Oxidative Coupling Reactions Between Hydrocarbons and Organometallic Reagents (The Second Generation)

  • Chapter
  • First Online:
Transition Metal Catalyzed Oxidative Cross-Coupling Reactions

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 102))

  • 966 Accesses

Abstract

The development of new methods which enable the functionalization of C–H bonds is an important challenge to the continued advance of chemical synthesis. In recent years, by viewing C–H bonds as “nucleophiles”, the merge of C–H functionalization with oxidative cross-coupling reactions opens a new chapter in organic synthesis with many exciting opportunities. This chapter summarizes the developments and advancements in the emerging area of oxidative coupling reactions between hydrocarbons and various organometallic reagents (the second-generation oxidative couplings). The structure of this chapter is organized by the hybridization of the C–H bonds, as well as the differences between organometallic reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 129.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dyker G (ed) (2005) Handbook of C-H transformations: applications in organic synthesis, vol 2. Wiley-VCH, Weinheim

    Google Scholar 

  2. Wencel-Delord J, Glorius F (2013) C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5(5):369–375

    Article  CAS  PubMed  Google Scholar 

  3. McMurray L, O'Hara F, Gaunt MJ (2011) Recent developments in natural product synthesis using metal-catalysed C-H bond functionalisation. Chem Soc Rev 40(4):1885–1898

    Article  CAS  PubMed  Google Scholar 

  4. Yamaguchi J, Yamaguchi AD, Itami K (2012) C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew Chem Int Ed 51(36):8960–9009

    Article  CAS  Google Scholar 

  5. Gutekunst WR, Baran PS (2011) C-H functionalization logic in total synthesis. Chem Soc Rev 40(4):1976–1991

    Article  CAS  PubMed  Google Scholar 

  6. Luo FT, Wang RT (1993) A novel synthesis of cyanoalkynes via iodide-catalyzed cyanation of terminal acetylenes with cuprous cyanide. Tetrahedron Lett 34(37):5911–5914

    Article  CAS  Google Scholar 

  7. Luo F-T, Wang M-W, Wang RT (1998) Preparation of cyanoalkynes: 3-phenyl-2-propynenitrile (2-propynenitrile, 3-phenyl-). Org Synth 75:146–152

    Article  CAS  Google Scholar 

  8. Cheng Z-Y, Li W-J, He F, Zhou J-M, Zhu X-F (2007) Synthesis and biological evaluation of 4-aryl-5-cyano-2H-1,2,3-triazoles as inhibitor of HER2 tyrosine kinase. Bioorg Med Chem 15(3):1533–1538

    Article  CAS  PubMed  Google Scholar 

  9. Chen M, Zheng X, Li W, He J, Lei A (2010) Palladium-catalyzed aerobic oxidative cross-coupling reactions of terminal alkynes with alkylzinc reagents. J Am Chem Soc 132(12):4101–4103

    Article  CAS  PubMed  Google Scholar 

  10. Fairlamb IJS (2008) π-Acidic alkene ligand effects in Pd-catalysed cross-coupling processes: exploiting the interaction of dibenzylidene acetone (dba) and related ligands with Pd(0) and Pd(ii). Org Biomol Chem 6(20):3645–3656

    Article  CAS  PubMed  Google Scholar 

  11. Li H-M, Xu C, Duan L-M, Lou X-H, Wang Z-Q, Li Z, Fan Y-T (2013) N-heterocyclic carbene adducts of cyclopalladated ferrocenylpyridine containing chloride or iodide anions: synthesis, crystal structures and application in the coupling of terminal alkynes with arylboronic acids. Transit Met Chem 38(3):313–318

    Article  CAS  Google Scholar 

  12. Li L, Nan C, Peng Q, Li Y (2012) Selective synthesis of Cu2O nanocrystals as shape-dependent catalysts for oxidative arylation of phenylacetylene. Chem Eur J 18(34):10491–10496

    Article  CAS  PubMed  Google Scholar 

  13. Lu L, Chellan P, Smith GS, Zhang X, Yan H, Mao J (2014) Thiosemicarbazone salicylaldiminato palladium(II)-catalyzed alkynylation couplings between arylboronic acids and alkynes or alkynyl carboxylic acids. Tetrahedron 70(35):5980–5985

    Article  CAS  Google Scholar 

  14. Mitsudo K, Shiraga T, J-i M, Suga S, Tanaka H (2010) Electrochemical generation of silver acetylides from terminal alkynes with a Ag anode and integration into sequential Pd-catalyzed coupling with arylboronic acids. Chem Commun 46(48):9256–9258

    Article  CAS  Google Scholar 

  15. Nie X, Liu S, Zong Y, Sun P, Bao J (2011) Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes. J Organomet Chem 696(8):1570–1573

    Article  CAS  Google Scholar 

  16. Pan C, Luo F, Wang W, Ye Z, Cheng J (2009) Ligand-free copper(I)-catalyzed Sonogashira-type coupling of arylboronic acids with terminal alkynes. Tetrahedron Lett 50(35):5044–5046

