Multimodale SPECT- und PET-Bildgebung

  • Chapter
  • First Online:
Medizinische Physik
  • 20k Accesses

Zusammenfassung

Im weiteren Sinne kann man unter multimodaler Bildgebung oder auch Hybridbildgebung jegliche Nutzung medizinischer Bilddaten aus unterschiedlichen Quellen zum Zweck einer zuverlässigeren Befundfindung verstehen. In diesem Kapitel wird unter multimodaler Bildgebung ein diagnostisches Kombinationsgerät verstanden, welches die Charakteristika zweier oder mehrerer Bildgebungsmodalitäten, wie z. B. Computer- Tomographie (CT), Magnetresonanz-Tomographie (MRT), Single-Photon-Emission-Computed-Tomographie (SPECT) oder Positronen-Emissions-Tomographie (PET) in einer funktionellen Einheit vereint und damit synergistische Effekte der einzelnen Bildgebungsmodalitäten nutzt. Momentan etablierte Hybridsysteme im human-medizinischen Bereich sind PET/CT, SPECT/CT und PET/MRT. Diese Hybridsysteme kombinieren die hohe Sensitivität der SPECT- und der PET-Bildgebung zur Detektion und Quantifizierung eines Radiotracers im menschlichen Körper mit der räumlich hochaufgelösten anatomischen Darstellung der CT- oder MRTBildgebung. In diesem Kapitel werden die Grundlagen und Vorteile der multimodalen Bildgebung erläutert und der Aufbau von Hybridsystemen skizziert. Zudem werden wichtige Korrekturmethoden, wie beispielsweise die Partialvolumenkorrektur, Schwächungskorrektur und die Streustrahlenkorrektur erläutert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 79.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 99.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anger HO (1958) Scintillation camera. Rev Sci Instrum 29(1):27–33. https://doi.org/10.1063/1.1715998

    Article  ADS  Google Scholar 

  2. Anger H, Price D, Yost P (1967) Transverse-section tomography with scintillation camera. J Nucl Med 4:314

    Google Scholar 

  3. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5):796–804

    Article  Google Scholar 

  4. Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–1379

    Google Scholar 

  5. Bocher M, Balan A, Krausz Y, Shrem Y, Lonn A, Wilk M, Chisin R (2000) Gamma camera-mounted anatomical X-ray tomography: technology, system characteristics and first images. Eur J Nucl Med 27(6):619–627

    Article  Google Scholar 

  6. Boss A, Stegger L, Bisdas S, Kolb A, Schwenzer N, Pfister M, Claussen CD, Pichler BJ, Pfannenberg C (2011) Feasibility of simultaneous PET/MR imaging in the head and upper neck area. Eur Radiol 21(7):1439–1446. https://doi.org/10.1007/s00330-011-2072-z

    Article  Google Scholar 

  7. Burnham C, Brownell G (1972) A multi-crystal positron camera. Ieee Trans Nucl Sci 19(3):201–205

    Article  ADS  Google Scholar 

  8. Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, Michel CJ, El Fakhri G, Schmand M, Sorensen AG (2011) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 52(1):154–161. https://doi.org/10.2967/jnumed.110.079343

    Article  Google Scholar 

  9. Chen J, Caputlu-Wilson SF, Shi H, Galt JR, Faber TL, Garcia EV (2006) Automated quality control of emission-transmission misalignment for attenuation correction in myocardial perfusion imaging with SPECT-CT systems. J Nucl Cardiol 13(1):43–49. https://doi.org/10.1016/j.nuclcard.2005.11.007

    Article  Google Scholar 

  10. Damadian R, Goldsmith M, Minkoff L (1976) NMR in cancer: XVI. FONAR image of the live human body. Physiol Chem Phys 9(1):97–100

    Google Scholar 

  11. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922. https://doi.org/10.2967/jnumed.111.092726

    Article  Google Scholar 

  12. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Furst S, Martinez-Moller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855. https://doi.org/10.2967/jnumed.111.098608

    Article  Google Scholar 

  13. Erlandsson K, Buvat I, Pretorius PH, Thomas BA, Hutton BF (2012) A review of partial volume correction techniques for emission tomography and their applications in neurology, cardiology and oncology. Phys Med Biol 57(21):R119–R159. https://doi.org/10.1088/0031-9155/57/21/R119

