• 1225 Accesses

Abstract

In the last few decades, the budding yeast Saccharomyces cerevisiae has emerged as a simple and powerful model organism to study aging. Replicative aging and chronological aging are the two major models that have been established in yeast. In this chapter, we review the two aging model systems, focusing on genes and pathways that modulate replicative and chronological aging. The purpose of this chapter is to provide an overall understanding of the aging process in the single-celled yeast and a basis by which to generate models of molecular mechanisms that may affect aging stem cell populations in adult tissues, as well as the multicellular eukaryotes they inhabit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguilaniu H, Gustafsson L, Rigoulet M, Nystrom T (2003) Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299:1751–1753

    CAS  PubMed  Google Scholar 

  • Anderson RM, Weindruch R (2010) Metabolic reprogramming, caloric restriction and aging. Trends Endocrinol Metab 21:134–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson V, Hanzen S, Liu B, Molin M, Nystrom T (2013) Enhancing protein disaggregation restores proteasome activity in aged cells. Aging 5:802–812

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Rosenfeld SV, Blagosklonny MV (2011) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236

    CAS  PubMed  Google Scholar 

  • Aparicio OM, Billington BL, Gottschling DE (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in S. cerevisiae. Cell 66:1279–1287

    CAS  PubMed  Google Scholar 

  • Ashrafi K, Sinclair D, Gordon JI, Guarente L (1999) Passage through stationary phase advances replicative aging in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:9100–9105

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bacon JS, Davidson ED, Jones D, Taylor IF (1966) The location of chitin in the yeast cell wall. Biochem J 101:36C–38C

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baraibar MA, Friguet B (2012) Changes of the proteasomal system during the aging process. Prog Mol Biol Transl Sci 109:249–275

    CAS  PubMed  Google Scholar 

  • Barker MG, Walmsley RM (1999) Replicative ageing in the fission yeast Schizosaccharomyces pombe. Yeast 15:1511–1518

    CAS  PubMed  Google Scholar 

  • Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279:49883–49888

    CAS  PubMed  Google Scholar 

  • Barton AA (1950) Some aspects of cell division in saccharomyces cerevisiae. J Gen Microbiol 4:84–86

    CAS  PubMed  Google Scholar 

  • Bernhardt D, Muller M, Reichert AS, Osiewacz HD (2015) Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan. Scientific reports 5, 7885

    Google Scholar 

  • Bilinski T (2012) Hypertrophy, replicative ageing and the ageing process. FEMS Yeast Res 12:739–740

    CAS  PubMed  Google Scholar 

  • Bilinski T, Zadrag-Tecza R, Bartosz G (2012) Hypertrophy hypothesis as an alternative explanation of the phenomenon of replicative aging of yeast. FEMS Yeast Res 12:97–101

    CAS  PubMed  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackburn EH, Greider CW, Szostak JW (2006) Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat Med 12:1133–1138

    CAS  PubMed  Google Scholar 

  • Bonawitz ND, Chatenay-Lapointe M, Pan Y, Shadel GS (2007) Reduced TOR signaling extends chronological life span via increased respiration and upregulation of mitochondrial gene expression. Cell Metab 5:265–277

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borghouts C, Benguria A, Wawryn J, Jazwinski SM (2004) Rtg2 protein links metabolism and genome stability in yeast longevity. Genetics 166:765–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Braun RJ, Westermann B (2011) Mitochondrial dynamics in yeast cell death and aging. Biochem Soc Trans 39:1520–1526

    CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    CAS  PubMed  Google Scholar 

  • Burgering BM, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    CAS  PubMed  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burstein MT, Kyryakov P, Beach A, Richard VR, Koupaki O, Gomez-Perez A, Leonov A, Levy S, Noohi F, Titorenko VI (2012) Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle 11:3443–3462

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burtner CR, Murakami CJ, Kennedy BK, Kaeberlein M (2009) A molecular mechanism of chronological aging in yeast. Cell Cycle 8:1256–1270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M (2011) A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 10:1385–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Busti S, Coccetti P, Alberghina L, Vanoni M (2010) Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. Sensors (Basel) 10:6195–6240

    CAS  Google Scholar 

  • Caballero A, Ugidos A, Liu B, Oling D, Kvint K, Hao X, Mignat C, Nachin L, Molin M, Nystrom T (2011) Absence of mitochondrial translation control proteins extends life span by activating sirtuin-dependent silencing. Mol Cell 42:390–400

    CAS  PubMed  Google Scholar 

  • Calabrese V, Cornelius C, Cuzzocrea S, Iavicoli I, Rizzarelli E, Calabrese EJ (2011) Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol Aspects Med 32:279–304

    CAS  PubMed  Google Scholar 

  • Carrard G, Bulteau AL, Petropoulos I, Friguet B (2002) Impairment of proteasome structure and function in aging. Int J Biochem Cell Biol 34:1461–1474

    CAS  PubMed  Google Scholar 

  • Carvalho J, Zheng XF (2003) Domains of Gln3p interacting with karyopherins, Ure2p, and the target of rapamycin protein. J Biol Chem 278:16878–16886

    CAS  PubMed  Google Scholar 

  • Chen C, Contreras R (2007) Identifying genes that extend life span using a high-throughput screening system. Methods Mol Biol 371:237–248

    CAS  PubMed  Google Scholar 

  • Cheng WC, Leach KM, Hardwick JM (2008) Mitochondrial death pathways in yeast and mammalian cells. Biochim Biophys Acta 1783:1272–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiocchetti A, Zhou J, Zhu H, Karl T, Haubenreisser O, Rinnerthaler M, Heeren G, Oender K, Bauer J, Hintner H et al (2007) Ribosomal proteins Rpl10 and Rps6 are potent regulators of yeast replicative life span. Exp Gerontol 42:275–286

    CAS  PubMed  Google Scholar 

  • Cohen S, Segal D (2009) Extrachromosomal circular DNA in eukaryotes: possible involvement in the plasticity of tandem repeats. Cytogenet Genome Res 124:327–338

    CAS  PubMed  Google Scholar 

  • Cohen HY, Miller C, Bitterman KJ, Wall NR, Hekking B, Kessler B, Howitz KT, Gorospe M, de Cabo R, Sinclair DA (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    CAS  PubMed  Google Scholar 

  • Cohen S, Agmon N, Sobol O, Segal D (2010) Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mob DNA 1:11

    PubMed Central  PubMed  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crespo JL, Powers T, Fowler B, Hall MN (2002) The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine. Proc Natl Acad Sci U S A 99:6784–6789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    PubMed Central  PubMed  Google Scholar 

  • D’Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269:15451–15459

    PubMed  Google Scholar 

  • Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL (2009) Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature 459:802–807

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dange T, Smith D, Noy T, Rommel PC, Jurzitza L, Cordero RJ, Legendre A, Finley D, Goldberg AL, Schmidt M (2011) Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem 286:42830–42839

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dann SG, Thomas G (2006) The amino acid sensitive TOR pathway from yeast to mammals. FEBS Lett 580:2821–2829

    CAS  PubMed  Google Scholar 

  • De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    PubMed  Google Scholar 

  • Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L (1999) Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3:447–455

    CAS  PubMed  Google Scholar 

  • Delaney JR, Murakami C, Chou A, Carr D, Schleit J, Sutphin GL, An EH, Castanza AS, Fletcher M, Goswami S et al (2013) Dietary restriction and mitochondrial function link replicative and chronological aging in Saccharomyces cerevisiae. Exp Gerontol 8(10):1006–1013

    Google Scholar 

  • di Blasi F, Carra E, de Vendittis E, Masturzo P, Burderi E, Lambrinoudaki I, Mirisola MG, Seidita G, Fasano O (1993) The SCH9 protein kinase mRNA contains a long 5' leader with a small open reading frame. Yeast 9:21–32

    PubMed  Google Scholar 

  • Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA (2003) Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol 23:3173–3185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Easlon E, Tsang F, Dilova I, Wang C, Lu SP, Skinner C, Lin SJ (2007) The dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension. J Biol Chem 282:6161–6171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    CAS  PubMed  Google Scholar 

  • Epstein CJ, Martin GM, Schultz AL, Motulsky AG (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45:177–221

    CAS  PubMed  Google Scholar 

  • Epstein CB, Waddle JA, Hale W 4th, Dave V, Thornton J, Macatee TL, Garner HR, Butow RA (2001) Genome-wide responses to mitochondrial dysfunction. Mol Biol Cell 12:297–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erjavec N, Nystrom T (2007) Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 104:10877–10881

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erjavec N, Larsson L, Grantham J, Nystrom T (2007) Accelerated aging and failure to segregate damaged proteins in Sir2 mutants can be suppressed by overproducing the protein aggregation-remodeling factor Hsp104p. Genes Dev 21:2410–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fabrizio P, Longo VD (2007) The chronological life span of Saccharomyces cerevisiae. Methods Mol Biol 371:89–95

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142

    CAS  PubMed  Google Scholar 

  • Feser J, Truong D, Das C, Carson JJ, Kieft J, Harkness T, Tyler JK (2010) Elevated histone expression promotes life span extension. Mol Cell 39:724–735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Finkel T, Deng CX, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460:587–591

