980) Collagen type II differs from type I in native molecular packing. Biochim Biophys Acta 626:346–355

    Article  PubMed  CAS  Google Scholar 

  • Hayes AJ, Benjamin M, Ralphs JR (2001) Extracellular matrix in development of the intervertebral disc. Matrix Biol 20:107–121

    Article  PubMed  CAS  Google Scholar 

  • Hristova GI, Jarzem P, Ouellet JA, Roughley PJ, Epure LM, Antoniou J, Mwale F (2011) Calcification in human intervertebral disc degeneration and scoliosis. J Orthop Res 29:1888–1895

    Article  PubMed  Google Scholar 

  • Hulmes DJS (2002) Building collagen molecules, fibrils, and suprafibrillar structures. J Struct Biol 137:10

    Article  Google Scholar 

  • Hulmes DJ, Miller A (1981) Molecular packing in collagen. Nature 293:239–240

    Article  PubMed  CAS  Google Scholar 

  • Inkinen RI, Lammi MJ, Lehmonen S, Puustjarvi K, Kaapa E, Tammi MI (1998) Relative increase of biglycan and decorin and altered chondroitin sulfate epitopes in the degenerating human intervertebral disc. J Rheumatol 25:506–514

    PubMed  CAS  Google Scholar 

  • Inoue H (1973) Three-dimensional observation of collagen framework of intervertebral discs in rats, dogs and humans. Arch Histol Jpn 36:39–56

    Article  PubMed  CAS  Google Scholar 

  • Inoue H (1981) Three-dimensional architecture of lumbar intervertebral discs. Spine 6:139–146

    Article  PubMed  CAS  Google Scholar 

  • Khoshnoodi J, Cartailler J-P, Alvares K, Veis A, Hudson BG (2006) Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triplehelical protomers. J Biol Chem 281:38117–38121

    Article  PubMed  CAS  Google Scholar 

  • Kimura T, Nakata K, Tsumaki N, Miyamoto S, Matsui Y, Ebara S, Ochi T (1996) Progressive degeneration of articular cartilage and intervertebral discs. An experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop 20:177–181

    Article  PubMed  Google Scholar 

  • Ladefoged C (1985) Amyloid in intervertebral discs. A histopathological investigation of intervertebral discs from 30 randomly selected autopsies. Appl Pathol 3:96–104

    PubMed  CAS  Google Scholar 

  • Lee CR, Sakai D, Nakai T, Toyama K, Mochida J, Alini M, Grad S (2007) A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 16:2174–2185

    Article  PubMed  Google Scholar 

  • Linsenmayer TF, Long F, Nurminskaya M et al (1998) Type X collagen and other up-regulated components of the avian hypertrophic cartilage program. Prog Nucleic Acid Res Mol Biol 60:79

    Article  PubMed  CAS  Google Scholar 

  • LuValle P, Ninomiya Y, Rosenblum ND, Olsen BR (1988) The type X collagen gene. Intron sequences split the 5’-untranslated region and separate the coding regions for the non-collagenous amino-terminal and triple-helical domains. J Biol Chem 263:18378–18385

    Google Scholar 

  • Malone JP, George A, Veis A (2004) Type I collagen N-Telopeptides adopt an ordered structure when docked to their helix receptor during fibrillogenesis. Proteins 54:206–215

    Article  PubMed  CAS  Google Scholar 

  • Malone JP, Alvares K, Veis A (2005) Structure and assembly of the heterotrimeric and homotrimeric C-propeptides of type I collagen: significance of the α2(I) chain. Biochemistry 44:15269–15279

    Article  PubMed  CAS  Google Scholar 

  • Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120(Pt 1): 113–130

    PubMed  CAS  Google Scholar 

  • McAlinden A, Smith TA, Sandell LJ, Ficheux D, Parry DA, Hulmes DJ (2003) Alpha-helical coiled-coil oligomerization domains are almost ubiquitous in the collagen superfamily. J Biol Chem 278: 42200–42207

    Google Scholar 

  • Mihara S, Kawai S, Gondo T, Ishihara T (1994) Intervertebral disc amyloidosis: histochemical, immunohistochemical and ultrastructural observations. Histopathology 25:415–420