    Article  Google Scholar 

  14. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R (2000) Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 41(8):1400–1408

    Google Scholar 

  15. Floyd CE, Jaszczak RJ, Greer KL, Coleman RE (1986) Inverse Monte-Carlo as a unified reconstruction algorithm for ect. J Nucl Med 27(10):1577–1585

    Google Scholar 

  16. Frey EC, Tsui B (1996) A new method for modeling the spatially-variant, object-dependent scatter response function in SPECT. In: Nuclear. Symposium, Bd. 1996. Science, Conference Record IEEE, S 1082–1086

    Google Scholar 

  17. Gilman MD, Fischman AJ, Krishnasetty V, Halpern EF, Aquino SL (2006) Optimal CT breathing protocol for combined thoracic PET/CT. Ajr Am J Roentgenol 187(5):1357–1360. https://doi.org/10.2214/AJR.05.1427

    Article  Google Scholar 

  18. Grimm R, Fürst S, Dregely I, Forman C, Hutter JM, Ziegler SI, Nekolla S, Kiefer B, Schwaiger M, Hornegger J (2013) Self-gated radial MRI for respiratory motion compensation on hybrid PET/MR systems. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, S 17–24

    Google Scholar 

  19. Han J, Köstler H, Bennewitz C, Kuwert T, Hornegger J (2008) Computer-aided evaluation of anatomical accuracy of image fusion between X-ray CT and SPECT. Comput Med Imaging Graph 32(5):388–395

    Article  Google Scholar 

  20. Hasegawa BH, Gingold EL, Reilly SM, Liew S-C, Cann CE (1990) Description of a simultaneous emission-transmission CT system. In: Medical Imaging’90 Newport Beach, 4–9 Feb 1990 International Society for Optics and Photonics, S 50–60

    Google Scholar 

  21. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Scholkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52(9):1392–1399. https://doi.org/10.2967/jnumed.110.078949

    Article  Google Scholar 

  22. Hounsfield GN (1973) Computerized transverse axial scanning (tomography): Part 1. Description of system. Br J Radiol 46(552):1016–1022

    Article  Google Scholar 

  23. Hutton BF (2014) The origins of SPECT and SPECT/CT. Eur J Nucl Med Mol Imaging 41(Suppl 1):3–S16. https://doi.org/10.1007/s00259-013-2606-5

    Article  Google Scholar 

  24. Jaszczak RJ, Murphy PH, Huard D, Burdine JA (1977) Radionuclide emission computed tomography of the head with 99mCc and a scintillation camera. J Nucl Med 18(4):373–380

    Google Scholar 

  25. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714. https://doi.org/10.1118/1.3578928

    Article  Google Scholar 

  26. Jones T, Price P (2012) Development and experimental medicine applications of PET in oncology: a historical perspective. Lancet Oncol 13(3):e116–e125. https://doi.org/10.1016/S1470-2045(11)70183-8

    Article  Google Scholar 

  27. Kartmann R, Paulus DH, Braun H, Aklan B, Ziegler S, Navalpakkam BK, Lentschig M, Quick HH (2013) Integrated PET/MR imaging: automatic attenuation correction of flexible RF coils. Med Phys 40(8):82301. https://doi.org/10.1118/1.4812685

    Article  Google Scholar 

  28. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51(5):812–818. https://doi.org/10.2967/jnumed.109.065425

    Article  Google Scholar 

  29. Kiefer A, Kuwert T, Hahn D, Hornegger J, Uder M, Ritt P (2011) Anatomische Genauigkeit der retrospektiven, automatischen und starren Bildregistrierung zwischen FDG-PET und MRI bei abdominalen Läsionen. Nuklearmedizin 50(4):147–154

    Article  Google Scholar 

  30. Lauterbur PC (1973) Image formation by induced local interactions – examples employing nuclear magnetic-resonance. Nature 242(5394):190–191. https://doi.org/10.1038/242190a0

    Article  ADS  Google Scholar 

  31. MacDonald LR, Kohlmyer S, Liu C, Lewellen TK, Kinahan PE (2011) Effects of MR surface coils on PET quantification. Med Phys 38(6):2948–2956. https://doi.org/10.1118/1.3583697

    Article  Google Scholar 

  32. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50(4):520–526. https://doi.org/10.2967/jnumed.108.054726

    Article  Google Scholar 

  33. Navalpakkam BK, Braun H, Kuwert T, Quick HH (2013) Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 48(5):323–332. https://doi.org/10.1097/RLI.0b013e318283292f

    Article  Google Scholar 

  34. Nensa F, Poeppel TD, Beiderwellen K, Schelhorn J, Mahabadi AA, Erbel R, Heusch P, Nassenstein K, Bockisch A, Forsting M, Schlosser T (2013) Hybrid PET/MR imaging of the heart: feasibility and initial results. Radiology 268(2):366–373. https://doi.org/10.1148/radiol.13130231

    Article  Google Scholar 

  35. Nömayr A, Römer W, Hothorn T, Pfahlberg A, Hornegger J, Bautz W, Kuwert T (2005) Anatomical accuracy of lesion localization Retrospective interactive rigid image registration between 18F-FDG-PET and X-ray CT. Nukl Arch 44(4):149–155

    Google Scholar 

  36. Nömayr A, Römer W, Strobel D, Bautz W, Kuwert T (2006) Anatomical accuracy of hybrid SPECT/spiral CT in the lower spine. Nucl Med Commun 27(6):521–528

    Article  Google Scholar 

  37. Paulus DH, Braun H, Aklan B, Quick HH (2012) Simultaneous PET/MR imaging: MR-based attenuation correction of local radiofrequency surface coils. Med Phys 39(7):4306–4315. https://doi.org/10.1118/1.4729716

    Article  Google Scholar 

  38. Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, Siegel SB, Claussen CD, Cherry SR (2006) Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. J Nucl Med 47(4):639–647

    Google Scholar 

  39. Pichler BJ, Judenhofer MS, Wehrl HF (2008) PET/MRI hybrid imaging: devices and initial results. Eur Radiol 18(6):1077–1086. https://doi.org/10.1007/s00330-008-0857-5

    Article  Google Scholar 

  40. Portnow LH, Vaillancourt DE, Okun MS (2013) The history of cerebral PET scanning: from physiology to cutting-edge technology. Neurology 80(10):952–956. https://doi.org/10.1212/WNL.0b013e318285c135

    Article  Google Scholar 

  41. Quick HH (2014) Integrated PET/MR. J Magn Reson Imaging 39(2):243–258. https://doi.org/10.1002/jmri.24523

    Article  Google Scholar 

  42. Rischpler C, Nekolla SG, Dregely I, Schwaiger M (2013) Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med 54(3):402–415. https://doi.org/10.2967/jnumed.112.105353

    Article  Google Scholar 

  43. Ritt P, Kuwert T (2013) Quantitative SPECT/CT. In: Schober O, Riemann B (Hrsg) Molecular imaging in oncology. Recent results in cancer research, Bd. 187. Springer, Berlin, Heidelberg, S 313–330 https://doi.org/10.1007/978-3-642-10853-2_10

    Chapter  Google Scholar 

  44. Rousset OG, Ma Y, Evans AC (1998) Correction for partial volume effects in PET: principle and validation. J Nucl Med 39(5):904–911

    Google Scholar 

  45. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, von Schulthess GK, Kuhn FP (2012) PET/MR imaging of bone lesions – implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39(7):1154–1160. https://doi.org/10.1007/s00259-012-2113-0

    Article  Google Scholar 

  46. Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035. https://doi.org/10.1148/radiol.2483071927

    Article  Google Scholar 

  47. Schwenzer NF, Stegger L, Bisdas S, Schraml C, Kolb A, Boss A, Muller M, Reimold M, Ernemann U, Claussen CD, Pfannenberg C, Schmidt H (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients – current state of image quality. Eur J Radiol 81(11):3472–3478. https://doi.org/10.1016/j.ejrad.2011.12.027

    Article  Google Scholar 

  48. Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1):89–98. https://doi.org/10.1148/114.1.89

    Article  Google Scholar 

  49. Townsend DW, Beyer T, Blodgett TM (2003) PET/CT scanners: a hardware approach to image fusion. In: Seminars in nuclear medicine Bd. 3. Elsevier, Amsterdam, S 193–204

    Google Scholar 

  50. Tsoumpas C, Buerger C, King AP, Mollet P, Keereman V, Vandenberghe S, Schulz V, Schleyer P, Schaeffter T, Marsden PK (2011) Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol 56(20):6597–6613. https://doi.org/10.1088/0031-9155/56/20/005

    Article  Google Scholar 

  51. Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G (2013) PET-MR imaging using a tri-modality PET/CT-MR system with a dedicated shuttle in clinical routine. Magn Reson Mater Phy 26(1):25–35. https://doi.org/10.1007/s10334-012-0344-5

    Article  Google Scholar 

  52. Watson CC (2000) New, faster, image-based scatter correction for 3D PET. Ieee Trans Nucl Sci 47(4):1587–1594. https://doi.org/10.1109/23.873020

    Article  ADS  Google Scholar 

  53. Wells RG, Celler A, Harrop R (1998) Analytical calculation of photon distributions in SPECT projections. Ieee Trans Nucl Sci 45(6):3202–3214. https://doi.org/10.1109/23.736199

    Article  ADS  Google Scholar 

  54. Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, Schmidt D, Beck M, Kuwert T, von Gall CC (2013) Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 40(1):12–21. https://doi.org/10.1007/s00259-012-2249-y

    Article  Google Scholar 

  55. Wolz G, Nomayr A, Hothorn T, Hornegger J, Romer W, Bautz W, Kuwert T (2007) Anatomical accuracy of interactive and automated rigid registration between X-ray CT and FDG-PET. Nucl Med 46(1):43–48

    Google Scholar 

  56. Wrenn FR Jr, Good ML, Handler P (1951) The use of positron-emitting radioisotopes for the localization of brain tumors. Saiensu, Bd. 113. Science, See

    Google Scholar 

  57. Wurslin C, Schmidt H, Martirosian P, Brendle C, Boss A, Schwenzer NF, Stegger L (2013) Respiratory motion correction in oncologic PET using T1-weighted MR imaging on a simultaneous whole-body PET/MR system. J Nucl Med 54(3):464–471. https://doi.org/10.2967/jnumed.112.105296

    Article  Google Scholar 

  58. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56(10):3091–3106. https://doi.org/10.1088/0031-9155/56/10/013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ritt .

Editor information

Editors and Affiliations

Aufgaben

Aufgaben

16.1

Um welchen Faktor verringert sich die Intensität von 140-keV-Photonen nach Durchgang durch 10 cm Weichteilgewebe (\(\sim\) 0 HU)? Wie groß ist der Faktor für 511-keV-Photonen?

16.2

Ab welcher Strukturgröße kommt der Partialvolumeneffekt bei einer räumlichen Systemauflösung von 10 mm FWHM kaum noch zu tragen?

16.3

Man betrachte die Quantifizierung der Aktivitätsmenge (Bequerel) eines \({}^{99\mathrm{m}}\)Tc-Radiopharmakons, z. B. in den Nieren, mit Hilfe von SPECT. Ordne die nachfolgenden Effekte gemäß ihres Einflusses auf die Quantifizierungsgenauigkeit in absteigender Reihung (größter Einfluss zuerst): Partialvolumenkorrektur, Schwächungskorrektur, Kalibrierung.

16.4

Wie erfolgt bei der PET/CT-Hybridbildgebung prinzipiell die Schwächungskorrektur?

16.5

Wie erfolgt bei der integrierten PET/MRT-Hybridbildgebung prinzipiell die Schwächungskorrektur?

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ritt, P., Quick, H.H. (2018). Multimodale SPECT- und PET-Bildgebung. In: Schlegel, W., Karger, C., Jäkel, O. (eds) Medizinische Physik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54801-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54801-1_16

  • Published:

  • Publisher Name: Springer Spektrum, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54800-4

  • Online ISBN: 978-3-662-54801-1

  • eBook Packages: Life Science and Basic Disciplines (German Language)

Publish with us

Policies and ethics

Navigation