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuentealba LC, Eivers E, Geissert D, Taelman V, De Robertis EM (2008) Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc Natl Acad Sci U S A 105:7732–7737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gallinetti J, Harputlugil E, Mitchell JR (2013) Amino acid sensing in dietary-restriction-mediated longevity: roles of signal-transducing kinases GCN2 and TOR. Biochem J 449:1–10

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganley AR, Breitenbach M, Kennedy BK, Kobayashi T (2012) Yeast hypertrophy: cause or consequence of aging? Reply to Bilinski et al. FEMS Yeast Res 12:267–268

    CAS  PubMed  Google Scholar 

  • Gebre S, Connor R, **a Y, Jawed S, Bush JM, Bard M, Elsalloukh H, Tang F (2012) Osh6 overexpression extends the lifespan of yeast by increasing vacuole fusion. Cell Cycle 11:2176–2188

    CAS  PubMed  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    CAS  PubMed  Google Scholar 

  • Ghazi A, Henis-Korenblit S, Kenyon C (2007) Regulation of Caenorhabditis elegans lifespan by a proteasomal E3 ligase complex. Proc Natl Acad Sci U S A 104:5947–5952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giblin W, Skinner ME, Lombard DB (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30(7):271–286

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillespie CS, Proctor CJ, Boys RJ, Shanley DP, Wilkinson DJ, Kirkwood TB (2004) A mathematical model of ageing in yeast. J Theor Biol 229:189–196

    CAS  PubMed  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M et al (1996) Life with 6000 genes. Science 274:546, 563–547

    CAS  PubMed  Google Scholar 

  • Goldberg AA, Richard VR, Kyryakov P, Bourque SD, Beach A, Burstein MT, Glebov A, Koupaki O, Boukh-Viner T, Gregg C et al (2010) Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekee** longevity assurance processes. Aging 2:393–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gresham D, Boer VM, Caudy A, Ziv N, Brandt NJ, Storey JD, Botstein D (2011) System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae. Genetics 187:299–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guarente L (1999) Diverse and dynamic functions of the Sir silencing complex. Nat Genet 23:281–285

    CAS  PubMed  Google Scholar 

  • Guarente L (2005) Calorie restriction and SIR2 genes–towards a mechanism. Mech Ageing Dev 126:923–928

    CAS  PubMed  Google Scholar 

  • Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874

    CAS  PubMed  Google Scholar 

  • Guarente L (2011) Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N Engl J Med 364:2235–2244

    CAS  PubMed  Google Scholar 

  • Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27:2072–2085

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ha CW, Huh WK (2011) Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res 39:1336–1350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    CAS  PubMed  Google Scholar 

  • Hansen M, Chandra A, Mitic LL, Onken B, Driscoll M, Kenyon C (2008) A role for autophagy in the extension of lifespan by dietary restriction in C elegans. PLoS Genet 4:e24

    PubMed Central  PubMed  Google Scholar 

  • Harris N, MacLean M, Hatzianthis K, Panaretou B, Piper PW (2001) Increasing Saccharomyces cerevisiae stress resistance, through the overactivation of the heat shock response resulting from defects in the Hsp90 chaperone, does not extend replicative life span but can be associated with slower chronological ageing of nondividing cells. Mol Genet Genomics 265:258–263

    CAS  PubMed  Google Scholar 

  • Harris N, Costa V, MacLean M, Mollapour M, Moradas-Ferreira P, Piper PW (2003) Mnsod overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34:1599–1606

    CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18:1926–1945

    CAS  PubMed  Google Scholar 

  • He C, Tsuchiyama SK, Nguyen QT, Plyusnina EN, Terrill SR, Sahibzada S, Patel B, Faulkner AR, Shaposhnikov MV, Tian R et al (2014) Enhanced longevity by ibuprofen, conserved in multiple species, occurs in yeast through inhibition of tryptophan import. PLoS genetics 10, e1004860.

    Google Scholar 

  • Heeren G, Rinnerthaler M, Laun P, von Seyerl P, Kossler S, Klinger H, Hager M, Bogengruber E, Jarolim S, Simon-Nobbe B et al (2009) The mitochondrial ribosomal protein of the large subunit, Afo1p, determines cellular longevity through mitochondrial back-signaling via TOR1. Aging 1:622–636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991) Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253:905–909

    CAS  PubMed  Google Scholar 

  • Herranz D, Munoz-Martin M, Canamero M, Mulero F, Martinez-Pastor B, Fernandez-Capetillo O, Serrano M (2010) Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat Commun 1:3

    PubMed Central  PubMed  Google Scholar 

  • Hill SM, Hao X, Liu B, Nystrom T (2014) Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science 344, 1389–1392

    Google Scholar 

  • Hill SM, Nystrom T (2015) The dual role of a yeast metacaspase: What doesn’t kill you makes you stronger. BioEssays : news and reviews in molecular, cellular and developmental biology.

    Google Scholar 

  • Hinnebusch AG (2005) Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59:407–450

    CAS  PubMed  Google Scholar 

  • Hinnebusch AG, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13:225–238

    CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    CAS  PubMed  Google Scholar 

  • Hu J, Wei M, Mirzaei H, Madia F, Mirisola M, Amparo C, Chagoury S, Kennedy B, Longo VD (2014) Tor-Sch9 deficiency activates catabolism of the ketone body-like acetic acid to promote trehalose accumulation and longevity. Aging Cell 13:457–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X, Liu J, Dickson RC (2012) Down-regulating sphingolipid synthesis increases yeast lifespan. PLoS Genet 8:e1002493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang X, Withers BR, Dickson RC (2014) Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841:657–664

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31:212–220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Imai SI, Guarente L (2014) NAD and sirtuins in aging and disease. Trends Cell Biol 24(8):464–471

    CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800

    CAS  PubMed  Google Scholar 

  • Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6:688–702

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jazwinski SM (1990) An experimental system for the molecular analysis of the aging process: the budding yeast Saccharomyces cerevisiae. J Gerontol 45:B68–B74

    CAS  PubMed  Google Scholar 

  • Jazwinski SM (2005a) The retrograde response links metabolism with stress responses, chromatin-dependent gene activation, and genome stability in yeast aging. Gene 354:22–27

    CAS  PubMed  Google Scholar 

  • Jazwinski SM (2005b) Rtg2 protein: at the nexus of yeast longevity and aging. FEMS Yeast Res 5:1253–1259

    CAS  PubMed  Google Scholar 

  • Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    CAS  PubMed  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    CAS  PubMed  Google Scholar 

  • Johnson JE, Johnson FB (2014) Methionine restriction activates the retrograde response and confers both stress tolerance and lifespan extension to yeast, mouse and human cells. PloS one 9, e97729.

    Google Scholar 

  • Johnston M, Hillier L, Riles L, Albermann K, Andre B, Ansorge W, Benes V, Bruckner M, Delius H, Dubois E et al (1997) The nucleotide sequence of Saccharomyces cerevisiae chromosome XII. Nature 387:87–90

    CAS  PubMed  Google Scholar 

  • Kaeberlein M (2006) Longevity and aging in the budding yeast. In: Conn PM (ed) Handbook of models for human aging. Elsevier Press, Boston, pp 109–120

    Google Scholar 

  • Kaeberlein M (2010) Lessons on longevity from budding yeast. Nature 464:513–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeberlein M (2012) Hypertrophy and senescence factors in yeast aging. A reply to Bilinski et al. FEMS Yeast Res 12:269–270

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, Kennedy BK (2005) Large-scale identification in yeast of conserved ageing genes. Mech Ageing Dev 126:17–21

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, Powers RW 3rd (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6:128–140

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004a) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:E296

    PubMed Central  PubMed  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004b) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2:1381–1387

    CAS  Google Scholar 

  • Kaeberlein M, Hu D, Kerr EO, Tsuchiya M, Westman EA, Dang N, Fields S, Kennedy BK (2005a) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 1:e69

    PubMed Central  PubMed  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2005b) Genes determining yeast replicative life span in a long-lived genetic background. Mech Ageing Dev 126:491–504

    CAS  PubMed  Google Scholar 

  • Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005c) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    CAS  PubMed  Google Scholar 

  • Kam**a HH (2014) Cell biology. A cell death avenue evolved from a life-saving path. Science 344, 1341–1342

    Google Scholar 

  • Kanfi Y, Naiman S, Amir G, Peshti V, Zinman G, Nahum L, Bar-Joseph Z, Cohen HY (2012) The sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221

    CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kennedy BK, Pennypacker JK (2014) Drugs that modulate aging: the promising yet difficult path ahead. Transl Res 163:456–465

    PubMed Central  PubMed  Google Scholar 

  • Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L (1995) Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 80:485–496

    CAS  PubMed  Google Scholar 

  • Kennedy BK, Smith ED, Kaeberlein M (2005) The enigmatic role of Sir2 in aging. Cell 123:548–550

    CAS  PubMed  Google Scholar 

  • Kennedy BK, Steffen KK, Kaeberlein M (2007) Ruminations on dietary restriction and aging. Cell Mol Life Sci 64:1323–1328

    CAS  PubMed  Google Scholar 

  • Kirchman PA, Kim S, Lai CY, Jazwinski SM (1999) Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152:179–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi T, Horiuchi T (1996) A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1:465–474

    CAS  PubMed  Google Scholar 

  • Koch MR, Pillus L (2009) The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc Natl Acad Sci U S A 106:11224–11229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komarova EA, Antoch MP, Novototskaya LR, Chernova OB, Paszkiewicz G, Leontieva OV, Blagosklonny MV, Gudkov AV (2012) Rapamycin extends lifespan and delays tumorigenesis in heterozygous p53+/− mice. Aging 4:709–714

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komeili A, Wedaman KP, O’Shea EK, Powers T (2000) Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151:863–878

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komili S, Farny NG, Roth FP, Silver PA (2007) Functional specificity among ribosomal proteins regulates gene expression. Cell 131:557–571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ, Schleit J et al (2011) Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLoS Genet 7:e1002253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kujoth GC, Bradshaw PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3:e24

    PubMed Central  PubMed  Google Scholar 

  • Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9:e1003329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864

    CAS  PubMed  Google Scholar 

  • Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci U S A 97:5807–5811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SS, Avalos Vizcarra I, Huberts DH, Lee LP, Heinemann M (2012) Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A 109:4916–4920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leontieva OV, Blagosklonny MV (2011) Yeast-like chronological senescence in mammalian cells: phenomenon, mechanism and pharmacological suppression. Aging (Albany NY) 3:1078–1091

    Google Scholar 

  • Li W, Miller RA (2015) Elevated ATF4 function in fibroblasts and liver of slow-aging mutant mice. J Gerontol A Biol Sci Med Sci 70(3):263–272

    PubMed  Google Scholar 

  • Li M, Valsakumar V, Poorey K, Bekiranov S, Smith JS (2013) Genome-wide analysis of functional sirtuin chromatin targets in yeast. Genome Biol 14:R48

    PubMed Central  PubMed  Google Scholar 

  • Lin SJ, Guarente L (2006) Increased life span due to calorie restriction in respiratory-deficient yeast. PLoS Genet 2:e33; author reply e34

    PubMed Central  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    CAS  PubMed  Google Scholar 

  • Lindstrom DL, Gottschling DE (2009) The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae. Genetics 183:413–422, 411SI–413SI

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindstrom DL, Leverich CK, Henderson KA, Gottschling DE (2011) Replicative age induces mitotic recombination in the ribosomal RNA gene cluster of Saccharomyces cerevisiae. PLoS Genet 7:e1002015

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Butow RA (2006) Mitochondrial retrograde signaling. Annu Rev Genet 40:159–185

    CAS  PubMed  Google Scholar 

  • Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T (2010) The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140:257–267

    CAS  PubMed  Google Scholar 

  • Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10:457–468

    CAS  PubMed  Google Scholar 

  • Longo VD, Gralla EB, Valentine JS (1996) Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J Biol Chem 271:12275–12280

    CAS  PubMed  Google Scholar 

  • Longo VD, Shadel GS, Kaeberlein M, Kennedy B (2012) Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab 16:18–31

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lorenz DR, Cantor CR, Collins JJ (2009) A network biology approach to aging in yeast. Proc Natl Acad Sci U S A 106:1145–1150

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu JY, Lin YY, Sheu JC, Wu JT, Lee FJ, Chen Y, Lin MI, Chiang FT, Tai TY, Berger SL et al (2011) Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 146:969–979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Managbanag JR, Witten TM, Bonchev D, Fox LA, Tsuchiya M, Kennedy BK, Kaeberlein M (2008) Shortest-path network analysis is a useful approach toward identifying genetic determinants of longevity. PLoS One 3:e3802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martegani E, Baroni MD, Frascotti G, Alberghina L (1986) Molecular cloning and transcriptional analysis of the start gene CDC25 of Saccharomyces cerevisiae. EMBO J 5:2363–2369

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    CAS  PubMed  Google Scholar 

  • Matecic M, Smith DL, Pan X, Maqani N, Bekiranov S, Boeke JD, Smith JS (2010) A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet 6:e1000921

    PubMed Central  PubMed  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL, Longo DL, Allison DB, Young JE, Bryant M et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    CAS  PubMed  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition 5:155–171; discussion 172

    CAS  PubMed  Google Scholar 

  • McCormick MA, Kennedy BK (2012) Genome-scale studies of aging: challenges and opportunities. Curr Genomics 13:500–507

    CAS  PubMed Central  PubMed  Google Scholar 

  • McIntosh KB, Warner JR (2007) Yeast ribosomes: variety is the spice of life. Cell 131:450–451

    CAS  PubMed  Google Scholar 

  • McVey M, Kaeberlein M, Tissenbaum HA, Guarente L (2001) The short life span of Saccharomyces cerevisiae sgs1 and srs2 mutants is a composite of normal aging processes and mitotic arrest due to defective recombination. Genetics 157:1531–1542

    CAS  PubMed Central  PubMed  Google Scholar 

  • Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007a) MSN2 and MSN4 link calorie restriction and TOR to Sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5:230–241

    Google Scholar 

  • Medvedik O, Lamming DW, Kim KD, Sinclair DA (2007b) MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol 5:e261

    PubMed Central  PubMed  Google Scholar 

  • Michan S, Sinclair D (2007) Sirtuins in mammals: insights into their biological function. Biochem J 404:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mirisola MG, Taormina G, Fabrizio P, Wei M, Hu J, Longo VD (2014) Serine- and threonine/valine-dependent activation of PDK and Tor orthologs converge on Sch9 to promote aging. PLoS genetics 10, e1004113

    Google Scholar 

  • Mohammadi S, Subramaniam S, Grama A (2013) Inferring the effective TOR-dependent network: a computational study in yeast. BMC Syst Biol 7:84

    PubMed Central  PubMed  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752

    CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    CAS  PubMed  Google Scholar 

  • Murakami C, Kaeberlein M (2009) Quantifying yeast chronological life span by outgrowth of aged cells. J Vis Exp (27). pii:1156

    Google Scholar 

  • Murakami CJ, Burtner CR, Kennedy BK, Kaeberlein M (2008) A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci 63:113–121

    PubMed  Google Scholar 

  • Murakami CJ, Wall V, Basisty N, Kaeberlein M (2011) Composition and acidification of the culture medium influences chronological aging similarly in vineyard and laboratory yeast. PLoS One 6:e24530

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T (2004) Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306:2105–2108

    CAS  PubMed  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P et al (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ocampo A, Liu J, Schroeder EA, Shadel GS, Barrientos A (2012) Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab 16:55–67

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsen B, Murakami CJ, Kaeberlein M (2010) YODA: software to facilitate high-throughput analysis of chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 11:141

    PubMed Central  PubMed  Google Scholar 

  • Orentreich N, Matias JR, DeFelice A, Zimmerman JA (1993) Low methionine ingestion by rats extends life span. J Nutr 123, 269–274.

    Google Scholar 

  • Outeiro TF, Giorgini F (2006) Yeast as a drug discovery platform in Huntington’s and Parkinson’s diseases. Biotechnol J 1:258–269

    CAS  PubMed  Google Scholar 

  • Pan Y, Shadel GS (2009) Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density. Aging (Albany NY) 1:131–145

    CAS  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan Y, Schroeder EA, Ocampo A, Barrientos A, Shadel GS (2011) Regulation of yeast chronological life span by TORC1 via adaptive mitochondrial ROS signaling. Cell Metab 13:668–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paradis S, Ruvkun G (1998) Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 12:2488–2498

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pereira C, Leao M, Soares J, Bessa C, Saraiva L (2012) New therapeutic strategies for cancer and neurodegeneration emerging from yeast cell-based systems. Curr Pharm Des 18:4223–4235

    CAS  PubMed  Google Scholar 

  • Perez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B et al (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl Acad Sci U S A 106:3059–3064

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petes TD (1979) Yeast ribosomal DNA genes are located on chromosome XII. Proc Natl Acad Sci U S A 76:410–414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piper PW, Harris NL, MacLean M (2006) Preadaptation to efficient respiratory maintenance is essential both for maximal longevity and the retention of replicative potential in chronologically ageing yeast. Mech Ageing Dev 127:733–740

    PubMed  Google Scholar 

  • Ploger R, Zhang J, Bassett D, Reeves R, Hieter P, Boguski M, Spencer F (2000) XREFdb: cross-referencing the genetics and genes of mammals and model organisms. Nucleic Acids Res 28:120–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Powers T (2007) TOR signaling and S6 kinase 1: Yeast catches up. Cell Metab 6:1–2

    CAS  PubMed  Google Scholar 

  • Powers RW 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richie JP, Leutzinger Y, Parthasarathy S, Malloy V, Orentreich N, Zimmerman JA (1994) Methionine restriction increases blood glutathione and longevity in F344 rats. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 8, 1302–1307

    Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizki G, Iwata TN, Li J, Riedel CG, Picard CL, Jan M, Murphy CT, Lee SS (2011) The evolutionarily conserved longevity determinants HCF-1 and SIR-2.1/SIRT1 collaborate to regulate DAF-16/FOXO. PLoS Genet 7:e1002235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97:5984–5988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rothermel BA, Shyjan AW, Etheredge JL, Butow RA (1995) Transactivation by Rtg1p, a basic helix-loop-helix protein that functions in communication between mitochondria and the nucleus in yeast. J Biol Chem 270:29476–29482

    CAS  PubMed  Google Scholar 

  • Rothermel BA, Thornton JL, Butow RA (1997) Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 272:19801–19807

    CAS  PubMed  Google Scholar 

  • Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin A (2013) Identification of PrP sequences essential for the interaction between the PrP polymers and Abeta peptide in a yeast-based assay. Prion 7:469–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kam**a HH (2006) Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 4:e417

    PubMed Central  PubMed  Google Scholar 

  • Saka K, Ide S, Ganley AR, Kobayashi T (2013) Cellular senescence in yeast is regulated by rDNA noncoding transcription. Curr Biol 23:1794–1798

    CAS  PubMed  Google Scholar 

  • Santangelo GM (2006) Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:253–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nystrom T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105

    CAS  PubMed  Google Scholar 

  • Scheckhuber CQ, Wanger RA, Mignat CA, Osiewacz HD (2011) Unopposed mitochondrial fission leads to severe lifespan shortening. Cell cycle 10, 3105-3110.

    Google Scholar 

  • Sedensky MM, Morgan PG (2006) Mitochondrial respiration and reactive oxygen species in C. elegans. Exp Gerontol 41:957–967

    CAS  PubMed  Google Scholar 

  • Seichertova O, Beran K, Holan Z, Pokorny V (1975) The chitin-glucan complex of Saccharomyces cerevisiae III. Electron-microscopic study of the prebudding stage. Folia Microbiol (Praha) 20:371–378

    CAS  Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    CAS  PubMed  Google Scholar 

  • Shama S, Lai CY, Antoniazzi JM, Jiang JC, Jazwinski SM (1998) Heat stress-induced life span extension in yeast. Exp Cell Res 245:379–388

    CAS  PubMed  Google Scholar 

  • Sharma PK, Agrawal V, Roy N (2011) Mitochondria-mediated hormetic response in life span extension of calorie-restricted Saccharomyces cerevisiae. Age 33:143–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shawi M, Autexier C (2008) Telomerase, senescence and ageing. Mech Ageing Dev 129:3–10

    CAS  PubMed  Google Scholar 

  • Shringarpure R, Davies KJ (2002) Protein turnover by the proteasome in aging and disease. Free Radic Biol Med 32:1084–1089

    CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91:1033–1042

    CAS  PubMed  Google Scholar 

  • Smeal T, Claus J, Kennedy B, Cole F, Guarente L (1996) Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84:633–642

    CAS  PubMed  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254

    CAS  PubMed  Google Scholar 

  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C et al (2000) A phylogenetically conserved NAD + −dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci U S A 97:6658–6663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smith DL Jr, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6:649–662

    CAS  PubMed  Google Scholar 

  • Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL et al (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stan R, McLaughlin MM, Cafferkey R, Johnson RK, Rosenberg M, Livi GP (1994) Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J Biol Chem 269:32027–32030

    CAS  PubMed  Google Scholar 

  • Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN et al (2008) Yeast life span extension by depletion of 60s ribosomal subunits is mediated by Gcn4. Cell 133:292–302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steffen KK, Kennedy BK, Kaeberlein M (2009) Measuring replicative life span in the budding yeast. J Vis Exp (28). pii:1209

    Google Scholar 

  • Steffen KK, McCormick MA, Pham KM, MacKay VL, Delaney JR, Murakami CJ, Kaeberlein M, Kennedy BK (2012) Ribosome deficiency protects against ER stress in Saccharomyces cerevisiae. Genetics 191:107–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stockl P, Zankl C, Hutter E, Unterluggauer H, Laun P, Heeren G, Bogengruber E, Herndler-Brandstetter D, Breitenbach M, Jansen-Durr P (2007) Partial uncoupling of oxidative phosphorylation induces premature senescence in human fibroblasts and yeast mother cells. Free Radic Biol Med 43:947–958

    PubMed  Google Scholar 

  • Stumpferl SW, Brand SE, Jiang JC, Korona B, Tiwari A, Dai J, Seo JG, Jazwinski SM (2012) Natural genetic variation in yeast longevity. Genome Res 22:1963–1973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suen DF, Norris KL, Youle RJ (2008) Mitochondrial dynamics and apoptosis. Genes Dev 22:1577–1590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun J, Kale SP, Childress AM, Pinswasdi C, Jazwinski SM (1994) Divergent roles for RAS1 and RAS2 in yeast longevity. J Biol Chem 269:18638–18645

    CAS  PubMed  Google Scholar 

  • Tate JJ, Cooper TG (2003) Tor1/2 regulation of retrograde gene expression in Saccharomyces cerevisiae derives indirectly as a consequence of alterations in ammonia metabolism. J Biol Chem 278:36924–36933

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenreiro S, Munder MC, Alberti S, Outeiro TF (2013) Harnessing the power of yeast to unravel the molecular basis of neurodegeneration. J Neurochem 127:438–452

    CAS  PubMed  Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790

    CAS  PubMed  Google Scholar 

  • Thorpe PH, Bruno J, Rothstein R (2008) Modeling stem cell asymmetry in yeast. Cold Spring Harb Symp Quant Biol 73:81–88