    Article  PubMed  CAS  Google Scholar 

  • Muragaki Y, Kimura T, Ninomiya Y, Olsen BR (1990) The complete primary structure of two distinct forms of human alpha 1 (IX) collagen chains. Eur J Biochem 192:703–708

    Article  PubMed  CAS  Google Scholar 

  • Mwale F, Billinghurst C, Wu W, Alini M, Webber C, Reiner A, Ionescu M, Poole J, Poole AR (2000) Selective assembly and remodelling of collagens II and IX associated with expression of the chondrocyte hypertrophic phenotype. Dev Dyn 218:648–662

    Article  PubMed  CAS  Google Scholar 

  • Mwale F, Roughley P, Antoniou J (2004) Distinction between the extracellular matrix of the nucleus pulposus and hyaline cartilage: a requisite for tissue engineering of intervertebral disc. Eur Cell Mater 8:58–63, discussion 63–54

    PubMed  CAS  Google Scholar 

  • Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41: 589–607

    Article  PubMed  CAS  Google Scholar 

  • Nerlich AG, Schleicher ED, Boos N (1997) Volvo award winner in basic science studies. Immunohistologic markers for age-related changes of human lumbar intervertebral discs. Spine 22: 2781–2795

    Article  PubMed  CAS  Google Scholar 

  • Nies DE, Hemesath TJ, Kim JH, Gulcher JR, Stefansson K (1991) The complete cDNA sequence of human hexabrachion (tenascin). A multidomain protein containing unique epidermal growth factor repeats. J Biol Chem 266:2818–2823

    PubMed  CAS  Google Scholar 

  • Nishimura I, Muragaki Y, Olsen BR (1989) Tissue-specific forms of type IX collagen-proteoglycan arise from the use of two widely separated promoters. J Biol Chem 264:20033–20041

    PubMed  CAS  Google Scholar 

  • Oegema TR Jr, Johnson SL, Aguiar DJ, Ogilvie JW (2000) Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine 25:2742–2747

    Article  PubMed  Google Scholar 

  • Pokharna HK, Phillips FM (1998) Collagen crosslinks in human lumbar intervertebral disc aging. Spine 23:1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ, Sieron AL, Li SW (1997/1998) Procollagen N-proteinase and procollagen C-proteinase Two unusual metalloproteinases that are essential for procollagen processing probably have important roles in development and cell signaling. Matrix Biol 16:399–408

    Article  Google Scholar 

  • Roberts S (2002) Disc morphology in health and disease. Biochem Soc Trans 30(Pt 6):864–869

    PubMed  CAS  Google Scholar 

  • Roberts S, Menage J, Urban JP (1989) Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine 14:166–174

    Article  PubMed  CAS  Google Scholar 

  • Roberts S, Ayad S, Menage PJ (1991) Immunolocalisation of type VI collagen in the intervertebral disc. Ann Rheum Dis 50:787–791

    Article  PubMed  CAS  Google Scholar 

  • Roughley PJ (2004) Biology of intervertebral disc aging and degeneration: involvement of the extracellular matrix. Spine 29(23):2691–2699

    Article  PubMed  Google Scholar 

  • Ryan MC, Sandell LJ (1990) Differential expression of a cysteine-rich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J Biol Chem 265:10334–10339

    PubMed  CAS  Google Scholar 

  • Sandell LJ, Morris N, Robbins JR, Goldring MB (1991) Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol 114:1307–1319

    Article  PubMed  CAS  Google Scholar 

  • Schmid TM, Linsenmayer TF (1985) Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol 100:598–605

    Article  PubMed  CAS  Google Scholar 

  • Scott JE, Bosworth TR, Cribb AM, Taylor JR (1994) The chemical morphology of age-related changes in human intervertebral disc glycosaminoglycans from cervical, thoracic and lumbar nucleus pulposus and annulus fibrosus. J Anat 184(Pt 1):73–82

    PubMed  Google Scholar 

  • Takahashi M, Haro H, Wakabayashi Y, Kawa-uchi T, Komori H, Shinomiya K (2001) The association of degeneration of the intervertebral disc with 5a/6a polymorphism in the promoter of the human matrix metalloproteinase-3 gene. J Bone Joint Surg Br 83(4):491–495

    Article  PubMed  CAS  Google Scholar 

  • Tasab M, Jenkinson L, Bulleid NJ (2002) Sequence-specific recognition of collagen triple helices by the collagen-specific molecular chaperone hsp47. J Biol Chem 277:35007–35012