    Article  CAS  Google Scholar 

  17. Truong T, Nguyen CK, Tran TV, Nguyen TT, Phan NTS (2014) Nickel-catalyzed oxidative coupling of alkynes and arylboronic acids using the metal-organic framework Ni2(BDC)2(DABCO) as an efficient heterogeneous catalyst. Cat Sci Technol 4(5):1276–1285

    Article  CAS  Google Scholar 

  18. Yang F, Wu Y (2007) Facile synthesis of substituted alkynes by cyclopalladated ferrocenylimine catalyzed cross-coupling of arylboronic acids/esters with terminal alkynes. Eur J Org Chem 2007(21):3476–3479

    Article  CAS  Google Scholar 

  19. Yasukawa T, Miyamura H, Kobayashi S (2011) Copper-catalyzed, aerobic oxidative cross-coupling of alkynes with arylboronic acids: remarkable selectivity in 2,6-lutidine media. Org Biomol Chem 9(18):6208–6210

    Article  CAS  PubMed  Google Scholar 

  20. Zhou M-B, Wei W-T, **e Y-X, Lei Y, Li J-H (2010) Palladium-catalyzed cross-coupling of electron-poor terminal alkynes with arylboronic acids under ligand-free and aerobic conditions. J Org Chem 75(16):5635–5642

    Article  CAS  PubMed  Google Scholar 

  21. Zou G, Zhu J, Tang J (2003) Cross-coupling of arylboronic acids with terminal alkynes in air. Tetrahedron Lett 44(48):8709–8711

    Article  CAS  Google Scholar 

  22. Chu L, Qing F-L (2010) Copper-mediated aerobic oxidative trifluoromethylation of terminal alkynes with Me3SiCF3. J Am Chem Soc 132(21):7262–7263

    Article  CAS  PubMed  Google Scholar 

  23. Arndtsen BA, Bergman RG, Mobley TA, Peterson TH (1995) Selective intermolecular carbon-hydrogen bond activation by synthetic metal complexes in homogeneous solution. Acc Chem Res 28(3):154–162

    Article  CAS  Google Scholar 

  24. Crabtree RH (2003) C-H Activation approaches for the application of molecular recognition to organometallic chemistry and homogeneous catalysis. Dalton Trans 21:3985–3990

    Article  Google Scholar 

  25. Dyker G (1999) Transition metal catalyzed coupling reactions under C-H activation. Angew Chem Int Ed 38(12):1699–1712

    Article  CAS  Google Scholar 

  26. Godula K, Sames D (2006) C-H bond functionalization in complex organic synthesis. Science 312(5770):67–72

    Article  CAS  PubMed  Google Scholar 

  27. Labinger JA, Bercaw JE (2002) Understanding and exploiting C-H bond activation. Nature 417(6888):507–514

    Article  CAS  PubMed  Google Scholar 

  28. Ritleng V, Sirlin C, Pfeffer M (2002) Ru-, Rh-, and Pd-catalyzed C-C bond formation involving C-H Activation and addition on unsaturated substrates: reactions and mechanistic aspects. Chem Rev 102(5):1731–1769

    Article  CAS  PubMed  Google Scholar 

  29. Shilov AE, Shul'pin GB (1997) Activation of C-H bonds by metal complexes. Chem Rev 97(8):2879–2932

    Article  CAS  PubMed  Google Scholar 

  30. Ryabov AD (1990) Mechanisms of intramolecular activation of carbon-hydrogen bonds in transition-metal complexes. Chem Rev 90(2):403–424

    Article  CAS  Google Scholar 

  31. Hartwig JF (2008) Carbon-heteroatom bond formation catalysed by organometallic complexes. Nature 455(7211):314–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bergman RG (2007) Organometallic chemistry: C-H activation. Nature 446(7134):391–393

    Article  CAS  PubMed  Google Scholar 

  33. Engle KM, Yu J-Q, Davies HML, ** Z, You S-L, Shi Z-J (2012) Transition metal-catalyzed C-H functionalization: synthetically enabling reactions for building molecular complexity. In: Organic chemistry – breakthroughs and perspectives. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 279–333

    Chapter  Google Scholar 

  34. Ackermann L (2014) Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations. Acc Chem Res 47(2):281–295

    Article  CAS  PubMed  Google Scholar 

  35. Daugulis O, Do H-Q, Shabashov D (2009) Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc Chem Res 42(8):1074–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jia C, Kitamura T, Fujiwara Y (2001) Catalytic functionalization of arenes and alkanes via C-H bond activation. Acc Chem Res 34(8):633–639

    Article  CAS  PubMed  Google Scholar 

  37. Chen X, Engle KM, Wang D-H, Yu J-Q (2009) Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48(28):5094–5115

    Article  CAS  Google Scholar 

  38. Rouquet G, Chatani N (2013) Catalytic functionalization of C(sp2)-H and C(sp3)-H bonds by using bidentate directing groups. Angew Chem Int Ed 52(45):11726–11743

    Article  CAS  Google Scholar 

  39. Colby DA, Bergman RG, Ellman JA (2010) Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem Rev 110(2):624–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lyons TW, Sanford MS (2010) Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem Rev 110(2):1147–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mkhalid IAI, Barnard JH, Marder TB, Murphy JM, Hartwig JF (2010) C-H activation for the construction of C-B bonds. Chem Rev 110(2):890–931

    Article  CAS  PubMed  Google Scholar 

  42. Ackermann L (2011) Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations: mechanism and scope. Chem Rev 111(3):1315–1345

    Article  CAS  PubMed  Google Scholar 

  43. Davies HML, Du Bois J, Yu J-Q (2011) C-H functionalization in organic synthesis. Chem Soc Rev 40(4):1855–1856

    Article  CAS  PubMed  Google Scholar 

  44. Beck EM, Gaunt MJ (2010) Pd-catalyzed C-H bond functionalization on the indole and pyrrole nucleus. Top Curr Chem 292(C-H Activation):85–121

    CAS  PubMed  Google Scholar 

  45. Su Y, Jiao N (2011) Palladium-catalyzed oxidative Heck reaction. Curr Org Chem 15(18):3362–3388

    Article  CAS  Google Scholar 

  46. Karimi B, Behzadnia H, Elhamifar D, Akhavan PF, Esfahani FK, Zamani A (2010) Transition-metal-catalyzed oxidative Heck reactions. Synthesis 2010(9):1399–1427

    Article  CAS  Google Scholar 

  47. Oi S, Fukita S, Inoue Y (1998) Rhodium-catalyzed direct ortho arylation of 2-arylpyridines with arylstannanes via C-H activation. Chem Commun 22:2439–2440

    Article  Google Scholar 

  48. Peterson AA, McNeill K (2006) Catalytic dehalogenation of sp2 C-F and C-Cl bonds in Fluoro- and chloroalkenes. Organometallics 25(21):4938–4940

    Article  CAS  Google Scholar 

  49. Kawai H, Kobayashi Y, Oi S, Inoue Y (2008) Direct C-H bond arylation of arenes with aryltin reagents catalysed by palladium complexes. Chem Commun 12:1464–1466

    Article  CAS  Google Scholar 

  50. Chen X, Li J-J, Hao X-S, Goodhue CE, Yu J-Q (2006) Palladium-catalyzed alkylation of aryl C-H bonds with sp3 organotin reagents using benzoquinone as a crucial promoter. J Am Chem Soc 128(1):78–79

    Article  CAS  PubMed  Google Scholar 

  51. Sloan OD, Thornton P (1986) Mixed copper(II)-palladium(II) acetates. Inorg Chim Acta 120(2):173–175

    Article  CAS  Google Scholar 

  52. Kumaraswamy G, Murthy AN, Pitchaiah A (2010) FeCl3-catalyzed Oxidative allylation of sp2 and sp3 C-H bond adjacent to a nitrogen atom: easy access to homoallyl tertiary amines. J Org Chem 75(11):3916–3919

    Article  CAS  PubMed  Google Scholar 

  53. Kakiuchi F, Kan S, Igi K, Chatani N, Murai S (2003) A ruthenium-catalyzed reaction of aromatic ketones with arylboronates: a new method for the arylation of aromatic compounds via C-H bond cleavage. J Am Chem Soc 125(7):1698–1699

    Article  CAS  PubMed  Google Scholar 

  54. Kakiuchi F, Matsuura Y, Kan S, Chatani N (2005) A RuH2(CO)(PPh3)3-catalyzed regioselective arylation of aromatic ketones with arylboronates via carbon-hydrogen bond cleavage. J Am Chem Soc 127(16):5936–5945

    Article  CAS  PubMed  Google Scholar 

  55. Chen X, Goodhue CE, Yu J-Q (2006) Palladium-catalyzed alkylation of sp2 and sp3 C-H bonds with methylboroxine and alkylboronic acids: two distinct C-H activation pathways. J Am Chem Soc 128(39):12634–12635

    Article  CAS  PubMed  Google Scholar 

  56. Wang D-H, Mei T-S, Yu J-Q (2008) Versatile Pd(II)-catalyzed C-H activation/Aryl-Aryl coupling of benzoic and phenyl acetic acids. J Am Chem Soc 130(52):17676–17677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Engle KM, Yu J-Q (2013) Develo** ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate. J Org Chem 78(18):8927–8955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Musaev DG, Figg TM, Kaledin AL (2014) Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand and cesium-halide base in Pd-catalyzed C-H bond functionalization. Chem Soc Rev 43(14):5009–5031

    Article  CAS  PubMed  Google Scholar 

  59. Shi B-F, Maugel N, Zhang Y-H, Yu J-Q (2008) PdII-catalyzed enantioselective activation of C(sp2)-H and C(sp3)-H bonds using monoprotected amino acids as chiral ligands. Angew Chem Int Ed 47(26):4882–4886

    Article  CAS  Google Scholar 

  60. Laforteza BN, Chan KSL, Yu J-Q (2015) Enantioselective ortho-C-H cross-coupling of diarylmethylamines with organoborons. Angew Chem Int Ed 54(38):11143–11146

    Article  CAS  Google Scholar 

  61. Gao D-W, Shi Y-C, Gu Q, Zhao Z-L, You S-L (2013) Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids. J Am Chem Soc 135(1):86–89

    Article  CAS  PubMed  Google Scholar 

  62. Du Z-J, Guan J, Wu G-J, Xu P, Gao L-X, Han F-S (2015) Pd(II)-catalyzed enantioselective synthesis of P-stereogenic phosphinamides via desymmetric C-H arylation. J Am Chem Soc 137(2):632–635

    Article  CAS  PubMed  Google Scholar 

  63. Shi Z, Li B, Wan X, Cheng J, Fang Z, Cao B, Qin C, Wang Y (2007) Suzuki-Miyaura coupling reaction by PdII-catalyzed aromatic C-H bond activation directed by an N-alkyl acetamino group. Angew Chem Int Ed 46(29):5554–5558

    Article  CAS  Google Scholar 

  64. Sun C-L, Liu N, Li B-J, Yu D-G, Wang Y, Shi Z-J (2010) Pd-catalyzed C-H functionalizations of O-methyl oximes with arylboronic acids. Org Lett 12(1):184–187

    Article  CAS  PubMed  Google Scholar 

  65. Chu J-H, Chen C-C, Wu M-J (2008) Palladium-catalyzed arylation and alkylation of 3,5-diphenylisoxazole with boronic acids via C-H activation. Organometallics 27(20):5173–5176

    Article  CAS  Google Scholar 

  66. Kirchberg S, Vogler T, Studer A (2008) Directed palladium-catalyzed oxidative C-H arylation of (hetero)arenes with arylboronic acids by using TEMPO. Synlett 18:2841–2845

    Google Scholar 

  67. Yang S-D, Sun C-L, Fang Z, Li B-J, Li Y-Z, Shi Z-J (2008) Palladium-catalyzed direct arylation of (hetero)arenes with aryl boronic acids. Angew Chem Int Ed 47(8):1473–1476

    Article  CAS  Google Scholar 

  68. Mochida K, Kawasumi K, Segawa Y, Itami K (2011) Direct arylation of polycyclic aromatic hydrocarbons through palladium catalysis. J Am Chem Soc 133(28):10716–10719

    Article  CAS  PubMed  Google Scholar 

  69. Kirchberg S, Tani S, Ueda K, Yamaguchi J, Studer A, Itami K (2011) Oxidative biaryl coupling of thiophenes and thiazoles with arylboronic acids through palladium catalysis: otherwise difficult C4-selective C-H arylation enabled by boronic acids. Angew Chem Int Ed 50(10):2387–2391

    Article  CAS  Google Scholar 

  70. Wei Y, Kan J, Wang M, Su W, Hong M (2009) Palladium-catalyzed direct arylation of electron-deficient polyfluoroarenes with arylboronic acids. Org Lett 11(15):3346–3349

    Article  CAS  PubMed  Google Scholar 

  71. Demir AS, Reis O, Emrullahoglu M (2003) Generation of aryl radicals from arylboronic acids by manganese(III) acetate: synthesis of biaryls and heterobiaryls. J Org Chem 68(2):578–580

    Article  CAS  PubMed  Google Scholar 

  72. Ban I, Sudo T, Taniguchi T, Itami K (2008) Copper-mediated C-H bond arylation of arenes with arylboronic acids. Org Lett 10(16):3607–3609

    Article  CAS  PubMed  Google Scholar 

  73. Wen J, Zhang J, Chen S-Y, Li J, Yu X-Q (2008) Iron-mediated direct arylation of unactivated arenes. Angew Chem Int Ed 47(46):8897–8900

    Article  CAS  Google Scholar 

  74. Wen J, Qin S, Ma L-F, Dong L, Zhang J, Liu S-S, Duan Y-S, Chen S-Y, Hu C-W, Yu X-Q (2010) Iron-mediated direct Suzuki-Miyaura reaction: a new method for the ortho-arylation of pyrrole and pyridine. Org Lett 12(12):2694–2697

    Article  CAS  PubMed  Google Scholar 

  75. Uchiyama N, Shirakawa E, Nishikawa R, Hayashi T (2011) Iron-catalyzed oxidative coupling of arylboronic acids with benzene derivatives through homolytic aromatic substitution. Chem Commun 47(42):11671–11673

    Article  CAS  Google Scholar 

  76. Hachiya H, Hirano K, Satoh T, Miura M (2010) Oxidative nickel-air catalysis in C-arylation: direct cross-coupling of azoles with arylboronic acids using air as sole oxidant. ChemCatChem 2(11):1403–1406

    Article  CAS  Google Scholar 

  77. Liu D, Liu C, Lei A (2014) Nickel-catalyzed oxidative cross-coupling of arylboronic acids with olefins. Pure and App Chem 86(3):321–328

    Article  CAS  Google Scholar 

  78. Yang S, Li B, Wan X, Shi Z (2007) Ortho arylation of acetanilides via Pd(II)-catalyzed C-H functionalization. J Am Chem Soc 129(19):6066–6067

    Article  CAS  PubMed  Google Scholar 

  79. Zhou H, Xu Y-H, Chung W-J, Loh T-P (2009) Palladium-catalyzed direct arylation of cyclic enamides with aryl silanes by sp2 C-H activation. Angew Chem Int Ed 48(29):5355–5357

    Article  CAS  Google Scholar 

  80. Hachiya H, Hirano K, Satoh T, Miura M (2010) Nickel-catalyzed direct C-H arylation and alkenylation of heteroarenes with organosilicon reagents. Angew Chem Int Ed 49(12):2202–2205

    Article  CAS  Google Scholar 

  81. Liang Z, Yao B, Zhang Y (2010) Pd(OAc)2-catalyzed regioselective arylation of indoles with arylsiloxane in acidic medium. Org Lett 12(14):3185–3187

    Article  CAS  PubMed  Google Scholar 

  82. Funaki K, Sato T, Oi S (2012) Pd-catalyzed β-selective direct C-H bond arylation of thiophenes with aryltrimethylsilanes. Org Lett 14(24):6186–6189

    Article  CAS  PubMed  Google Scholar 

  83. Chu L, Qing F-L (2012) Copper-catalyzed direct C-H oxidative trifluoromethylation of heteroarenes. J Am Chem Soc 134(2):1298–1304

    Article  CAS  PubMed  Google Scholar 

  84. Shang M, Sun S-Z, Wang H-L, Laforteza BN, Dai H-X, Yu J-Q (2014) Exceedingly fast copper(II)-promoted ortho C-H trifluoromethylation of arenes using TMSCF3. Angew Chem Int Ed 53(39):10439–10442

    Article  CAS  Google Scholar 

  85. Nakamura E, Yoshikai N (2010) Low-valent iron-catalyzed C-C bond formation-addition, substitution, and C-H bond activation. J Org Chem 75(18):6061–6067

    Article  CAS  PubMed  Google Scholar 

  86. Norinder J, Matsumoto A, Yoshikai N, Nakamura E (2008) Iron-catalyzed direct arylation through directed C-H bond activation. J Am Chem Soc 130(18):5858–5859

    Article  CAS  PubMed  Google Scholar 

  87. Yoshikai N, Matsumoto A, Norinder J, Nakamura E (2009) Iron-catalyzed chemoselective ortho arylation of aryl imines by directed C-H bond activation. Angew Chem Int Ed 48(16):2925–2928

    Article  CAS  Google Scholar 

  88. Yoshikai N, Matsumoto A, Norinder J, Nakamura E (2010) Iron-catalyzed direct arylation of aryl pyridines and imines using oxygen as an oxidant. Synlett 2:313–316

    Google Scholar 

  89. Shang R, Ilies L, Nakamura E (2017) Iron-catalyzed C-H bond activation. Chem Rev 117(13):9086–9139

    Article  CAS  PubMed  Google Scholar 

  90. Ilies L, Okabe J, Yoshikai N, Nakamura E (2010) Iron-catalyzed, directed oxidative arylation of olefins with organozinc and Grignard reagents. Org Lett 12(12):2838–2840

    Article  CAS  PubMed  Google Scholar 

  91. Ilies L, Asako S, Nakamura E (2011) Iron-catalyzed stereospecific activation of olefinic C-H bonds with Grignard reagent for synthesis of substituted olefins. J Am Chem Soc 133(20):7672–7675

    Article  CAS  PubMed  Google Scholar 

  92. Li B, Wu Z-H, Gu Y-F, Sun C-L, Wang B-Q, Shi Z-J (2011) Direct cross-coupling of C-H bonds with Grignard reagents through cobalt catalysis. Angew Chem Int Ed 50(5):1109–1113

    Article  CAS  Google Scholar 

  93. Do H-Q, Daugulis O (2010) Copper-catalyzed cyanation of heterocycle carbon-hydrogen bonds. Org Lett 12(11):2517–2519

    Article  CAS  PubMed  Google Scholar 

  94. Zhang Z (2009) Comprehensive Organic Name Reactions and Reagents. Wiley-VCH, Weinheim

    Google Scholar 

  95. Yudin AK (2010) Catalyzed Carbon-Heteroatom Bond Formation. Wiley-VCH, Weinheim

    Book  Google Scholar 

  96. Ley SV, Thomas AW (2003) Modern synthetic methods for copper-mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S bond formation. Angew Chem Int Ed 42(44):5400–5449

    Article  CAS  Google Scholar 

  97. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) C-C, C-O, C-N bond formation on sp2 carbon by palladium(II)-catalyzed reactions involving oxidant agents. Chem Rev 107(11):5318–5365

    Article  CAS  PubMed  Google Scholar 

  98. Liu C, Zhang H, Shi W, Lei A (2011) Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. Chem Rev 111(3):1780–1824

    Article  CAS  PubMed  Google Scholar 

  99. Podgorsek A, Zupan M, Iskra J (2009) Oxidative halogenation with “green” oxidants: oxygen and hydrogen peroxide. Angew Chem Int Ed 48(45):8424–8450

    Article  CAS  Google Scholar 

  100. Chen X, Hao X-S, Goodhue CE, Yu J-Q (2006) Cu(II)-catalyzed functionalizations of aryl C-H bonds using O2 as an oxidant. J Am Chem Soc 128(21):6790–6791

    Article  CAS  PubMed  Google Scholar 

  101. Wang D-H, Hao X-S, Wu D-F, Yu J-Q (2006) Palladium-catalyzed oxidation of Boc-protected N-methylamines with IOAc as the oxidant: A Boc-directed sp3 C-H bond activation. Org Lett 8(15):3387–3390

    Article  CAS  PubMed  Google Scholar 

  102. Bedford RB, Engelhart JU, Haddow MF, Mitchell CJ, Webster RL (2010) Solvent-free aromatic C-H functionalization/halogenation reactions. Dalton Trans 39(43):10464–10472

    Article  CAS  PubMed  Google Scholar 

  103. Song B, Zheng X, Mo J, Xu B (2010) Palladium-catalyzed monoselective halogenation of C-H bonds: efficient access to halogenated arylpyrimidines using calcium halides. Adv Synth Catal 352(2+3):329–335

    Article  CAS  Google Scholar 

  104. Lu Y, Wang R, Qiao X, Shen Z (2011) Copper-catalyzed aromatic C-H bond halogenation using lithium halides as halogenating reagents. Synlett 7:1038–1042

    Google Scholar 

  105. Mo S, Zhu Y, Shen Z (2013) Copper-catalyzed aromatic C-H bond halogenation with lithium halides under aerobic conditions. Org Biomol Chem 11(17):2756–2760

    Article  CAS  PubMed  Google Scholar 

  106. Daugulis O, Roane J, Tran LD (2015) Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds. Acc Chem Res 48(4):1053–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Truong T, Klimovica K, Daugulis O (2013) Copper-catalyzed, directing group-assisted fluorination of arene and heteroarene C-H bonds. J Am Chem Soc 135(25):9342–9345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Sun C-L, Li B-J, Shi Z-J (2010) Pd-catalyzed oxidative coupling with organometallic reagents via C-H activation. Chem Commun 46(5):677–685

    Article  CAS  Google Scholar 

  109. Yan G, Jiang Y, Kuang C, Wang S, Liu H, Zhang Y, Wang J (2010) Nano-Fe2O3-catalyzed direct borylation of arenes. Chem Commun 46(18):3170–3172

    Article  CAS  Google Scholar 

  110. Dai H-X, Yu J-Q (2012) Pd-catalyzed oxidative ortho-C-H borylation of arenes. J Am Chem Soc 134(1):134–137

    Article  CAS  PubMed  Google Scholar 

  111. Li H, Li B-J, Shi Z-J (2011) Challenge and progress. Palladium-catalyzed sp3 C-H activation. Cat Sci Technol 1(2):191–206

    Article  CAS  Google Scholar 

  112. Hitce J, Retailleau P, Baudoin O (2007) Palladium-catalyzed intramolecular C(sp3)-H functionalization: catalyst development and synthetic applications. Chem Eur J 13(3):792–799

    Article  CAS  PubMed  Google Scholar 

  113. Wasa M, Engle KM, Yu J-Q (2010) Cross-coupling of C(sp3)-H bonds with organometallic reagents via Pd(II)/Pd(0) catalysis. Isr J Chem 50(5–6):605–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. He J, Wasa M, Chan KSL, Shao Q, Yu J-Q (2017) Palladium-catalyzed transformations of alkyl C-H bonds. Chem Rev 117(13):8754–8786

    Article  CAS  PubMed  Google Scholar 

  115. Zheng C, You S-L (2014) Recent developments of direct asymmetric functionalization of inert C-H bonds. RSC Adv 4(12):6173–6214

    Article  CAS  Google Scholar 

  116. S-l Y, **a J-B (2010) Palladium-catalyzed aryl-aryl bond formation through double C-H activation. Top Curr Chem 292(C-H Activation):165–194

    Google Scholar 

  117. Newton CG, Wang S-G, Oliveira CC, Cramer N (2017) Catalytic enantioselective transformations involving C-H bond cleavage by transition-metal complexes. Chem Rev 117(13):8908–8976

    Article  CAS  PubMed  Google Scholar 

  118. Giri R, Shi B-F, Engle KM, Maugel N, Yu J-Q (2009) Transition metal-catalyzed C-H activation reactions: diastereoselectivity and enantioselectivity. Chem Soc Rev 38(11):3242–3272

    Article  CAS  PubMed  Google Scholar 

  119. Shi W, Liu C, Lei A (2011) Transition-metal catalyzed oxidative cross-coupling reactions to form C-C bonds involving organometallic reagents as nucleophiles. Chem Soc Rev 40(5):2761–2776

    Article  CAS  PubMed  Google Scholar 

  120. Murahashi S, Komiya N, Terai H, Nakae T (2003) Aerobic ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide. J Am Chem Soc 125(50):15312–15313

    Article  CAS  PubMed  Google Scholar 

  121. Singhal S, Jain SL, Sain B (2010) Heterogeneously catalyzed oxidative cyanation of tertiary amines with sodium cyanide/hydrogen peroxide using polymer-supported iron(II) phthalocyanines as catalyst. Adv Synth Catal 352(8):1338–1344

    Article  CAS  Google Scholar 

  122. Lin A, Peng H, Abdukader A, Zhu C (2013) Rhenium-catalyzed oxidative cyanation of tertiary amines with TMSCN. Eur J Org Chem 2013(32):7286–7290

    Article  CAS  Google Scholar 

  123. Verma D, Verma S, Sinha AK, Jain SL (2013) Iron nanoparticles supported on graphene oxide: a robust, magnetically separable heterogeneous catalyst for the oxidative cyanation of tertiary amines. ChemPlusChem 78(8):860–865

    Article  CAS  PubMed  Google Scholar 

  124. Kumar P, Varma S, Jain SL (2014) A TiO2 immobilized Ru(ii) polyazine complex: a visible-light active photoredox catalyst for oxidative cyanation of tertiary amines. J Mater Chem A 2(13):4514–4519

    Article  CAS  Google Scholar 

  125. Panwar V, Kumar P, Bansal A, Ray SS, Jain SL (2015) PEGylated magnetic nanoparticles (PEG@Fe3O4) as cost effective alternative for oxidative cyanation of tertiary amines via C-H activation. Appl Catal, A 498:25–31

    Article  CAS  Google Scholar 

  126. Reddy KHV, Satish G, Reddy VP, Kumar BSPA, Nageswar YVD (2012) Recyclable Ru/C catalyzed oxidative cyanation of tertiary amines with TBHP. RSC Adv 2(29):11084–11088

    Article  CAS  Google Scholar 

  127. Verma S, Jain SL, Sain B (2011) Acetone cyanohydrin: a convenient alternative of toxic sodium cyanide/acetic acid for oxidative cyanation of tertiary amines. Catal Lett 141(6):882–885

    Article  CAS  Google Scholar 

  128. Panwar V, Ray SS, Jain SL (2015) Potassium ion cationized polyether cyanide [K+{PEG}CN-] as a novel cyanide source for oxidative cyanation of tertiary amines. Tetrahedron Lett 56(28):4184–4186

    Article  CAS  Google Scholar 

  129. Wagner A, Ofial AR (2015) Potassium thiocyanate as source of cyanide for the oxidative α-cyanation of tertiary amines. J Org Chem 80(5):2848–2854

    Article  CAS  PubMed  Google Scholar 

  130. Rue** M, Zhu S, Koenigs RM (2011) Visible-light photoredox catalyzed oxidative Strecker reaction. Chem Commun 47(47):12709–12711

    Article  CAS  Google Scholar 

  131. Shen H, Zhang X, Liu Q, Pan J, Hu W, **ong Y, Zhu X (2015) Direct oxidative cyanation of tertiary amines promoted by in situ generated hypervalent iodine(III)-CN intermediate. Tetrahedron Lett 56(41):5628–5631

    Article  CAS  Google Scholar 

  132. Han W, Ofial AR (2009) Iron catalyzed oxidative cyanation of tertiary amines. Chem Commun 33:5024–5026

    Article  CAS  Google Scholar 

  133. Li C-J (2009) Cross-Dehydrogenative Coupling (CDC): exploring C-C bond formations beyond functional group transformations. Acc Chem Res 42(2):335–344

    Article  CAS  PubMed  Google Scholar 

  134. Girard SA, Knauber T, Li C-J (2014) The cross-dehydrogenative coupling of Csp3-H bonds: a versatile strategy for C-C bond formations. Angew Chem Int Ed 53(1):74–100

    Article  CAS  Google Scholar 

  135. Basle O, Li C-J (2008) Copper-catalyzed oxidative sp3 C-H bond arylation with aryl boronic acids. Org Lett 10(17):3661–3663

    Article  CAS  PubMed  Google Scholar 

  136. Zhao L, Basle O, Li C-J (2009) Site-specific C-functionalization of free-(NH) peptides and glycine derivatives via direct C-H bond functionalization. Proc Natl Acad Sci U S A 106(11):4106–4111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu D, Liu C, Li H, Lei A (2013) Direct functionalization of tetrahydrofuran and 1,4-dioxane: nickel-catalyzed oxidative C(sp3)-H arylation. Angew Chem Int Ed 52(16):4453–4456

    Article  CAS  Google Scholar 

  138. Liu C, Liu D, Lei A (2014) Recent advances of transition-metal catalyzed radical oxidative cross-couplings. Acc Chem Res 47(12):3459–3470

    Article  CAS  PubMed  Google Scholar 

  139. Liu D, Li Y, Qi X, Liu C, Lan Y, Lei A (2015) Nickel-catalyzed selective oxidative radical cross-coupling: an effective strategy for inert Csp3-H functionalization. Org Lett 17(4):998–1001

    Article  CAS  PubMed  Google Scholar 

  140. Pastine SJ, Gribkov DV, Sames D (2006) sp(3) C-H bond arylation directed by amidine protecting group: alpha-arylation of pyrrolidines and piperidines. J Am Chem Soc 128:14220–14221

    Article  CAS  PubMed  Google Scholar 

  141. Giri R, Maugel N, Li J-J, Wang D-H, Breazzano SP, Saunders LB, Yu J-Q (2007) Palladium-catalyzed methylation and arylation of sp2 and sp3 C-H bonds in simple carboxylic acids. J Am Chem Soc 129(12):3510–3511

    Article  CAS  PubMed  Google Scholar 

  142. Wang D-H, Wasa M, Giri R, Yu J-Q (2008) Pd(II)-catalyzed cross-coupling of sp3 C-H bonds with sp2 and sp3 boronic acids using air as the oxidant. J Am Chem Soc 130(23):7190–7191

    Article  CAS  PubMed  Google Scholar 

  143. Wasa M, Engle KM, Lin DW, Yoo EJ, Yu J-Q (2011) Pd(II)-catalyzed enantioselective C-H activation of cyclopropanes. J Am Chem Soc 133(49):19598–19601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chan KSL, Wasa M, Chu L, Laforteza BN, Miura M, Yu J-Q (2014) Ligand-enabled cross-coupling of C(sp3)-H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. Nat Chem 6(2):146–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. **ao K-J, Lin DW, Miura M, Zhu R-Y, Gong W, Wasa M, Yu J-Q (2014) Palladium(II)-catalyzed enantioselective C(sp3)-H activation using a chiral hydroxamic acid ligand. J Am Chem Soc 136(22):8138–8142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Spangler JE, Kobayashi Y, Verma P, Wang D-H, Yu J-Q (2015) α-arylation of saturated azacycles and N-methylamines via palladium(II)-catalyzed C(sp3)-H coupling. J Am Chem Soc 137(37):11876–11879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Jain P, Verma P, **a G, Yu J-Q (2017) Enantioselective amine α-functionalization via palladium-catalysed C-H arylation of thioamides. Nat Chem 9(2):140–144

    Article  CAS  PubMed  Google Scholar 

  148. He C, Gaunt MJ (2015) Ligand-enabled catalytic C-H arylation of aliphatic amines by a four-membered-ring cyclopalladation pathway. Angew Chem Int Ed 54(52):15840–15844

    Article  CAS  Google Scholar 

  149. He J, Takise R, Fu H, Yu J-Q (2015) Ligand-enabled cross-coupling of C(sp3)-H bonds with arylsilanes. J Am Chem Soc 137(14):4618–4621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McMurtrey KB, Racowski JM, Sanford MS (2012) Pd-Catalyzed C-H fluorination with nucleophilic fluoride. Org Lett 14(16):4094–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu W, Huang X, Cheng M-J, Nielsen RJ, Goddard WA III, Groves JT (2012) Oxidative aliphatic C-H fluorination with fluoride ion catalyzed by a manganese porphyrin. Science 337(6100):1322–1325

    Article  CAS  PubMed  Google Scholar 

  152. Zhang L-S, Chen G, Wang X, Guo Q-Y, Zhang X-S, Pan F, Chen K, Shi Z-J (2014) Direct borylation of primary C-H bonds in functionalized molecules by palladium catalysis. Angew Chem Int Ed 53(15):3899–3903

    Article  CAS  Google Scholar 

  153. He J, Jiang H, Takise R, Zhu R-Y, Chen G, Dai H-X, Dhar TGM, Shi J, Zhang H, Cheng PTW, Yu J-Q (2016) Ligand-promoted borylation of C(sp3)-H bonds with palladium(II) catalysts. Angew Chem Int Ed 55(2):785–789

    Article  CAS  Google Scholar 

  154. He J, Shao Q, Wu Q, Yu J-Q (2017) Pd(II)-catalyzed enantioselective C(sp3)-H borylation. J Am Chem Soc 139(9):3344–3347

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, C. (2019). Oxidative Coupling Reactions Between Hydrocarbons and Organometallic Reagents (The Second Generation). In: Lei, A. (eds) Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Lecture Notes in Chemistry, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58104-9_3

Download citation

Publish with us

Policies and ethics

Navigation