    CAS  PubMed  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7:1371–1377

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987b) Three different genes in S. cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 50:277–287

    CAS  PubMed  Google Scholar 

  • Traven A, Wong JM, Xu D, Sopta M, Ingles CJ (2001) Interorganellar communication. Altered nuclear gene expression profiles in a yeast mitochondrial DNA mutant. J Biol Chem 276:4020–4027

    CAS  PubMed  Google Scholar 

  • Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, Kaeberlein M (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5:505–514

    CAS  PubMed  Google Scholar 

  • Urban J, Soulard A, Huber A, Lippman S, Mukhopadhyay D, Deloche O, Wanke V, Anrather D, Ammerer G, Riezman H et al (2007) Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol Cell 26:663–674

    CAS  PubMed  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879

    PubMed  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C elegans. Nature 426:620

    CAS  PubMed  Google Scholar 

  • Vernace VA, Schmidt-Glenewinkel T, Figueiredo-Pereira ME (2007) Aging and regulated protein degradation: who has the UPPer hand? Aging Cell 6:599–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vilchez D, Morantte I, Liu Z, Douglas PM, Merkwirth C, Rodrigues AP, Manning G, Dillin A (2012) RPN-6 determines C. elegans longevity under proteotoxic stress conditions. Nature 489:263–268

    CAS  PubMed  Google Scholar 

  • Viswanathan M, Guarente L (2011) Regulation of Caenorhabditis elegans lifespan by sir-2.1 transgenes. Nature 477:E1–E2

    CAS  PubMed  Google Scholar 

  • Walsh RB, Kawasaki G, Fraenkel DG (1983) Cloning of genes that complement yeast hexokinase and glucokinase mutants. J Bacteriol 154:1002–1004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang DY, Kumar S, Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci 266:163–171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei M, Fabrizio P, Madia F, Hu J, Ge H, Li LM, Longo VD (2009) Tor1/Sch9-regulated carbon source substitution is as effective as calorie restriction in life span extension. PLoS Genet 5:e1000467

    PubMed Central  PubMed  Google Scholar 

  • Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654

    CAS  PubMed  Google Scholar 

  • Westermann B (2010) Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 11:872–884

    CAS  PubMed  Google Scholar 

  • Wierman MB, Smith JS (2014) Yeast sirtuins and the regulation of aging. FEMS Yeast Res 14(1):73–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ (2003) Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302:1769–1772

    CAS  PubMed  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    CAS  PubMed  Google Scholar 

  • Wu Z, Song L, Liu SQ, Huang D (2011) A high throughput screening assay for determination of chronological lifespan of yeast. Exp Gerontol 46:915–922

    CAS  PubMed  Google Scholar 

  • Wu Z, Song L, Liu SQ, Huang D (2014) Tanshinones extend chronological lifespan in budding yeast Saccharomyces cerevisiae. Applied microbiology and biotechnology 98, 8617-8628

    Google Scholar 

  • ** of aging in single yeast cells using a novel microfluidic device. Aging Cell 11:599–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang W, Hekimi S (2010) A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 8:e1000556

    PubMed Central  PubMed  Google Scholar 

  • Yang J, Dungrawala H, Hua H, Manukyan A, Abraham L, Lane W, Mead H, Wright J, Schneider BL (2011) Cell size and growth rate are major determinants of replicative lifespan. Cell Cycle 10:144–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yao Y, Tsuchiyama S, Yang C, Bulteau AL, He C, Robison B, Tsuchiya M, Miller D, Briones V, Tar K et al (2015) Proteasomes, Sir2, and Hxk2 form an interconnected aging network that im**es on the AMPK/Snf1-regulated transcriptional repressor Mig1. PLoS genetics 11, e1004968.

    Google Scholar 

  • Yizhak K, Gabay O, Cohen H, Ruppin E (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632

    PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S et al (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    CAS  PubMed  Google Scholar 

  • Zhang Y, Luo C, Zou K, **e Z, Brandman O, Ouyang Q, Li H (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS One 7:e48275

    PubMed Central  PubMed  Google Scholar 

  • Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82:121–130

    CAS  PubMed  Google Scholar 

  • Zhou C, Slaughter BD, Unruh JR, Eldakak A, Rubinstein B, Li R (2011) Motility and segregation of Hsp104-associated protein aggregates in budding yeast. Cell 147:1186–1196

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian K. Kennedy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

He, C., Kennedy, B.K. (2015). Aging in the Single-Celled Eukaryote, S. cerevisiae . In: Geiger, H., Jasper, H., Florian, M. (eds) Stem Cell Aging: Mechanisms, Consequences, Rejuvenation. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1232-8_2

Download citation

Publish with us

Policies and ethics

Navigation