    Article  PubMed  CAS  Google Scholar 

  • Tchetina E, Mwale F, Poole AR (2003) Distinct phases of coordinated early and late gene expression in growth plate chondrocytes in relationship to cell proliferation, matrix assembly, remodeling, and cell differentiation. J Bone Miner Res 18:844–851

    Article  PubMed  CAS  Google Scholar 

  • Valdes AM, Hassett G, Hart DJ, Spector TD (2005) Radiographic progression of lumbar spine disc degeneration is influenced by variation at inflammatory genes: a candidate SNP association study in the Chingford cohort. Spine 30:2445–2451

    Article  PubMed  Google Scholar 

  • van der Rest M, Mayne R (1988) Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263(4):1615–1618

    PubMed  Google Scholar 

  • Vasios G, Nishimura I, Konomi H, van der Rest M, Ninomiya Y, Olsen BR (1988) Cartilage type IX collagen-proteoglycan contains a large amino-terminal globular domain encoded by multiple exons. J Biol Chem 263:2324–2329

    PubMed  CAS  Google Scholar 

  • Vaughan L, Mendler M, Huber S, Bruckner P, Winterhalter KH, Irwin MI, Mayne R (1988) D-periodic distribution of collagen type IX along cartilage fibrils. J Cell Biol 106:991–997

    Article  PubMed  CAS  Google Scholar 

  • Wu JJ, Eyre DR (2003) Intervertebral disc collagen. Usage of the short form of the alpha1(IX) chain in bovine nucleus pulposus. J Biol Chem 278:24521–24525

    Article  PubMed  CAS  Google Scholar 

  • Wu JJ, Eyre DR, Slayter HS (1987) Type VI collagen of the intervertebral disc. Biochemical and electron- microscopic characterization of the native protein. Biochem J 248:373–381

    PubMed  CAS  Google Scholar 

  • Wu JJ, Woods PE, Eyre DR (1992) Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem 267:23007–23014

    PubMed  CAS  Google Scholar 

  • Wurster NB, Lust G (1984) Synthesis of fibronectin in normal and osteoarthritic articular cartilage. Biochim Biophys Acta 800:52–58

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi N, Benya PD, van der Rest M, Ninomiya Y (1989) The cloning and sequencing of alpha 1 (VIII) collagen cDNAs demonstrate that type VIII collagen is a short chain collagen and contains triple-helical and carboxyl-terminal non-triple-helical domains similar to those of type X collagen. J Biol Chem 264:16022–16029

    Google Scholar 

  • Yasuma T, Arai K, Suzuki F (1992) Age-related phenomena in the lumbar intervertebral discs. Lipofuscin and amyloid deposition. Spine 17:1194–1198

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Winlove PC, Roberts S, Urban JP (2002) Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 201:465–475

    Article  PubMed  Google Scholar 

  • Yu J, Fairbank JC, Roberts S, Urban JP (2005) The elastic fiber network of the annulus fibrosus of the normal and scoliotic human intervertebral disc. Spine 30:1815–1820

    Article  PubMed  Google Scholar 

  • Yu J, Tirlapur U, Fairbank J, Handford P, Roberts S, Winlove CP, Cui Z, Urban J (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210:460–471

    Article  PubMed  Google Scholar 

  • Zhang G, Eames BF, Cohn MJ (2009) Chapter 2. Evolution of vertebrate cartilage development. Curr Top Dev Biol 86:15–42

    Article  PubMed  CAS  Google Scholar 

  • Zheng Q, Zhou G, Chen Y, Garcia-Rojas X, Lee B (2003) Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol 162:833–842

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr. Mwale is funded by AO Spine, Canadian Institute of Health Research (CIHR), and North American Spine Society (NASS). The author thanks Drs. Shapiro and Risbud for critically reading the manuscript and providing valuable suggestions and Dr. Ovidiu Ciobanu for generating the figures and hel** with the manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Mwale, F. (2014). Collagen and Other Proteins of the Nucleus Pulposus, Annulus Fibrosus, and Cartilage End Plates. In: Shapiro, I., Risbud, M. (eds) The Intervertebral Disc. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1535-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1535-0_5

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1534-3

  • Online ISBN: 978-3-7091-1535-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation